
HAL Id: lirmm-00879631
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879631

Submitted on 4 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entity Resolution for Distributed Probabilistic Data
Naser Ayat, Reza Akbarinia, Hamideh Afsarmanesh, Patrick Valduriez

To cite this version:
Naser Ayat, Reza Akbarinia, Hamideh Afsarmanesh, Patrick Valduriez. Entity Resolution for Dis-
tributed Probabilistic Data. Distributed and Parallel Databases, Springer, 2013, 31 (4), pp.509-542.
�10.1007/s10619-013-7129-3�. �lirmm-00879631�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00879631
https://hal.archives-ouvertes.fr

Entity Resolution for Distributed Probabilistic Data

Naser Ayat#1, Reza Akbarinia∗2, Hamideh Afsarmanesh#3, Patrick Valduriez∗4
#Informatics Institute, University of Amsterdam, Amsterdam, Netherlands

1s.n.ayat@uva.nl, 3h.afsarmanesh@uva.nl
∗INRIA and LIRMM, Montpellier, France
2,4{firstname.lastname@inria.fr}

ABSTRACT
The problem of entity resolution over probabilistic data (ERPD)
arises in many applications that have to deal with proba-
bilistic data. In many of these applications, probabilistic
data is distributed among a number of nodes. The simple,
centralized approach to the ERPD problem does not scale
well as large amounts of data need to be sent to a central
node. In this paper, we present FD, a fully distributed algo-
rithm for dealing with the ERPD problem over distributed
data, with the goal of minimizing bandwidth usage and re-
ducing processing time. FD is completely distributed and
does not depends on the existence of certain nodes. We
validated FD through implementation over a 75-node clus-
ter. We used both synthetic and real-world data in our
experiments. Our performance evaluation shows that FD
can achieve major performance gains in terms of bandwidth
usage and response time.

1. INTRODUCTION
In recent years, we have been witnessing much interest in

uncertain data management using probabilistic approaches
in many application areas such as data integration [18], sen-
sor networks [9, 13], information extraction [12], etc. Much
research effort has been devoted to several aspects of un-
certain data management, including data modeling [23, 8],
skyline queries [6, 21], top-k queries [11, 24], nearest neigh-
bor search [29], spatial queries [28], XML documents [4, 14],
etc.

The main difference between a traditional certain database
and an uncertain database is that an uncertain database rep-
resents a set of possible database instances, called possible
worlds, rather than a single one.

An important problem that arises in many applications
such as information integration is that of Entity Resolu-
tion (ER) [10]. ER is the process of identifying tuples that
represent the same real-world entity. The problem of ER is
challenging since the same entity can be encoded in different

ways due to a variety of reasons such as different formatting
conventions, abbreviations, and typographic errors.

The problem of entity resolution over probabilistic data
(which we call ERPD) arises in many application domains
that have to deal with probabilistic data, ranging from sen-
sor databases to scientific data management. In this paper,
we are interested in the following formulation of the ERPD
problem1. Let e be an uncertain entity represented by multi-
ple possible alternatives, i.e. tuples, each with a membership
probability. Let D be an uncertain database composed of a
set of uncertain entities. Then, given e, D, and a similar-
ity function F , the problem is to find the entity-tuple pair
(t, ti) (where t ∈ e, ti ∈ D) such that (t, ti) has the highest
cumulative probability to be the most similar in all possible
worlds. This entity-tuple pair is called the most probable
match pair of e and D, denoted as MPMP(e, D).

There have been recent proposals dealing with the ERPD
problem [19, 20, 7]. They all deal with the uncertain data
which is stored in a central database. However, many real-
life applications, in which the ERPD problem arises, pro-
duce uncertain data distributed among a number of databases.
Dealing with the ERPD problem for distributed data is quite
important for such applications. Let us give two examples
of such applications from image retrieval and scientific data
management domains.

Example 1. Matching images in facial image database.
For investigation purposes, the police keeps a database of
facial image of all persons who leave the country. To gather
such database, the police has installed supervenience video
cameras in all ports including airports, seaports, and land
border ports. In each port, video cameras capture the video
of the persons who leave the country. A face recognition
system then is used to extract each individual’s facial im-
age from captured videos, and store its feature vector as
a tuple in a local database. Since the detected face might
be moving in the video and the inherent uncertainty of the
face recognition methods, each feature vector is associated
with a probability value representing its degree of certainty
(e.g. as in [30]). The local databases are connected through
a distributed system which provides a query interface for
querying the set of all databases from each port. A witness
of a crime scene describes the facial features of a perpetrator.
Since the witness is not sure about some of the features, the
police represents the perpetrator’s face using an uncertain
entity, say e, consisting of a number of alternative feature

1Some texts (e.g. [25]) refer to this formulation of the ER
problem as Identity Resolution. [7]

vectors each associated with a confidence value. An inter-
esting query for the police is the following: in the distributed
database of all ports, find the person who is most probably
the same person as e, where date > x (i.e. the date of the
crime).

Example 2. Finding astronomical objects in astrophysics
data. In astrophysics, as well as in other scientific disci-
plines, the correlation and integration of observational data
is the key for gaining new scientific insights. Astronom-
ical observatories, distributed all over the world, produce
data about sky surveys, some of which is uncertain [22]. In
its simplified form, each observatory can maintain a single
uncertain relation Objects that contains data about the ob-
served astronomical objects in the sky surveys. Each object
is represented using a number of alternative tuples each with
a membership probability showing its degree of certainty.
The alternatives are disjoint, meaning that at most one of
them can be true. The astrophysics researchers who want
to gather information about a particular astronomical ob-
ject, which has been represented by an uncertain entity e, is
very interested in the following query: among astronomical
objects observed in a sky region in all distributed observato-
ries, find the object which is most probably the same object
as a given object e.

A straightforward approach to answer the above queries
is to ask all distributed nodes to send their databases to a
central node who deals with the problem of ER by using one
of the existing centralized solutions, e.g. [7]. However, this
approach is very expensive and does not scale well neither in
the size of databases, nor in the number of nodes. Therefore,
using a distributed algorithm for dealing with the ERPD
problem over distributed data is inevitable.

In this paper, we propose FD, a fully distributed algorithm
for dealing with the ERPD problem over distributed data,
with the goal of minimizing bandwidth usage and reducing
processing time. To the best of our knowledge, FD is the first
proposal that deals with the ERPD problem over distributed
data. It has the following salient features. First, it uses the
novel concepts of Potential and essential-set to prune data
at local nodes. This leads to a significant reduction of band-
width usage compared to the baseline approaches. Second,
its execution is completely distributed and does not depend
on the existence of certain nodes. We validated FD through
implementation over a 75-node cluster and simulation us-
ing both synthetic and real-world data. The results show
very good performance, in terms of bandwidth usage and
response time.

The rest of the paper is organized as follows. In Section
2, we make precise our assumptions and formally define the
problem. In Section 3, we present FD, and analyze its com-
munication cost. In Section 5, we report the performance
evaluation of FD through implementation and simulation.
Section 6 discusses related work, and Section 7 concludes.

2. PROBLEM DEFINITION
In this section, we first describe the probabilistic data

model which we consider. Then, we define the problem of
entity resolution over distributed probabilistic data.

Probabilistic Data Model

For representing an uncertain entity, we use the x-tuple data
model [5], and represent each entity as a x-tuple. In each
x-tuple there are several possible tuples, called alternatives.

Each alternative is associated with a probability value show-
ing its likelihood of truth. The alternatives are disjoint,
meaning that at most one of them can be true, and the sum
of the confidence values of the alternatives is less than or
equal to one. As an example of x-tuple, consider the entity
e in Figure 1(a). Notice that either te,1 or te,2 is true.

An uncertain database (called also x-relation) consists of a
set of x-tuples that are subject of independent probabilistic
events. Figure 1(b) shows an example of x-relation, named
Objects. In the Objects relation, t1,1 and t1,2 together form
one x-tuple, and t2,1, by itself, form another x-tuple.

An uncertain database D can be interpreted as the set of
all possible certain database instances, called possible worlds
and denoted as PW (D), each with a probability of occur-
rence. Figure 1(c) shows the possible worlds set of the un-
certain database Objects and the probability of each member
of this set.

We define the possible worlds set of an uncertain entity
e and an uncertain database D, denoted by PW (e,D), as
follows:

PW (e,D) = {w | w = {t} × v, t ∈ e, v ∈ PW (D)} .

