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Multicast Routing in WDM Networks
without Splitters

Dinh Danh Le, Miklós Molnár and Jérôme Palaysi

Abstract—Multicasting in WDM core networks is an efficient
way to economize network resources for several multimedia
applications. Due to their complexity and cost, multicast capable
switches are rare in the proposed architectures. The paper
investigates the multicast routing without splitters in directed
(asymmetric) graphs. The objective is to minimize the number
of used wavelengths and if there are several solutions, choose the
lowest cost one. We show that the optimal solution is a set of
light-trails. An efficient heuristic is proposed to minimize conflicts
between the light-trails, and so to minimize the number of used
wavelengths. The performance is compared to existing light-trail
based heuristics. Our algorithm provides a good solution with a
few wavelengths required and a low cost.

Keywords: WDM network, multicast routing, light-trail, wave-
length minimization, heuristic

I. INTRODUCTION

All-optical networks are serious candidates to become high
speed backbone networks with huge capacity. In optical rout-
ing, the messages are transmitted by light signal without elec-
tronic processing. Routes should satisfy the physical (optical)
constraints in static connection based networks and also in the
case of burst and packet switching.

Multicast communications are present in networks to ef-
ficiently perform data transmission from a source to several
destinations. Usually, without physical constraints, multicast
routes corresponds to trees in the topology graph. To perform
multicast, there should be multicast capable nodes (splitters)
at all the branching nodes of the tree. However, one of the
most hard constraints for optical multicasting is the constraint
on the availability of light splitters in the switches. In fact,
splitters are expensive and the light power can be decreased
considerably by splitting (inversely proportional with the num-
ber of outgoing ports [2]). This constraint prevents all-optical
multicasting from employing splitters.

In our paper, we investigate an interesting question: how to
perform multicast without splitters? Trivially, a set of light-
paths from the source to the destinations can be used as a
solution, but this solution is expensive in term of wavelengths.
Our objective is to perform multicasting without splitters and
minimizing the number of used wavelengths. Solutions in
bidirectional networks (where a wavelength is available in both
directions between the connected switches) are known, but we
investigate the arbitrarily directed case which is very practical.
Even if the network is designed to be bidirectional, when
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some demands hold some of the resources of the network, the
resulting network graph is now arbitrarily directed, therefore
the routing for subsequent demands will be calculated on a
digraph.

Due to its interest, WDM multicast routing has been investi-
gated intensively in the literature and several propositions exist
to adapt multicast routing algorithms to the optical constraints
(cf. [9] for some basic algorithms and [11] for a survey).
The minimization of the number of used wavelengths was
investigated at first in [5] where the wavelengths are supposed
to be unevenly distributed in the networks. The considered net-
work is assumed to be equipped with splitters and wavelength
converters. The multicasting is based on a tree: the objective
is to construct a tree T meeting optical constraints such that
the number of wavelengths used to cover T is minimized. The
NP-hardness of the problem is proved, and an approximation
algorithm has been proposed. An improved approximation can
be found in [8].

The case of switching without splitters in symmetric net-
works has been discussed in [1]. The problem is to find
a Multiple-Destination Minimum Cost Trail (MDMCT) that
starts from a source and spans all the destinations with
minimizing the total cost of the edges traversed. To ensure a
feasible solution, a low-cost cross-connect architecture called
Tap-and-Continue (TaC) has been proposed to replace splitters.
TaC cross-connects can tap a signal with small power at
the local station and forward it to one of its output ports.
Moreover, every link is assumed to be equipped with at least
two fibers in order to support bidirectional transmission on the
same link.

The authors proved that the MDMCT problem is NP-
hard and then developed a heuristic (called MDT) that finds
a feasible trail in polynomial time. The algorithm has two
steps. The first step is computing an approximated Steiner
tree for a multicast request using the Minimum Cost Path
Heuristic proposed in [7]. A trail is then computed based on
the backtracking method following the tree.