As an example, Figure 2(b) shows all eight members of
PW(e, Objects) together with their probability of occur-
rence.

tuple Type Distance Brightness Color P

te,1 Quasar 12.2 18.2 0.12 0.4

te,2 Binary Star 11.5 14.8 0.4 0.5

(a)

tuple Type Distance Brightness Color P

x1

t1,1 Blazar 20.1 22.1 0.85 0.6

t1,2 Quasar 20.4 18.4 0.64 0.4

x2 t2,1 Pulsar 80.12 19.64 0.67 0.4

(b)

PW(Objects) P(w)
{t1,1} 0.6× (1− 0.4) = 0.36
{t1,2} 0.4× (1− 0.4) = 0.24

{t1,1, t2,1} 0.6× 0.4 = 0.24
{t1,2, t2,1} 0.4× 0.4 = 0.16

(c)

Figure 1: a) Example of uncertain entity e in the
x-tuple model, b) example of x-relation Objects, c)
the possible worlds of Objects

Entity Resolution in a Probabilistic Database

In this paper, we are interested in finding the most probable
match pair (MPMP) defined as follows.

Definition 1. MPMP: Let D be an uncertain database,
e an uncertain entity, and PW (e,D) the set of possible
worlds of e and D. Let w ∈ PW (e,D) be a possible world
and P (w) be the probability that w occurs. Let the most sim-
ilar entity-tuple pair of a world w, denoted as msp(w), be the
pair that has the highest similarity value among the pairs in
w. Let ρ be an entity-tuple pair in e × D. Let Pmsp(ρ,D)

Pair Rank

(te,1, t1,2) 1

(te,1, t1,1) 2

(te,2, t2,1) 3

(te,2, t1,2) 4

(te,1, t2,1) 5

(te,2, t1,1) 6

(a)

w PW(e, Objects) MSP(w) P(w)
w1 {(te,1, t1,1)} (te,1, t1,1) 0.4× 0.36 = 0.144
w2 {(te,1, t1,2)} (te,1, t1,2) 0.4× 0.24 = 0.096
w3 {(te,1, t1,1), (te,1, t2,1)} (te,1, t1,1) 0.4× 0.24 = 0.096
w4 {(te,1, t1,2), (te,1, t2,1)} (te,1, t1,2) 0.4× 0.16 = 0.064
w5 {(te,2, t1,1)} (te,2, t1,1) 0.5× 0.36 = 0.18
w6 {(te,2, t1,2)} (te,2, t1,2) 0.5× 0.24 = 0.12
w7 {(te,2, t1,1), (te,2, t2,1)} (te,2, t2,1) 0.5× 0.24 = 0.12
w8 {(te,2, t1,2), (te,2, t2,1)} (te,2, t2,1) 0.5× 0.16 = 0.08

(b)

Pair Pmsp

(te,1, t1,1) 0.144 + 0.096 = 0.24
(te,2, t2,1) 0.12 + 0.08 = 0.2
(te,2, t1,1) 0.18
(te,1, t1,2) 0.096 + 0.064 = 0.16
(te,2, t1,2) 0.12
(te,1, t2,1) 0

(c)

Figure 2: a) Entity-tuple pairs ranked based on their similarity; b) possible worlds space of e and Objects,
MSP in each world; c) all pairs and their Pmsp.

be the aggregated probability that pair ρ is the most similar
pair in PW (e,D), i.e.

Pmsp(ρ,D) =
∑

w∈PW (e,D)∧ρ=MSP(w)

P (w)

Then, the most probable match pair of e and D, MPMP(e,
D), defined as follows:

MPMP(e,D) = arg max
ρ∈e×D

Pmsp(ρ,D)

In other words, MPMP(e, D) is the pair that has the highest
probability to be the most similar.

Given an uncertain database D and an uncertain entity
e, the problem of ERPD consists of finding MPMP(e, D).
At some points in this paper, we refer to the entity e, in the
ERPD problem, as the entity resolution query or query in
short.

Without loss of generality, we assume that all similarity
scores between e’s alternatives and the tuples of D are dis-
tinct.

The following example illustrates the MPMP concept.
Example 3. Consider the entity e and the Objects datab-
ase in the Figures 1(a) and 1(b) respectively. Let F be a
similarity function which ranks all possible entity-tuple pairs
of e and Objects (i.e. set of pairs e×Objects) as they appear
in Figure 2(a). Figure 2(b) shows the eight possible worlds
of PW (e,Objects), the probability of each world, and the
most similar pair (MSP) in each world. Figure 2(c) shows
the Pmsp) of all entity-tuple pairs. For instance, entity-tuple
pair (te,1, t1,2) is MSP in w2 and w4, thus, Pmsp)(te,1, t1,2)
is the sum of the probabilities of w2 and w4. We observe
that entity-tuple pair (te,1, t1,1) is MPMP since it has the
maximum Pmsp) among all entity-tuple pairs.

Entity Resolution for Distributed Probabilistic Data

In this paper, we consider that the uncertain database is
fragmented over a number of nodes in a distributed sys-
tem. We make no specific assumption about the topology of
the distributed system architecture which can be very gen-
eral, e.g. an unstructured P2P system or a cluster. In the
distributed system, each node knows some other nodes, its
neighbors, to communicate with.

Now we define the problem of entity resolution for dis-
tributed probabilistic data as follows. Let e be an uncertain
entity issued at a query originator p. Let TTL (Time To
Live) determine the maximum hop distance which the user
wants the entity resolution message be sent. Let D be the
union of the uncertain databases that are in the schema of

e and maintained by nodes that can be accessed through
TTL hops from the query originator. Our goal is to find the
most-probable match-pair MPMP(e, D) while minimizing
the communication cost.

3. DISTRIBUTED COMPUTATION OF MOST-
PROBABLE MATCH-PAIR

One possible approach for computing MPMP is to move
all relevant data of nodes to a central node, e.g. the query
originator, where MPMP is computed using a centralized
algorithm. However, the problem with this approach is that
the query originator becomes a communication bottleneck
since it must receive a large amount of data from other
nodes. In addition, it becomes a processing bottleneck, as
it must process a large amount of data. In this section, we
propose a fully distributed algorithm called FD, for comput-
ing MPMP. Our algorithm avoids the problems of the above
approach by : 1) pruning the data that have no chance to be
MPMP, thus reducing the communication cost significantly;
2) distributing the processing of MPMP over a large number
of nodes.

3.1 Algorithm Overview
The FD algorithm starts at the query originator, the node

at which a user issues a query involving an uncertain entity
e to be resolved. The query originator performs some ini-
tialization. First, it sets TTL with a value which is either
specified by the user or default. Second, it gives e a unique
identifier, denoted by eid, which is made of a unique node-
ID and a query counter managed by the query originator.
Nodes use eid to distinguish between new queries and those
received before. After initialization, the entity resolution
proceeds in the following phases done at each node that re-
ceives the query:

• Query forward. e is included in a message that
is broadcast by the query originator to its reachable
neighbors. Each node p that receives the message in-
cluding e from node q performs the following steps.
If it is the first time of receiving the query, then the
node p saves the id of q as its parent, else discards
the message and makes a new message including eid
and sends it to q to indicate that the query has been
received from another node. Then p decrements TTL
by one, if TTL > 0, it makes a new message including
e, eid, new TTL and the query originator’s address;
sends the message to all neighbors except q; and saves
the number of sent messages to the neighbors.

• Extract the essential-set. The core idea of this
phase is that for computing the most probable match
pair, the query originator does not need all entity-
tuple pairs maintained at p, but only a subset of them
that we call essential-set. In this phase, p extracts the
essential-set of its local data and saves it locally until
receiving the essential-sets of its neighbors to which it
has sent the query.

• Merge-and-backward essential-sets. In this phase,
p unifies its essential-set with those received from its
neighbors into a set of entity-tuple pairs essentialpq,
and sends essentialpq to its parent, the node from
which it received the query.

• MPMP computation and data retrieval. Dur-
ing the first three phases of the algorithm, the query
originator receives a number of merged essential-sets
from its neighbors. It unifies these sets with its lo-
cal essential-set into the set essentialunified, and com-
putes MPMP(e, D) and asks the node which contains
the data to return the data content.

In the next subsections, we describe the details of FD
algorithm phases.

3.2 Extract the Essential-set
At each node p, our FD algorithm prunes the data that

have no chance to be the (global) most probable match
pair, i.e. MPMP(e, D). For this, FD needs to extract the
essential-set of each node which we define as follows. Let
e be the given entity. Suppose Dp is the database main-
tained by p and np is the number of tuples in Dp. Let Sp
be the set of all entity-tuple pairs at p, i.e. Sp = e × Dp.
We define the essential-set of Sp, denoted as essential(Sp)
by using its complement: essentialc(Sp) is a subset of Sp
whose members can never be MPMP(e, D).

The alternatives of e are mutually exclusive, thus to find
essential(Sp), it is sufficient to compute the essential-set for
each alternative t ∈ e, and then unify the essential-sets of
all alternatives of e. More precisely, we have:

essential(Sp) =
⋃
t∈e

essential(Sp,t),where Sp,t = {t} ×Dp

Now, we consider an alternative t ∈ e, and explain the
process of finding essential(Sp,t).

Let Lp = {(t, tp,1), . . . , (t, tp,np)} be the list of Sp,t pairs
sorted in decreasing order of the similarities between t and
Dp tuples. In other words, we have:

F (t, tp,1) > . . . > F (t, tp,np),

where F is the given similarity function.
In the last step of the FD algorithm, we combine entity-

tuple pairs from other nodes with the pairs in list Lp. Let
ρ = (t, tq) be an entity-tuple pair from a node other than
p. Pair ρ may be inserted in any index of Lp, say index
i ∈ [1, np+1], based on the similarity between t and tq. The
question in pruning is whether this pair has any chance to be
MPMP (e,D) or not. The answer to this question depends
on the value of Pmsp(ρ,D), i.e. the probability that the pair
ρ is the most similar pair2 (see Definition 1 in Section 2).

2Notice that Pmsp(ρ,D) is the global Pmsp value of pair ρ,
while Pmsp(ρ,Dp) is its local Pmsp value at node p. Gener-
ally, Pmsp(ρ,Dp) ≥ Pmsp(ρ,D).

However, Pmsp(ρ,D) depends not only on the pairs that are
at node p, but also on the pairs of other nodes. Thus, we
cannot compute the exact value of Pmsp(ρ,D) locally, but
we can compute an upper bound on this value. We denote
such upper bound as the Potential of the index i of list Lp.
More precisely,

Potential(i) = maxPmsp(ρ,D) (1)

where i ∈ [1..np + 1].
For instance Potential(1) is an upper bound on the (both

global and local) Pmsp value of a pair which is inserted in
the first location of list Lp, i.e. before pair (t, tp,1). The
following lemma computes the Potential of index i of list
Lp.

Lemma 1. Let i be an index in range [1..np + 1]. Let
Y be the set of x-tuples formed by considering correlations
between the tuples {tp,1, . . . , tp,i−1}, then

Potential (i) = P (t)×
∏
x∈Y

(1− P (x)).

We include the proof of Lemma 1 in Appendix B.

Corollary 1. Potential is a monotonically decreasing
function.

Intuitively, Corollary 1 says that the higher is the index, the
lower is its potential.

Let local max be the maximum local Pmsp value of pairs
in list Lp, i.e. local max = maxPmsp(ρ,Dp), ρ ∈ Lp. We use
local max to define the stop index of list Lp as the smallest
index in [1..np + 1] where

Potential(stop) < local max. (2)

The following lemma provides the basis for pruning the pairs
in list Lp.

Lemma 2. Let stop be the stop index of list Lp. Then,

∀i ∈ [stop, np], Lp[i] 6= arg max
ρ∈Lp

Pmsp(ρ,D).

We include the proof of Lemma 2 in Appendix B.

Corollary 2. Let stop be the stop index of list Lp. Then,

∀i ∈ [stop, np], Lp[i] 6= MPMP(e,D).

Intuitively, corollary 2 says that the pair at the stop index
and any pair after it have no chance to be the most probable
match pair. Thus, essential(Sp,t) is the set of Lp pairs
whose index is smaller than the stop index.

Algorithm

Algorithm 1 describes the details of the steps which are per-
formed for finding essential(Sp). Steps 3-19 are repeated
for every alternative of e, say t, and at each iteration com-
pute essential(Sp,t). Step 3 computes set Sp,t and step 4
sorts its pairs based on the similarity between the pair ele-
ments in descending order according to similarity function
F , and stores the result in list L. Steps 5-7 compute list T
as the second elements of list L and do some initialization.
Steps 9-16 are repeated until finding the stop index of L,
and in each iteration, they process the pair at index i of list
L. Steps 10-12 compute Pmsp(L[i], Dp) as the intersection of

two independent probabilistic events: t occurs; and among
tuples T [1] to T [i], only T [i] occurs. To calculate the proba-
bility of the latter event, step 10 considers correlation among
tuples to group tuples T [1] to T [i] into the set of x-tuples
Y and step 11 removes the x-tuple containing T [i] from Y
and stores the result in x-tuple set X. Steps 13-15 update
the current maximum Pmsp of the pairs which we have pro-
cessed so far. Steps 16 computes Potential(i+ 1) using the
x-tuple set Y which has already been computed in step 10.
Step 17 checks if all pairs in the list L have been processed
or i + 1 is the stop index of L. If the condition holds, then
the algorithm stops processing list L, else it continues by
processing the next pair in L. Step 19 adds pairs L[1] to
L[stop− 1] to the essential-set. Finally, step 21 returns the
essential-set.

Example

Let us illustrate the process of extracting essential-set us-
ing an example. Consider uncertain entity e and uncertain
database Dp (maintained at node p) shown in Figures 3(a)
and 3(b) respectively. In this example, e consists of a sin-
gle alternative t, where P (t) = 0.8. The set of existing
entity-tuple pairs in node p, i.e. set Sp, can be computed as
Sp = e×Dp. To prune Sp, we sort its pairs based on their
similarity in descending order. The resulted list, denoted as
L, is shown in Figure 3(c).

The Potential of the first location in list L, i.e. Potential(1),
is equal to the probability of the event that t occurs, which is
equal to P (t) = 0.8. The Pmsp of the first entity-tuple pair
in L, i.e. (t, tp,3), is equal to the probability of the event
that t and tp,3 occur, thus, Pmsp ((t, tp,3), Dp) is equal to
P (t)×P (tp,3) = 0.08. The Potential of the second location
in list L, i.e. Potential(2), is equal to the probability of the
event that t occurs but tp,3 does not occur, which is equal
to P (t) × (1 − P (tp,3)) = 0.72. This means that the max-
imum possible value for Pmsp of an entity-tuple pair which
comes in L[2] is 0.72. Since the Potential is greater than
the current maximum value of Pmsp , i.e. 0.08, we continue
processing the list.

The Pmsp of the second pair in L, i.e. (t, tp,7), is equal
to the probability of the event that t and tp,7 occur but
tp,3 does not occur, which is equal to P (t)× P (tp,7)× (1−
P (tp,3)) = 0.504. The Potential of the third location in
list L, i.e. Potential(3), is equal to the probability of the
event that t occurs but neither tp,3 nor tp,7 occurs, which
is equal to P (t)× (1− P (tp,3))× (1− P (tp,7)) = 0.216. At
this point, we stop processing the list since the Potential
is less than the current maximum value of Pmsp , i.e. 0.504.
Therefore, the stop index of Lp is 3 and essential(Sp) is
qual to {(t, tp,3), (t, tp,7)}. To provide better intuition, the
Pmsp and Potential values for other pairs are also shown in
Figure 3(c).

3.3 Merge-and-backward essential-sets
After extracting its essential-set, each node p waits for re-

ceiving the essential-sets of its children (the nodes to which
p has sent the query). After receiving the essential-set of its
children (or after a default wait time), p merges its essential-
set with those received from its children, and extracts a new
essential-set denoted by essentialpq, and sends it to its par-
ent.

In order to minimize network traffic, nodes do not bub-
ble up the data items of entity-tuple pairs (which could

t P(t)
t 0.8

(a) e

t P(t)
tp,1 0.4
tp,2 0.7
tp,3 0.1
tp,4 0.2
tp,5 0.9
tp,6 0.8
tp,7 0.7
tp,8 0.9

(b) Dp

i L[i] Pmsp(L[i], Dp) Potential(i)
1 (t, tp,3) 0.08 0.8
2 (t, tp,7) 0.504 0.72
3 (t, tp,8) 0.1944 0.216
4 (t, tp,1) 0.00864 0.0216
5 (t, tp,2) 0.00907 0.01296
6 (t, tp,4) 0.00078 0.00389
7 (t, tp,5) 0.00280 0.00311
8 (t, tp,6) 0.00025 0.00031
9 - - 0.000062

(c) List L

Figure 3: An example of uncertain entity e, database
Dp, and the pruning process

Algorithm 1 finding the essential-set

Input:
Entity e
Database Dp
Similarity function F

Output: essential(Sp), where Sp = e×Dp
1: essential← ∅
2: for all t ∈ e do
3: Sp,t ← {t} ×Dp
4: L← Sort(Sp,t, F)
5: T ← {t′ | (t, t′) ∈ L}
6: local max← −1
7: i← 0
8: repeat
9: i← i+ 1

10: Y ← set of x-tuples involved in {T [1], . . . , T [i]}
// removing the x-tuple containing T [i]

11: X ← Y − {x | x ∈ Y ∧ T [i] ∈ x}
12: Pmsp ← P (t)× P (T [i])×

∏
x∈X(1− P (x))

13: if Pmsp > local max then
14: local max← Pmsp

15: end if
16: Potential← P (t)×

∏
x∈Y (1− P (x))

17: until (Potential < local max) ∨ (i = |L|)
18: stop← i+ 1
19: essential← essential ∪ {L[1], . . . , L[stop− 1]}
20: end for
21: return essential

be large), but only some needed information about them.
The information that is put in the sent essential-set for
each entity-tuple pair (ti, tj), ti ∈ e, tj ∈ Dq, is a vector
(i, a, j, x, s, p) where i is the index of ti in e, a is the address
of node q which owns tj , j is the index of tuple tj in the
database Dq maintained by q, x is the x-tuple to which tj
belongs, s is the similarity score between ti and tj , and p is
the probability of tuple tj .