The advantage of MDT heuristic is that it uses only one
wavelength (and one transmitter) for each multicast request
(and thus, the wavelength is minimized). However, because
of multitude of round-trip traversing, a large number of links
is required in both directions, hence the total cost and the
diameter of the light-trail is always very high. To improve the
total cost, it is necessary to reduce the round-trip traversing.
Moreover, it is worth noting that, the source can inject the light
signal by multiple transmitters independently. By taking this
feature into account, one can considerably reduce the reversal
arcs (that backtrack to the source), then the total cost and
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the diameter can also be reduced. This is the idea to make a
modified version of MDT, called MMDT that is detailed in
Section V.

In [3], Der-Rong Din posed the Minimal Cost Routing
Problem which minimizes the cost under WDM symmetric
networks using only TaC cross-connects. Unlike the approach
of [1] that based on light-trail, the approach of Der-Rong Din
is based on light-forest (a set of the light-trees [11]), rooted
at the source and covering all the destinations. Besides, the
source can inject the signal by multiple transmitters so that
each light-tree can use a single wavelength. Furthermore, to
produce a trade-off between the total cost of the light-forest
and the number of wavelengths used, the author developed
an objective function which combines the actual total cost
of the light-forest and the cost for using wavelengths: f =
cost(F ) + α ∗ numWL, in which F is the resultant light-
forest, numWL is the number of wavelengths used, and α is
a specific coefficient.

The author proposed two heuristic algorithms, namely
Farthest-Greedy (FG) and Nearest-Greedy (NG). The two
algorithms are based on the shortest path tree (SPT). The idea
of these algorithms is: first construct the SPT from the source
to the destinations, then keep one path for each subtree of
the source, and finally reroute the other destinations that have
not been reached (unreached destinations). The difference
between the two algorithms is: FG keeps the farthest (in term
of cost) destination routed by the computed shortest path, and
chooses the farthest destination in the unreached set to reroute,
whereas NDF keeps the nearest (minimal cost) destination and
chooses the nearest destination in unreached set to reroute in
the rerouting phase. The rerouting phase is performed by the
shortest paths from the source or from the leaves of computed
trees to each unreached destination, that do not share any nodes
and edges with all the computed trees (each tree is computed in
a different wavelength graph that is initialized by the original
graph). When there is no possible path in the computed trees
or the path exists but with larger cost than the path found in the
new wavelength graph, the unreached destination is routed by
the shortest path found in the new tree with a new wavelength.
The author also gave the comparison between FG, NG and
MDT by simulations, and the results show that FG is better
than NG and MDT.

Most of the solutions proposed in the literature (excluding
MDT) are based on simple routes in which cycles are not
allowed. However, one can operate multicasting by non-simple
routes which permit nodes to be visited several times, as long
as the routes using the same wavelength are arc-disjoint. MDT
in [1] gives a special structure which allow cycles, but with
special cycles which are 2-cycles1. In fact, one can construct
structures that allow not only 2-cycles but also arbitrary cycles.
These structures correspond to a hierarchy that was proposed
in [6]. For multicast routing in WDM networks, the light-
hierarchy concept has been proposed in [10]. A light-hierarchy
is a hierarchy using a single wavelength.

In the paper, we show that the optimal route minimizing the
number of wavelengths is a set of (non-simple) light-trails. The

1An n-cycle is a cycle with n vertices.

computation of the optimum in directed graphs is NP-hard. So,
we propose some heuristic algorithms, which try to minimize
the number of wavelengths, taking into account the availability
of fibers in the network, with a low cost. We compare the
performance of them with two previously proposed multicast
routing algorithms.

The structure of the paper is the following. Section II
formulates the problem. Several useful concepts and properties
are given in Section III. Our heuristics are described in
Section IV followed by the experimental results in Section V.

II. PROBLEM FORMULATION

Let us suppose that nodes are equipped by TaC option and
can be traversed by the same wavelength several times having
different incoming and outgoing ports for each pass. So, light-
trails from the source to the destinations can perform the
multicast (cf. [1]). There is no splitter in the nodes. Moreover,
the topology graph G = (V, A) is an arbitrary directed graph
in which each arc represents a fiber between the pair of nodes.
Each arc e ∈ A is associated with the a value cost(e) > 0.
Let s ∈ V the source and D ⊆ V \{s} the set of destinations.
We suppose that the multicast is feasible, i.e., there is at
least one directed path from the source to each destination.
Different objectives for the multicast routing can be formulated
as follows.