3.4 MPMP computation and data retrieval

Algorithm 2 computing MPMP(e, D)

Input: Set of entity-tuple pairs essentialunified
Output: MPMP(e, D)
1: current max← −1
2: for all t ∈ e do
3: Potential← P (t)
4: St ← {(t, t′) | (t, t′) ∈ essentialunified}
5: length← |St|
6: i← 1
7: while (Potential > current max)∧ (i ≤ length) do
8: L← Sort St pairs based on their similarity
9: T ← {t′ | (t, t′) ∈ L}

10: Y ← set of x-tuples involved in {T [1], . . . , T [i]}
11: X ← Y − {x | x ∈ Y ∧ T [i] ∈ x}
12: Pmsp ← P (t)× P (T [i])×

∏
x∈X(1− P (x))

13: if Pmsp > current max then
14: current max← Pmsp

15: MPMP ← L[i]
16: end if
17: Potential← P (t)×

∏
x∈Y (1− P (x))

18: i← i+ 1
19: end while
20: end for
21: return MPMP

When the query originator receives its children’s essential-
sets, it merges them with its local essential-set into the
set essentialunified. Theorem 1 shows that essentialunified
contains all entity-tuple pairs which are needed for comput-
ing MPMP(e, D).

Theorem 1. The entity-tuple pairs in set essentialunified
are sufficient for computing MPMP(e, D).

We include the proof of Theorem 1 in Appendix B. Algo-
rithm 2 shows the detailed steps which the query originator
performs to compute MPMP(e, D). Notice that:

• current max does not represent the maximum value
of Pmsp of the pairs in one list,i.e. related to alternative
t ∈ e, but the current maximum Pmsp value of the pairs
which we have visited so far. Thus, we reset it only
once in the beginning of the algorithm.

• We use Potential to stop early in visiting the pairs
of list L. Notice that we may discard a list of pairs
altogether because the maximum possible Pmsp of the
pairs in that list (i.e. P (t), t ∈ e) is less than the
current maximum Pmsp value that we got so far.

• Since the set St consists of a number of sorted lists, the
sort function in step 8 uses the sort-merge algorithm
to merge these sorted lists.

Using Algorithm 2, the query originator computes MPMP(e,
D) and asks the node which contains it to return the data
content which is then returned to the user.

We provide an example of all phases of the FD algorithm
in Appendix C.

4. ANALYSIS OF COMMUNICATION COST
In this section, we analyze the communication cost of FD,

and as we will see, it is not very high. We measure the com-
munication cost in terms of number of messages and number

of bytes which should be transferred over the network in or-
der to execute a query by our algorithm. The messages
transferred can be classified as: (1) forward messages, for
forwarding the query to nodes. (2) backward messages, for
returning the essential-sets from nodes to the query origina-
tor. (3) retrieve message, to request and retrieve the MPMP.
Let us first formalize the distributed system model that we
use in our analysis.

4.1 Distributed System Model
Let P be the set of the nodes in the distributed system.

Let Q be an entity resolution query at the query originator
p, i.e. the node at which the query is issued. Let PQ ⊆ P
be a set containing the query originator and all nodes that
receive Q. We model the nodes in PQ and the links between
them by a graph G(PQ, E) where PQ is the set of vertices in
G and E is the set of the edges. There is an edge p− q in E
if and only if there is a link between the nodes p and q in the
distributed system. Two nodes are called neighbor, if and
only if there is an edge between them in G. The number of
neighbors of each node p ∈ PQ is called the degree of p and
is denoted by d(p).

A peer p ∈ PQ may receive Q from some of its neighbors.
The first node, say q, from which p receives Q, is the parent
of p in G, so p is a child of q. A node may have some
neighbors that are neither its parent nor its children.

4.2 Forward messages
Forward messages are the messages that we use to forward

Q to the nodes. According to the basic design of our algo-
rithm, each node in PQ sends Q to all its neighbors except its
parent. Let po denote the query originator. Let G(PQ, E) be
a graph representing the distributed network, such that PQ
is the set of nodes and E is the links between the nodes. By
our FD algorithm, each node p ∈ {PQ − {po}}, sends Q to
d(p)−1 nodes, where d(p) is the degree of p in G. The query
originator sends Q to all of its neighbors, in other words to
d(po) nodes. Then, the sum of all forward messages mfw

can be computed as

mfw = d(po) +
∑

p∈{PQ−{po}}

(d(p)− 1)

We can write mfw as follows:

mfw =

 ∑
p∈{PQ}

(d(p)− 1)

+ 1 =

 ∑
p∈{PQ}

d(p)

− |PQ|+ 1 (3)

We use the average degree of the graph G, denoted as
d(G), to simplify (3). d(G) is defined as the average degree
of nodes in G and can be computed as

d(G) =

∑
p∈PQ

d(p)

|PQ|

Substituting d(G) in (3), we have

mfw = (d(G)− 1)× |PQ|+ 1

From the above discussion, we can derive the following
Lemma.

Lemma 3. The number of forward messages in the FD
algorithm is (d(G)− 1)× |PQ|+ 1.

Proof. Implied by the above discussion.

In our underlying applications, e.g. astronomy applica-
tion, the average degree of nodes is low, that is each node is
usually connected to a small number of other nodes. Thus,
the total number of forward messages is not very high com-
pared to the number of nodes. For example, if the average
degree of the system is 4, i.e. d(G) = 4, then we have
mfw = 3× |PQ|+ 1.

Let bt be the average size of a tuple in Q in bytes, and
|Q| be the number of alternative tuples of Q. Then, the
total size of data transferred by forward messages, denoted
by bfw, can be computed as ((d(G)−1)×|PQ|+1)×|Q|×bt.

4.3 Backward messages
In the Merge-and-Backward phase, each node in PQ, ex-

cept the query originator, sends its merged essential-set to
its parent. Therefore, the number of backward messages,
denoted by mbw, is mbw = |PQ| − 1.

In the query forward phase of the algorithm, nodes in
PQ are arranged in a tree, called query-tree, with the query
originator as its root. For our modeling, we assume that
the query-tree is a k-ary tree (i.e. k = d(G)) in which the
root has k children and all intermediate nodes has exactly
k − 1 children. Moreover, we assume that all leaves are at
the same level. These assumptions, however, are mostly for
illustration purposes. In practice, nodes are organized in
arbitrary tree topologies.

Let h be the height of the tree, with the root at level l = 0.
The total number of nodes, i.e. |PQ|, can be computed as

|PQ| = (
∑h
l=2(k − 1)l) + k + 1.

Let S(l) be the total size of data transferred in the Merge-
and-Backward phase by each node which resides in the level l
of the query-tree. Let bes be the average size of the essential-
set of a node. In the Merge-and-Backward phase, each
node at level h of the query-tree, i.e. leaf nodes, sends its
essential-set to its parent. Thus, S(h) = bes. Also, each
intermediate node at level l, l 6= 0, of the query-tree receives
exactly k− 1 essential-sets from its children which reside at
level l + 1; merges them with its essential-set; and send the
merged essential-set to its parent. Thus, for each interme-
diate node we have S(l) = (k − 1)× S(l + 1) + bes; thereby
yielding the following recurrence relation for S(l):

S(l) =

{
(k − 1)× S(l + 1) + bes for 0 < l < h

bes for l = h

By solving this recurrence relation, we have

S(l) =
1− (k − 1)h−l+1

1− (k − 1)
(4)

Since there are exactly k × (k − 1)l−1 nodes at level l,
0 < l ≤ h, thus the total data transfer of the Merge-and-
Backward phase, denoted as bbw, can be computed as:

bbw =

h∑
l=1

(k × (k − 1)l−1 × S(l))

By substituting k = d(G) and S(l) from (4) into the above
equation, bbw can be written as

bbw =
bes × d(G)×

(
1 + (h× (d(G)− 2)− 1)× (d(G)− 1)h

)
(2− d(G))2

Let bpa be the size of an entity-tuple pair in bytes, and η be
the average number of entity-tuple pairs of the essential-set
which have the same alternative of Q as their first element.
Then, bes, i.e. the average size of the essential-set in each
node, can be computed as bes = |Q| × η × bpa.

In Section 5, we show that η is very small and almost in-
dependent from the number of tuples which are maintained
at a node. However, η is dependent to the correlation be-
tween the probability of the tuples and their similarity to
Q’s alternatives.

Let us show with an example that bbw is not significant.
Consider that 10,000 nodes receive Q (including the query
originator), thus |PQ| = 10, 000. Assume that d(G) = 4.
Thus, the height of the query-tree, i.e. h, is equal to 8.
Our experiments show that η is about 2.2 when similar-
ity and probability are not correlated. Consider Q has two
alternative tuples. Since the actual data contents of the
entity-tuple pair (ti, tj) is not transferred during the Merge-
and-Backward phase, we set bpa to 23, i.e. 1 bytes for i, 4
bytes for j, 6 bytes for the address of the node in which tj
is maintained, 4 bytes for the x-tuple to which tj belongs, 4
bytes for the similarity score of ti to tj , and 4 bytes for the
probability of tj . As a result, bbw is less than 10 megabytes
for a distributed system that contains 10,000 nodes.