Routing using a minimum number of wavelengths (P1):
A multicast route colorable with the least number of wave-
lengths is required.

Minimum cost routing (P2): The least cost multicast route
is required.

In both cases (with the given constraints), the optimal
solution is a set of light-trails routed at the source and covering
all of the destinations. Notice that this set corresponds to a
hierarchy obtained from a star (cf. [6] for the definition of a
hierarchy). The solution of Problem P1 can be composed from
very long trails. The optimum of Problem P2 can use a high
number of wavelengths. Trade-off can be interesting.

Minimum cost multicast routing using a given number of
wavelengths (P3): A minimum cost multicast route colorable
with the given number of wavelengths is required.

Length limited multicast route using a minimum num-
ber of wavelengths (P4): A multicast route in which the
longest trail is smaller than a given limit and colorable with
the minimum number of wavelengths is required.

The solutions of the last two problems are also sets of light-
trails.

The mentioned routing problems are hard optimization
problems. Problem P1 corresponds to finding the solution with
minimal set of colors. Problem P2 is equivalent the Degree
Constrained Directed Minimum Spanning Tree Problem in the
distance graph of the problem.

In our study, we focus on the first problem but some results
can be useful to solve Problem P3 and Problem P4. For the
limited space, the reader is recommended to refer our research
paper [4] for the proof of NP-hardness of P1.



3

III. USEFUL DEFINITIONS AND PROPERTIES

In order to describe our algorithm, some concepts should
be given in the following.
• Directed shortest path tree (DSPT): A directed tree

rooted at the multicast source covering all the destinations
by shortest paths, in which each path is (one of) the
shortest path(s) from the source to a destination. To com-
pute DSPT, any shortest path algorithms, e.g., Dijkstra
algorithm, can be employed.

• Conflict graph: A graph used to represent the con-
flicts among the trails. Formally, in our study, a conflict
graph is GC = (T, E), in which T is a set of nodes
corresponding to the trails and E is a set of edges such
that e = {t, p} ∈ E if and only if there is a conflict
between trail t and trail p, i.e., two trails share a common
arc. In this study, we just consider conflicts such that
shared arcs form the prefix of the concerned trails and
this property is preserved during the algorithm. For this
condition, each of connected components in the conflict
graph corresponds to a subtree of the DSPT (Figure 1).
Property 1: Each connected component in the conflict
graph composes a (conflict) clique2.
Trivially, if the shared arcs of conflicting trails are the
prefix of the trails, then conflicts are transitive (if there
is a conflict between T1 and T2 and between T2 and T3,
then there is a conflict between T1 and T3). Indeed, all
the trails in the same connected component share the first
arc from the source. So the Property 1 follows.
Property 2: The number of colors needed to color all the
nodes of a clique is equal to the number of nodes of that
clique.
Obviously, there is a (conflict) edge between every pair
of nodes in each clique. To avoid the conflict, the nodes
must be colored with different colors. So the Property 2
follows.
Property 3: The number of wavelengths needed to per-
form the routing respecting the distinct wavelength con-
straint3 in network fibers is equal to the number of nodes
(the size) of the maximal clique in the conflict graph in
our study case.
In deed, each clique corresponds to a subtree of
the DSPT. These subtrees are arc-disjoint, so the
corresponding trails in each clique do not share any arcs
with the corresponding trails in the other ones. Thus, the
minimal number of colors needed to color all the nodes
in the conflict graph is equal to the size of the maximal
clique, because we can use some colors that have been
used in the maximal clique to re-color the other nodes
in the other cliques. Moreover, to guarantee the distinct
wavelength constraint, the number of colors needed
in each clique is equal to the number of wavelengths
needed to assign the corresponding trails in that clique.
So this property holds.

2A clique of a graph is a complete subgraph of that graph
3Distinct wavelength constraint: Different light-paths or light-trees sharing

the common link must be allocated distinct wavelengths [11].