4.4 Retrieve message
By retrieve messages, we mean the message sent by the

query originator to request the MPMP and the message sent
by the node owning the MPMP to return it. Therefore, the
number of retrieve messages, denoted by mrt, is mrt = 2.
The total size of data transferred by these messages, denoted
by brt, can be computed as brt = mrt × bt, where bt is the
average size of a tuple.

5. PERFORMANCE EVALUATION
We evaluated the performance of FD (Distributed Algo-

rithm) through implementation and simulation. The imple-
mentation over a 75-node cluster was useful to validate our
algorithm in a realistic experimental environment. The sim-
ulation allowed us to study the performance of our algorithm
under various conditions.

The rest of this section is organized as follows. In sec-
tion 5.1, we describe our experimental and simulation setup,
and the algorithms used for comparison. In section 5.2, we
evaluate the response time of FD. Section 5.3 presents the
evaluation of communication cost based on the bandwidth
usage and the number of exchanged messages among nodes.

5.1 Experimental and simulation setup
In our implementation and simulation, we compare FD

with two baseline algorithms. The first algorithm is a cen-
tralized algorithm which we call FC (Fully Centralized).
With FC, all nodes that receive the query send thier data
to the query originator where the most probable most sim-
ilar pair is computed using a centralized algorithm. The
details of the centralized processing by FC can be found in
Appendix A. The second comparing algorithm is denoted

Table 1: Parameters

Parameter Values

data: tuple’s data items size Normally distributed random, Mean = 1 KB, Variance = 16 KB
sim: similarity score Normally distributed random, Mean = 0.5, Variance = 0.04
p: probability Normally distributed random, Mean = 0.4, Variance = 0.04
N : number of tuples maintained at each node Uniformly distributed random integer in range [4500..5500]
dx: x-tuple’s maximum number of alternatives 3 for R table and 2 for the query
Cor : correlation between sim and p 0
Upstream bandwidth Normally distributed random, Mean = 56 Kbps, Variance = 32 Kbps
Downstream bandwidth 8 × Upstream bandwidth
Latency Normally distributed random, Mean = 200 ms, Variance = 100 ms
Number of nodes 10,000
TTL: Time To Live 100

as SCC (Score Confidence Centralized), in which every node
receiving Q extracts a list containing the score-probability
pair for each tuple in its database and for each alternative
tuple in the Q; then sends the extracted list directly to the
query originator for centralized processing.

We implemented FD, FC, and SCC in Java, and tested
them using a cluster of 75 nodes connected by a 1-Gbps net-
work. Each node of cluster has a dual-quad-core 2.4 GHz
processor and 24 GB memory. We make each node act as a
node in the distributed system described in Section 4.1. We
determined the node neighbors using the topologies gener-
ated by the BRITE universal topology generator [1]. Thus,
each node only is allowed to communicate with the nodes
that are its neighbors in the topology generated by BRITE.

To study the scalability of FD far beyond 75 nodes and to
play with various performance parameters, we implemented
a simulator using the PeerSim simulation kernel [2] and the
Java programming language. We use the event driven engine
of PeerSim to be able to simulate the delay in sending mes-
sages and also the bandwidth of nodes. We assign a random
delay, denoted as latency, to communication ports to simu-
late the delay for sending a message between two nodes in a
real distributed system. Also, we assign an upstream and a
downstream bandwidth to each node. To simulate a node,
we use a PeerSim’s node that performs all tasks that must be
done by a node for executing FD, FC, and SCC algorithms.
We implemented each of the three algorithms as a protocol
in PeerSim. We used PeerSim’s WireKOut topology gener-
ator that randomly selects k neighbors for each node in the
network. We used undirected links between nodes and set k
to 10.

The experimental and simulation parameters are listed in
Table 1. Notice that bandwidth and latency parameters are
used only in our simulation. Unless otherwise specified, we
use the values in this table for our tests. Each node has a
table R(data, sim, p) in which attribute data is a random
real number with normal distribution with a mean of 1 KB
(Kilobytes) and a variance of 16 KB, sim is a random real
number in the interval [0..1] with normal distribution with
a mean of 0.5 and a variance of 0.04, p is a random real
number in the interval (0..1] with normal distribution with
a mean of 0.4 and a variance of 0.04. Attribute data rep-
resents the data item that is returned back to the user as
the result of the query and its value simulates the size of
the data item. Attribute sim is used for computing the sim-
ilarity between the tuple and the tuples in the query, and
attribute p is the confidence value of the tuple. We introduce

a number of parameters to control the characteristics of the
R table. The number of tuples in R is denoted as N. The
maximum number of alternatives that an x-tuple can have
is denoted as dx. The correlation between sim and p is de-
noted as Cor. To generate each tuple in R, we use a normal
distribution for generating attribute data, and a bivariate
normal distribution with a given correlation for generating
sim and p attributes. We repeat this process to generate N
different tuples. Then, we generate d as a uniform random
number in [1, dx], and repeatedly pick d tuples at random
and group them into an x-tuple; if their confidence values
add up to more than 1, we relinquish them and take another
set of tuples until we form a valid x-tuple. We repeat this
process until we group all tuples in valid x-tuples. We gener-
ate the query needed for experiments, in the same way that
we generated a valid x-tuple. As Table 1 shows, we use the
following default values for N, dx, and Cor unless otherwise
specified. N is a random number, uniformly distributed over
all nodes, which is greater than 4500 and less than 5500. We
use the default value dx = 3 for the database and dx = 2 for
the query, and we use the default value Cor = 0.

For our implementation, we generate the R table and the
query in the same way as our simulation, except for the data
item size which is no longer simulated by a real number but
with an array containg data.

Unless otherwise specified, we use the following values for
the other simulation parameters. The upstream bandwidth
of nodes is a random number with normal distribution with
a mean of 56 Kbps (Kilobits per second) and a variance of
32 Kbps. The downstream bandwidth of each node is set
to a value equal to 8 times of its upstream bandwidth. The
latency for sending messages between any two nodes is also
a random number with normal distribution with a mean of
200 milliseconds and a variance of 100 milliseconds.

Running the simulator on a machine with 16 GB of mem-
ory, allows us to perform tests up to 10,000 nodes, after
which the simulation data no longer fit in RAM and makes
our tests difficult. This is quite sufficient for our tests.
Therefore, the number of nodes of the system is set to be
10,000, unless otherwise specified.

In all of our tests, we set TTL to a high value, i.e. 100, to
be sure that all nodes receive the query although the maxi-
mum hop-distance to other nodes from the query originator
is much less than 100 with the topology that we use for our
distributed system.

We repeat each simulation 10 times with the same query
but with a different random number seed and average the

2 4 6 8
102

103

104

105

N (×1000)

re
sp
on

se
ti
m
e
(m

s)

FC

SCC

FD

Figure 4: Response time vs.
number of tuples (on cluster)

0 1 2 3 4 5
101

102

103

104

105

106

N (×1000)

re
sp
on

se
ti
m
e
(s
ec
)

FC SCC FD (cor:−0.8) FD (cor:0) FD (cor:+0.8)

Figure 5: Response time vs.
number of tuples

0 20 40 60 80
102

103

104

105

number of nodes

re
sp
on

se
ti
m
e
(m

s)

FC

SCC

FD

Figure 6: Response time vs.
number of nodes (on cluster)

0 2 4 6 8 10
100

101

102

103

104

105

106

number of nodes (×1000)

re
sp
on

se
ti
m
e
(s
ec
)

FC SCC FD (cor:−0.8) FD (cor:0) FD (cor:+0.8)

Figure 7: Response time vs.
number of nodes

0 2 4 6 8
100

101

102

103

104

105

106

107

average bandwidth (Mbps)

re
sp
on

se
ti
m
e
(s
ec
)

FC

SCC

FD

Figure 8: Effect of bandwidth on
response time

0 2 4 6 8 10
101

102

103

104

105

106

average latency (sec)

re
sp
on

se
ti
m
e
(s
ec
)

FC

SCC

FD

Figure 9: Effect of latency on re-
sponse time

0 1 2 3 4 5
102

103

104

105

N (×1000)

co
m
m
u
n
ic
at
io
n
co
st

(M
B
)

FC SCC FD (cor:−0.8) FD (cor:0) FD (cor:+0.8)

Figure 10: Effect of number of
tuples on communication cost

0 1 2 3 4 5
0

50

100

150

200

N (×1000)

n
u
m
b
er

of
m
es
sa
ge
s
(×

10
00
)

FC

SCC

FD (cor:−0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 11: Number of exchanged
messages vs. number of tuples

0.2 2 10 20 30 40 50 60 80 100
0

10

20

30

number of pairs in each node (×100)

es
se
n
ti
al
-s
et

si
ze

(p
ai
rs
)

FD (cor:−0.8) FD (cor:0) FD (cor:+0.8)

Figure 12: essential-set size vs.
number of pairs in each node

outcomes.

5.2 Response time

5.2.1 Scale up
In this section we study the response time of distributed

entity resolution by varying the number of tuples, i.e. N ,
and the number of nodes. The response time is the time
elapsed from submitting the query to a node to sending the
result of the query to the user. The response time includes
local processing time and data transfer time. To study the
effect of different correlations between similarity and confi-

dence values, we ran experiments using three different cor-
relations, i.e. negative, zero, and positive correlations.

We used our implementation over the cluster to study how
the response time increases with increasing the number of
tuples in each node. Figure 4 shows the response times of
FD, FC, and SCC with N increasing up to 5,000. Using
simulation, Figure 5 shows the response times of the three
algorithms with N increasing up to 5,000 and the other sim-
ulation parameters set as in Table 1.

While FD significantly outperforms the other two algo-
rithms, its response time is affected only very little with
increasing N . As we expected, the negative correlation be-
tween similarity and confidence increases the response time

0 2 4 6 8 10
10−1

100

101

102

103

104

105

number of nodes (×1000)

co
m
m
u
n
ic
at
io
n
co
st

(M
B
)

FC

SCC

FD (cor:−0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 13: Effect of the number of nodes on the
communication cost

0 2 4 6 8 10
102

103

104

105

106

number of nodes (×1000)

n
u
m
b
er

of
m
es
sa
ge
s
(×

10
00
)

FC

SCC

FD (cor:−0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 14: Effect of number of nodes on the num-
ber of exchanged messages

since it increases the number of score-confidence pairs at
each node, and this increases the response time. Using in-
dependent random variables for similarity and confidence,
i.e. zero correlation, decreases the response time and the
positive correlation even decreases it more. Different corre-
lations between similarity and confidence do not have any
impact on FC and SCC algorithms, since they always send
the whole database or the extracted similarity-confidence
pairs of the whole database respectively.

We also used our implementation over the cluster to study
the effect of the number of nodes on response time. Figure 4
shows the response times of FD, FC, and SCC with the num-
ber of nodes increasing up to 75 and the other experimental
parameters set as in Table 1. Using simulation, Figure 7
shows the response times of the three algorithms with the
number of nodes increasing up to 10,000 and the other simu-
lation parameters set as in Table 1. FD always significantly
outperforms the other two algorithms and the performance
difference increases significantly in the favor of FD as the
number of nodes increases. These figures show excellent
scale up of FD since response time logarithmically increases
with increasing the number of nodes. We also observe that
negative correlation between similarity and confidence in-
creases the response time, but zero and positive correlations
decrease the response time. Also the performance differ-
ence between different correlations increases as the number
of nodes increases.

The experimental results correspond with the simulation
results. However, the response time of implementation over
the cluster is better than that of simulation because the
cluster has a high-speed network.

To sum up, the reason of excellent scalability of FD ver-
sus both the database size and the number of nodes is its
distributed execution. In FC and SCC algorithms, a cen-
tral node, i.e. the query originator, is responsible for query
execution, and this makes them inefficient.

5.2.2 Effect of latency and bandwidth
In this section, we study the effect of latency and band-

width on response time. In the previous simulation tests the
latency and upstream bandwidth were normally distributed
random numbers with mean values of 200 ms and 56 Kbps
respectively. In this test, we vary the mean values of the
latency and bandwidth and study their effects on response
time. For both experiments on bandwidth and latency, we
set both N and the number of nodes to 5,000 and other
simulation parameters set as in Table 1.

Figure 8 shows how response time decreases with increas-
ing bandwidth. Increasing the bandwidth has strong, similar
effect on all three algorithms. FD outperforms the other two
algorithms for all tested bandwidths.

Figure 9 shows how response time evolves with increasing
latency. Latency has little effect on the FC and SCC algo-
rithms, because in these algorithms the nodes return their
results directly to the query originator, and do not bubble
up the results. Although FD outperforms the other algo-
rithms for all the tested values, high latency, e.g. more than
500 ms, has strong impact on it and increases its response
time much. However, below 500 ms, latency does not have
much effect on FD’s response time.

5.3 Communication cost
In this section, we study the communication cost of FD.

We measure the communication cost in terms of the num-
ber of bytes, which should be transferred on the network
for processing a query Q. We also measure the number of
exchanged messages during the execution of an algorithms.
To study the effect of different similarity-confidence correla-
tions, we ran experiments using three different correlations,
i.e. negative, zero, and positive correlations.

Figure 10 shows how communication cost evolves with the
number of tuples in each node increasing up to 5,000 and
the other simulation parameters set as in Table 1. This fig-
ure shows that FD significantly outperforms the other two
algorithms. Moreover, while increasing N has strong effect
on FC and SCC algorithms, it has a very little effect on
FD. Also as in scalability experiments, negative correlation
between similarity and confidence values increases the com-
munication cost, and zero or positive correlation decreases
it.

Figure 11 shows the number of messages exchanged dur-
ing the execution of the three algorithms with the number of
tuples in each node increasing up to 5,000 and the other sim-
ulation parameters set as in Table 1. This figure shows that
the database size has no effect on the number of exchanged
messages. Although FD exchanges more messages than the
other two algorithms, since the sizes of these messages are
much smaller than the sizes of the messages produced by
the other two algorithms, FD’s communication cost is sig-
nificantly smaller than theirs.

Figure 11 also shows that different similarity-confidence
correlations has no effect on the number of exchanged mes-
sages in FD.

We ran experiments to compare the average size of the

essential-set with the number of entity-tuple pairs which ex-
ist at a node. To measure the average essential-set size,
we calculated the sum of the essential-set of all nodes and
divided it by the number of nodes. In these experiments,
we used uncertain entities with exactly 2 alternatives for
the query. Figure 12 shows how the average size of the
essential-set (in number of entity-tuple pairs) changes with
the number of entity-tuple pairs in each node (i.e. 2 × N)
increasing up to 10,000 and the other simulation parameters
set as in Table 1. This Figure shows that the correlation be-
tween similarity and confidence has a strong effect on the
size of the essential-set. The average size of the essential-
set is almost constant for positive and zero correlations, i.e.
2 and 4.4 pairs respectively, but the essential-set size in-
creases from 19.8 to 32.4 pairs for the negative correlation.
These observations indicate that the size of the essential-
set is very small and almost independent from the number
of entity-tuple pairs which exist at the nodes. This means
that our pruning algorithm performs quite effectively.

We also ran experiments to study the effect of the number
of nodes on communication cost. Figure 13 shows the com-
munication costs of the three algorithms with the number
of nodes increasing up to 10,000 and the other simulation
parameters set as in Table 1. As this figure shows, FD sig-
nificantly outperforms the other two algorithms and the per-
formance difference increases significantly in the favor of FD
as the number of nodes increases. Again as we expect, nega-
tive correlation between similarity and confidence increases
the communication cost, but zero and positive correlations
decrease the communication cost.

Figure 14 shows the number of messages exchanged dur-
ing the execution of the three algorithms with the number
of nodes increasing up to 10,000 and the other simulation
parameters set as in Table 1. This figure shows that increas-
ing the number of nodes increases the number of messages
in the three algorithms. The number of exchanged mes-
sages in FD is higher than the other two algorithms but,
as we discussed earlier because of the small size of these
messages, FD significantly outperforms the other algorithms
based on communication cost. Again as we expect, differ-
ent similarity-confidence correlations has no effect on the
number of exchanged messages in FD.

5.4 Case study on real data
In this section, we report the result of applying the three

algorithms on real data. As real-world database, we used a
facial image database which we extracted from video. We
downloaded 900 videos tagged with the keyword ”wedding
ceremony” from YouTube3, and used 2 fps sampling method
and the pittpatt software [3] to extract 5010 distinct facial
images each associated with a confidence value, from the
videos. Then, we used the bag of words model [17] with a
codebook of 250 visual words to represent each facial image
with a vector containing 500 real numbers in range [0..1]
each associated with a confidence value. We randomly se-
lected one of the vectors as the query, and randomly selected
250 vectors among other vectors for each of the 20 nodes in
the network. We also used the cosine similarity metric for
measuring the similarity between vectors. The other pa-
rameters set as in Table 1. The result of applying the three
algorithms on these real data is summarized in Table 2. As

3http://www.youtube.com

we expected, the result of applying the algorithms on real
data confirms the result we observe on synthetic data.