Thus, the problem of minimizing the number of used
wavelengths reduces to the problem of minimizing the
number of nodes (trails) of the maximal clique in the
conflict graph.
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Fig. 1: Example of a DSPT and its conflict graph

Figure 1 illustrates a set of paths (trails) composing a
DSPT for the multicast request r = (s, {d1, d2, d3}) and
the corresponding conflict graph. In Figure 1, there are two
cliques corresponding to two subtrees of the DSPT. The
maximal clique is composed from the paths T1, T2, T3 starting
from the source to the destinations d1, d2, d3, respectively. It
needs three wavelengths to color the three trails. The other
clique composed from only the path T4 that can re-use one
wavelength that were assigned for the maximal clique.

IV. PROPOSED HEURISTICS

A. Algorithm Framework

The idea of the algorithm is to diminish the number of
nodes (trails) in the maximal clique of the conflict graph
until it cannot be reduced. Informally, the algorithm starts
from a set of directed trails (at first, simple trails or paths in
the DSPT). Then it tries to iteratively diminish the number
of trails in the maximal clique, say Cmax. At each step, it
chooses one trail from the maximal clique, say T0, that can be
replaced by another one. Some mechanism can be employed
to select this trail. When the trail is selected, the algorithm
looks for all the other trails and choose the one, say Tk, such
that the terminal of it has the arc-disjoint shortest path to the
first destination of the trail T0. Then T0 is replaced by the
corresponding trail Tk, and the cardinality of the Cmax is
reduced by 1. The algorithm iterates until the maximal clique
cannot be reduced.

The framework of the algorithm consists of four main steps
that can be described as follows:

THE ALGORITHM FRAMEWORK

Step 1: Compute a directed shortest path tree (DSPT) from
the source s covering all destinations. If there is no
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branching node in the DSPT, then DONE. Otherwise,
do Step 2.

Step 2: Compute the conflict graph from the DSPT. Each
conflict clique corresponds to a sub-tree rooted at the
source of the DSPT.

Step 3: Repeat Step (3.1) to Step (3.4) in the following until
the cardinality of the maximal clique Cmax cannot
be reduced (is equal to 1 for the best case).

Step 3.1: Find the maximal clique Cmax
4.

Step 3.2: Choose a trail T0 in Cmax with some mechanism
that is mentioned below. Calculate the terminal
l0 of T0 and the first destination f0

5 of T0. For
example, in Figure 1 a), Cmax is composed by
the paths T1, T2, T3; the selected trail T0 is T3,
l0 is node d3 and f0 is also d3.

Step 3.3: For every terminal li of the remaining trails Ti

in the set of trails (except T0), compute the
trail Tk such that the path (lk, f0) is arc-disjoint
with all the current trails, and it is the shortest
path among the paths (li, f0). If there is an arc-
disjoint path from the source s to f0, then take
the shorter one between (lk, f0) and (s, f0). In
Figure 1 a), Tk is T4, and lk is node d4.

Step 3.4: Graft the path (lk, f0) and the path (f0, l0) to the
trail Tk, set l0 as the terminal of the new trail
Tk, remove the trail T0, reduce the cardinality of
clique Cmax by 1. If the path (s, f0) exists and
is selected, create a new trail (s, l0) and remove
the trail T0.

Step 4: Record the set of trails, the cardinality of clique
Cmax as the minimum number of wavelengths
required. Employ the trail-wavelength-assignment
(TWA) algorithm (described below) to assign wave-
lengths for the set of final trails.

B. Trail-wavelength-assignment (TWA) algorithm

The TWA algorithm mentioned in Step 4 works as follows.
Let k be the minimum number of wavelengths returned by
the routing algorithm above, and w1, w2, .., wk be the k
wavelengths reserved for the multicast request. With each
wavelength wi, i = 1, .., k, assign wi for every clique in the
set of the remaining cliques, one trail for each clique. Repeat
that until there is no trail in the set of remaining cliques.

C. Two greedy heuristics

Our algorithm can be developed to result in two heuristics.
In step 3.2, two greedy mechanisms to select the first trail T0

in the maximal clique Cmax, resulting in two heuristics of our
algorithm, namely Farthest First (FF) if T0 is the longest trail
in term of cost among all the other trails in Cmax, i.e., the
terminal l0 of T0 is the farthest terminal l0 among the others

4To accelerate this step, Ci is organized in a priority queue in which the
priority value is the size of Ci, and only cliques Ci with the size larger than
1 are pushed into the queue

5f0 is the first destination on the path from the nearest branching node of
l0 to l0

in Cmax; and Nearest First (NF) if l0 is the nearest terminal
in Cmax. The detail descriptions of the two heuristics and the
complexity of them are given in our research paper [4].