Table 2: Result on real data
FC SCC FD

Response time (sec) 457.2 7.2 3.4

Communication cost (MB) 22.03 0.75 0.47

Number of messages 174 174 313

Average essential-set size (pairs) - - 2.42

6. RELATED WORK
In the literature, considerable attention has been devoted

to the problem of entity resolution for certain data (refer to
[10] for a survey). The problem has been presented under
various terms such as entity resolution, duplicate detection,
etc. Recently, there have been some proposals dealing with
entity resolution over probabilistic data (ERPD) [19, 20, 7].
The proposals in [19, 20] consider the duplicate detection of
a relation and hence generate a partitioning of the relation’s
tuples. The proposal in [7] adopts the possible worlds se-
mantics for uncertain data for defining the semantics for the
ERPD problem and proposes an algorithm for computing
it. In this paper, we use the semantics presented in [7] for
the ERPD problem. However, our work differs from that
of [19, 20, 7], in that they deal with the ERPD problem in
centralized systems but ours deals with the problem in dis-
tributed systems. To the best of our knowledge, our work is
the first proposal that deals with the problem of ERPD for
distributed data.

Among the prior work in database literature, top-k, and
nearest neighbor query processing over distributed uncer-
tain data are relevant to ours. While there are a number of
proposals, e.g. [15, 26, 29], that deal with nearest neighbor
queries over uncertain data, to the best of our knowledge, we
are not aware of any proposal that deals with this problem
over distributed uncertain data. Recently, there have been
some proposals dealing with the problem of top-k query pro-
cessing for distributed uncertain data [27, 16]. In [27], the
authors present a top-k query processing system for a wire-
less sensor network in which sensor nodes are grouped into
clusters, where cluster heads are selected to perform local-
ized data processing and to report aggregated results to the
base station. Cluster heads use a user-specified probability
threshold to find a rank boundary for pruning data gath-
ered from sensors before reporting to the base station. In
[16], the authors present a proposal for ranking queries for
distributed uncertain data. They use the concept of ex-
pected score and approximate it to reduce the communica-
tion cost and also processing time. Our work differs from
these proposals because our problem definition is completely
different. We look for an entity-tuple pair with the maxi-
mum probability of being the most similar pair, while [27]
looks for tuples which have a probability higher than a user-
specified threshold to be in the query result, and [16] is a
proposal for approximating the expected score of the query
results and ranking them.

7. CONCLUSION

In this paper, we proposed FD, a fully distributed algo-
rithm for dealing with the entity resolution problem over dis-
tributed probabilistic data, with the objective of minimizing
network traffic. FD uses the novel concepts of potential and
essential-set to prune data at local nodes. This leads to a
significant reduction in bandwidth usage and response time
compared to the baseline approaches. FD requires no global
information, and does not depend on the existence of certain
nodes.

We validated the performance of FD through simulation
using a simulator which we implemented using the PeerSim
simulation kernel and the Java programming language. The
simulation results show that response time of FD increases
logarithmically with increasing the number of nodes. The
simulations also show that FD’s response time is almost in-
dependent from the size of the database in nodes. The re-
sults also show the excellent performance of FD, in terms
of communication cost, compared with two baseline algo-
rithms.

8. REFERENCES

[1] BRITE, http://www.cs.bu.edu/brite/.

[2] PeerSim, http://peersim.sourceforge.net/.

[3] Pittsburgh Pattern Recognition,
http://www.pittpatt.com/.

[4] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.
On the expressiveness of probabilistic XML models.
VLDB J., 18(5), 2009.

[5] P. Agrawal, O. Benjelloun, A. D. Sarma,
C. Hayworth, S. U. Nabar, T. Sugihara, and
J. Widom. Trio: A system for data, uncertainty, and
lineage. In Proc. of VLDB, 2006.

[6] M. J. Atallah and Y. Qi. Computing all skyline
probabilities for uncertain data. In Proc. of PODS,
2009.

[7] N. Ayat, R. Akbarinia, H. Afsarmanesh, and
P. Valduriez. Entity resolution for uncertain data. In
BDA, 2012.

[8] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and
J. Widom. Uldbs: Databases with uncertainty and
lineage. In Proc. of VLDB, 2006.

[9] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In Proc. of VLDB,
2004.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1),
2007.

[11] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking
queries on uncertain data: a probabilistic threshold
approach. In Proc. of SIGMOD Conference, 2008.

[12] T. S. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Eng. Bull., 29(1), 2006.

[13] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin.
Sliding-window top-k queries on uncertain streams.
PVLDB, 1(1), 2008.

[14] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB J., 18(5),
2009.

[15] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic
nearest-neighbor query on uncertain objects. In Proc.
of DASFAA, 2007.

[16] F. Li, K. Yi, and J. Jestes. Ranking distributed
probabilistic data. In Proc. of SIGMOD, 2009.

[17] F.-F. Li and P. Perona. A bayesian hierarchical model
for learning natural scene categories. In Proc. of
CVPR, 2005.

[18] M. Magnani and D. Montesi. Uncertainty in data
integration: current approaches and open problems. In
Proc. of MUD, 2007.

[19] D. Menestrina, O. Benjelloun, and H. Garcia-Molina.
Generic entity resolution with data confidences. In
Proc. of CleanDB, 2006.

[20] F. Panse, M. van Keulen, A. de Keijzer, and N. Ritter.
Duplicate detection in probabilistic data. In Proc. of
ICDE Workshops, 2010.

[21] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In Proc. of VLDB, 2007.

[22] L. Peng, Y. Diao, and A. Liu. Optimizing probabilistic
query processing on continuous uncertain data.
PVLDB, 4(11), 2011.

[23] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and
J. Widom. Working models for uncertain data. In
Proc. of ICDE, 2006.

[24] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k
query processing in uncertain databases. In Proc. of
ICDE, 2007.

[25] J. Talburt. Entity resolution and information quality.
Morgan Kaufmann Pub, 2010.

[26] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann,
and I. F. Cruz. Continuous probabilistic
nearest-neighbor queries for uncertain trajectories. In
Proc. of EDBT, 2009.

[27] M. Ye, X. Liu, W.-C. Lee, and D. L. Lee. Probabilistic
top-k query processing in distributed sensor networks.
In Proc. of ICDE, 2010.

[28] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and
M. Vaitis. Efficient evaluation of probabilistic
advanced spatial queries on existentially uncertain
data. TKDE, 21(1), 2009.

[29] S. M. Yuen, Y. Tao, X. Xiao, J. Pei, and D. Zhang.
Superseding nearest neighbor search on uncertain
spatial databases. TKDE, 22(7), 2010.

[30] S. K. Zhou, V. Krüger, and R. Chellappa.
Probabilistic recognition of human faces from video.
CVIU, 91(1-2), 2003.

APPENDIX
A. FC ALGORITHM

In this section, we present a basic algorithm, which we
call FC (Fully-Centralized), for computing MPMP.

The idea behind FC is to move all relevant data of nodes
to a central node, e.g. the query originator, where MPMP
is computed using a centralized algorithm. Let D be the
database containing the database of the query originator
and all databases which it has received from other nodes.
Then, the query originator can compute MPMP(e, D) as
follows. Let S be the set of all entity-tuple pairs at the
query originator, i.e. S = e×D. Let ρ = (t, ti) be an entity-
tuple pair in S. Since alternative tuples of e are mutually

exclusive, there is no possible world in PW (e,D) containing
pair ρ together with pair ρ′ = (t′, tj), where ρ′ ∈ S, and t 6=
t′. Thus, to compute Pmsp(ρ,D), we just have to consider
the subset of entity-tuple pairs in S which have t as their
first elements, say set St ⊆ S, where St = {t} ×D. We use
this fact to compute Pmsp(ρ).

Let L = {(t, t1), . . . , (t, tn)} be the list of St pairs sorted
based on the similarity between pair elements in descending
order. Let ρ = (t, ti) be the entity-tuple pair which lies in
the ith index of list L. We can calculate Pmsp(ρ,D) as the
intersection of two independent events: t occurs; and among
tuples t1 to ti, only ti occurs. Considering tuple correlations
in calculating the probability of the latter event, we can
calculate Pmsp(ρ,D) as

Pmsp(ρ,D) = P (t)× P (ti)×
∏
x∈X

(1− P (x)) (5)

where P is the occurrence probability of a tuple or x-
tuple, and X is the set of x-tuples formed by considering
correlations between the tuples t1 to ti while the x-tuple
containing ti is omitted from it. Using (5), the centralized
algorithm computes Pmsp of all entity-tuple pairs in set S
and returns the pair with maximum such probability.

B. PROOFS
In this section, we provide the proofs of the lemmas and

the theorem presented in Section 3.

B.1 Proof of Lemma 1
Let St = t×D and L = {(t, t1), . . . , (t, tn)} be the list of

St pairs sorted based on their similarity in descending order.
Let ρ = (t, tq) resides in the index j of list L, i.e. L[j] = ρ.
Using equation (5), we have

Pmsp(ρ,D) = P (tq)× P (t)×
∏
x∈X

(1− P (x)) (6)

where X is the set of x-tuples formed by considering corre-
lations between the tuples t1 to tj while the x-tuple contain-
ing tq is omitted from it. It is clear that the value of P (tq)
which maximizes RHS(6) is equal to one. The set of tuples
t1 to tj−1 can be partitioned into two sets T1 and T2, where
T1 = {tp,1, . . . , tp,i−1} is a subset of Dp and T2 is a subset
of D − Dp. Let X1 and X2 be the set of x-tuples formed
by considering correlations between the tuples in T1 and T2,
respectively. Since all members of an x-tuple reside within
the same node, x-tuple set X in RHS(6) can be partitioned
into two disjoint sets X = X1 and X2, and, setting P (tq) to
one, equation (6) can be rewritten as

Pmsp(ρ,D) = P (t)×
∏
x∈X1

(1− P (x))×
∏
x∈X2

(1− P (x)) (7)

Notice that since we set P (tq) to one, no x-tuple can contain
it. Set X1 is fixed, but we can make any assumtion about set
X2 to maximize RHS(7). Each x-tuple x in set X2 reduces
RHS(7) by the factor of 1−P (x), thus, RHS(7) is maximized
when X2 = ∅. In such case, RHS(7) is equal to the asserted
value in the lemma.

B.2 Proof of Lemma 2
Let j be the index of a pair in list Lp with maximum local

Pmsp value, i.e. Pmsp(Lp[j], Dp) = local max. Let i be an
index in list Lp, where i ∈ [stop, np]. Let St = {t} × D

and L = {(t, t1), . . . , (t, tn)} be the list of St pairs sorted
based on their similarity in descending order. Let j′ and i′

respectively be the index of pairs Lp[j] and Lp[i] in list L,
i.e. L[j′] = Lp[j] and L[i′] = Lp[i]. To prove the lemma, we
show that

Pmsp(L[i′], D) < Pmsp(L[j′], D) (8)

We have

Pmsp(L[i′], D) = P (t)× P (ti′)×
∏
x∈Xi′

(1− P (x)) (9)

where Xi′ is the set of x-tuples formed by considering cor-
relations between the tuples t1 to ti′ while the x-tuple con-
taining ti′ is omitted from it. The set of tuples t1 to ti′ can
be partitioned into two sets Ti′,1 and Ti′,2, where Ti′,1 =
{tp,1, . . . , tp,i−1} is a subset of Dp and Ti′,2 is a subset of
D − Dp. Let Xi′,1 and Xi′,2 respectively be the set of x-
tuples formed by considering correlations between the tu-
ples in T1 and T2, while the x-tuple containing ti′ is omitted
from Xi′,1. Since all members of an x-tuple reside within
the same node, x-tuple set Xi′ in RHS(9) can be partitioned
into two disjoint sets Xi′,1 and Xi′,2, and equation (9) can
be rewritten as

Pmsp(L[i′], D) = P (t)×P (ti′)×
∏

x∈Xi′,1

(1−P (x))×
∏

x∈Xi′,2

(1−P (x))

(10)
Since L[i′], Lp[i], (t, ti′), and (t, tp,i) refer to the same pair,
equation (10) can be written as

Pmsp(L[i′], D) = Pmsp(Lp[i], Dp)×
∏

x∈Xi′,2

(1− P (x)) (11)

Using the same notation, we can write Pmsp(L[j′], D) as

Pmsp(L[j′], D) = Pmsp(Lp[j], Dp)×
∏

x∈Xj′,2

(1− P (x)) (12)

Based on the definition of stop index, it is clear that stop >
j, thus yielding i > j. Thus, i′ > j′ and we have

(∀x ∈ Xj′,2, ∃y ∈ Xi′,2 | x ⊆ y)⇒∏
y∈Xi′,2

(1− P (x)) ≤
∏

x∈Xj′,2

(1− P (y)) (13)

Moreover, we know that

Pmsp(Lp[j], Dp) = local max > Pmsp(Lp[i], Dp) (14)

Using (11), (12), (13) and (14), we have

Pmsp(L[i′], D) < Pmsp(L[j′], D) (15)

Since L[i′] = Lp[i] and L[j′] = Lp[j], (15) implies that
Lp[i] 6= arg maxρ∈Lp

Pmsp(ρ,D).

B.3 Proof of Theorem 1
Let S be the set of all entity-tuple pairs at nodes which

receive the query, i.e. S = e×D. We show that we do not
need any entity-tuple pair ρ = (t, t′), ρ ∈ S−essentialunified
for computing MPMP(e, D).

Let L be the list of pairs in set essentialunified which have
alternative t ∈ e as their first element, and sorted based on
their similarity in descending order. Let stopp be the stop
index of a node, say node p, which comes before the stop
indices of other nodes in list L. Using Lemma 2, pairs which

come at or after stopp in L, cannot be the pair of L with
maximum Pmsp . Thus, the pair of L with maximum Pmsp

lies in the range [1..stopp − 1]. Now, we show that there
is no entity-tuple pair ρ = (t, t′), ρ ∈ S − essentialunified,
which may come before stop in list L, and thus, is needed
for computing the pair of L with maximum Pmsp . Pair ρ is
either maintained at node p or at a node other than p, say q.
In the former case, ρ comes after stopp in list L since stopp
is the stop index p. Also in the latter case, ρ comes after
stopp in list L since ρ comes after the stop index of q which
itself comes after stopp in list L. Thus, using the pairs L[1]
to L[stop−1], we can compute the pair with maximum Pmsp

and thereby MPMP(e, D).

C. FD EXAMPLE
In this section, we illustrate the FD algorithm with an

example.
Consider a network consisting of three nodes o, q, and p as

shown in Figure 15(a) and let these nodes respectively con-
tain DO, Dq, and Dp databases which are shown in Figures
15(c), 15(d), and 15(e), respectively. Suppose that the user
submits entity e, shown in Figure 15(b), to the node o, then
FD performs the following phases for computing MPMP(e,
D), where D = DO ∪Dq ∪Dp:

1. In the ”query forward” phase, node o forwards e to
node q, and node q forwards e to node p.

2. In the ”extract the essential-set” phase, each node ex-
tracts its essential-set as shown in Figures 15(f), 15(g),
and 15(h). In the figures, we abbreviate Potential as
Po. Also, the pairs that are transferred to the essential-
set, are shown in bold, and since FD stops at the stop
index, the values of Pmsp and Potential for the pairs
after the stop index are not shown. Notice that the
stop index of list Lq if equal to |Lq|+ 1, thus all pairs
in this list are transferred into the essential-set.

3. In the ”merge-and-backward essential-sets” phase, node
p sends its essential set, i.e. essential(Sp), to node q.
Then, q merges the received set with its own essential
set, i.e. essential(Sq), into set essentialpq (shown in
Figure 15(i)), and sends it to node o.

4. In the ”MPMP computation and data retrieval” phase,
node o merges its essential set, i.e. essentialO, with the
received set from q, i.e. essentialpq, into set essentialunified
whose members are shown in Figure 15(j). Then, node
o computes the MPMP as shown in Figure 15(j). The
computed MPMP is equal to (t, tp,4), thus node o asks
node p for the data of the tuple tp,4.

o q p

(a) network

t P(t)

t 0.3

(b) e

t P(t)

tO,1 0.6

tO,2 0.4

tO,3 0.3

tO,4 0.7

tO,5 0.3

tO,6 0.5

(c) DO

t P(t)

tq,1 0.2

tq,2 0.1

tq,3 0.2

tq,4 0.2

tq,5 0.1

tq,6 0.1

(d) Dq

t P(t)

tp,1 0.2

tp,2 0.9

tp,3 0.8

tp,4 0.8

tp,5 0.7

tp,6 0.9

(e) Dp

Pair Pmsp Po

(t, tp,4) 0.24 0.3

(t, tp,6) - 0.06

(t, tp,1) - -

(t, tp,5) - -

(t, tp,3) - -

(t, tp,2) - -

(f) Lp

Pair Pmsp Po

(t, tq,3) 0.06 0.3

(t, tq,6) 0.02 0.24

(t, tq,4) 0.04 0.22

(t, tq,1) 0.03 0.17

(t, tq,5) 0.01 0.14

(t, tq,2) 0.01 0.12

- - 0.11

(g) Lq

Pair Pmsp Po

(t, tO,5) 0.09 0.3

(t, tO,2) 0.084 0.21

(t, tO,1) 0.08 0.13

(t, tO,4) - 0.05

(t, tO,3) - -

(t, tO,6) - -

(h) LO

123Pair456

(t, tq,3)

(t, tp,4)

(t, tq,6)

(t, tq,4)

(t, tq,1)

(t, tq,5)

(t, tq,2)

(i) essentialpq

Pair Pmsp Po

(t, tq,3) 0.06 0.3

(t, tp,4) 0.19 0.24

(t, tO,5) - 0.05

(t, tq,6) - -

(t, tq,4) - -

(t, tO,2) - -

(t, tq,1) - -

(t, tq,5) - -

(t, tq,2) - -

(t, tO,1) - -

(j) L

Figure 15: a) Illustration of different phases of the
FD algorithm using a simple example