D. Illustration of the algorithm

In order to demonstrate the algorithm, we use a network
in Figure 2 in which the source is s, the destination set is
D = {2, 6, 7, 8, 10, 11, 12, 13}. Moreover, due to the limited
space, and because FF and NF have the same principle, we
just illustrate the heuristic FF in the Figure 3 below.

After the Step 1 and Step 2, the DSPT and the initial conflict
graph are shown in Figure 3 (a). The maximal clique comprises
three paths T10, T12, T13, in which T12 is the farthest one, so
it is selected first. The first destination f0 of T12 is node 8,
the shortest arc-disjoint path computed is the path passing the
nodes {10, 5, 8}. Thus T12 is replaced by T10, the new trail
is T

′
12 (Figure 3 (b)). Similarly, T

′
12 is then replaced by T

′′
12

in the next run (Figure 3 (c)). The final set of trails are shown
in Figure 3 (d).

Fig. 2: The network to consider

(a) The DSPT and the initial conflict graph

V. EXPERIMENTAL RESULTS

In this section, we show the performance of our algorithm
and compare with the algorithms proposed in [1] (MDT)
and [3] (Farthest Greedy and Nearest Greedy). In order to
fairly compare with MDT in [1], the modified version of it is
developed, namely Modified-MDT (MMDT for short) which
is mentioned in the following.
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(b) Replace T12 by T
′
12

(c) Replace T
′
12 by T

′′
12

(d) Replace T11 by T
′
11

Fig. 3: Illustration of the Farthest First heuristic

A. MDT and MMDT

As mentioned in Section II, the MDT algorithm has two
steps. The first step is to compute an approximated Steiner

tree (AST) for a multicast request using the Minimum Cost
Path Heuristic (MCPH) proposed in [7]. In the second step, a
trail is computed based on the backtracking method following
the AST. The backtracking phase starts from the root of
the tree, and recursively repeats at each non-leaf node in
the tree, say, the current node. In the downstream direction,
the algorithm tries to include all the downstream links
between the current node and all its children destinations.
Backtracking is required when a leaf node is reached and
there are still some destination nodes not yet visited.

However, the total cost and the diameter of the MDT
trail are high because of multitude of round-trip traversing.
Moreover, it is worth noting that, the source can inject the light
signal by multiple transmitters on the same wavelength inde-
pendently. By taking advantage of this feature, we developed
the algorithm MMDT by modifying MDT in the backtracking
phase, in such a way that it can eliminate the round-trip
traversing the source while using only one wavelength.

The MMDT works as follows. First, it generates an AST
using the MCPH just like the way of MDT. Then the back-
tracking method to each subtree of the AST (the nodes 1, 2 and
3 in Figure 4) is evoked, with a greedy sequence such that the
trails growing to the nearest branch first (in term of cost of the
branch). Consequently, there is no reversal arcs needed in the
farthest branch for each sub-tree. Accordingly, the result is the
set of trails rooted at the source, covering all the destinations
with only one wavelength, but with multiple transmitters, one
transmitter for each trail. Obviously, the diameter and the total
cost of the resultant trials are less than those resulted by MDT.

To demonstrate MDT and MMDT, we use the same topol-
ogy as the one shown in Figure 2 with a few changes: all
the links are now bidirectional and the destination set is
D′ = {2, 5, 6, 7, 8, 9, 10, 11, 12, 13}. Figure 4 (a) demonstrates
the computation of the multiple-destination trail according to
the MDT algorithm and Figure 4 (b) demonstrates the MMDT
for the same request r = (s,D′). As we can see, MMDT can
reduce seven arcs compared with MDT, while both use only
one wavelength.

B. Two simulation settings and the performance metrics

Our algorithms can work in arbitrary directed graphs, mean-
ing that unidirectional arcs and edges corresponding to two
arcs on opposite directions can coexist in the graph, and the
costs for the arcs can be given differently, even with arcs on
opposite directions. However, the algorithms proposed in [1]
and [3] supposed to work with bidirected graph, in which all
the links are all bidirectional. Thus, for a fair comparison, we
divided the simulations into two settings. In the first setting, all
the algorithms are run on bidirected graphs, and in the second
one, they are run on arbitrary directed ones.

Three performance metrics are taken into account in the
simulations: the number of wavelengths required, the total
cost and the diameter of the resultant routes (light-trails
or light-forests). The diameter is defined as the number of
maximal hop counts from the source to all the destinations.
The reason for evaluation of this metric is that it can be
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(a) The MDT

(b) The MMDT

Fig. 4: Illustration of the MDT and MMDT

represented for the end-to-end maximal delay. In fact, the
delay can be combined by switching, queueing, transmission
and propagation components. In all-optical networks, because
of the high light speed, the propagation delay can be assumed
to be the same on different links, and it is much less than the
other components at the hops. Thus, the number of hops that
the light signal has to pass by is usually used to represent for
the delay.

C. Experimental results with bidirected graphs

In this setting, the considered algorithms have been run on
several random bidirected graphs with different number of
nodes N = {100, 200, 300}, the costs of arcs are randomly
selected from the set of integer {1, 2, .., 20}, and the set of
destinations D are also randomly selected with different size
|D| = {10, 20, .., N/2}. To be sure that there is a feasible
solution for all the algorithms, the selected graph must be
connected and there is at least one directed path from the
source to each destination for every simulation. Moreover,
in order to guarantee a good confidence interval, for each
size |D|, we run 100 simulations with different source and
destination set. That means, each point in the resultant figures
below is calculated on average of 100 (successful) simulations.

Besides, to respect the effect of the coefficient α on the
performance of the proposed algorithms in [3] (FG and NG),
we also set the coefficient α in {50, 100, 150}. The simulations
showed that, in the cases of α = {50, 100} only FG and

NG give slightly different results, in which the number of
wavelengths is slightly higher and the total cost is slightly
lower than those in the case of α = 150. Thus we just show
the results for the case of α = 150. Likewise, we just show
the results for the case of N = {200, 300} (Figures 5 and
6). In the case of N = 100, the results are quantitatively the
same.

In Figures 5(a) and 6(a), FG and NG result in large number
of wavelengths, ranging from 1 to 5 in 200 node-networks,
and from 1 to 9 in 300 node-networks when the group size
varies from 10 to N/2, while MDT and MMDT and the two
heuristics of our algorithm draw a horizontal line with just one
wavelength.

In Figures 5(b) and 6(b), the two heuristics proposed in [1]
appear with the highest cost, then the two heuristics proposed
in [3], the two heuristics of our algorithm have the lowest cost
with a small difference between them.

In Figures 5(c) and 6(c), about the diameter, unsurprisingly,
the two heuristics proposed in [1] appear with highest diame-
ter, the two heuristics proposed in [3] achieve a constant low
diameter, and the two heuristics of our algorithm are in the
middle with lower diameter of NF.

Generally, in bidirectional graphs, our algorithms result in
the light-trail(s) in which the number of required wavelengths
is close to one, low cost but quite high diameter compared
with the other algorithms.

D. Experimental results with directed graphs

The configurations of this setting are similar as the ones in
the first setting, except that the graphs we work with are all
arbitrary directed graphs. Similarly, we just show the figures
for the case of N = {200, 300}, α = 150 (Figures 7 and 8).
In the other cases (N = 100, α = {50, 100}) the results are
quantitatively the same.

At first, in these configurations, MDT and MMDT almost
have no solution so we do not show their results.

In Figures 7(a) and 8(a), all the algorithms result in the
increasing number of wavelengths when the group size in-
creases. FG and NG result in larger number of wavelengths
with the highest of NG, while FF and NF slowly increase,
with the lowest of FF. In short, FF and NF provide a lowest
number of wavelengths with a slight difference between them.

In Figures 7(b) and 8(b), all the algorithms appear with the
same cost but FF being a slightly better.

In Figures 7(c) and 8(c), again, FG and NG achieve a
constant low diameter with a slight difference between them
(lower than 25% of the number of nodes). Between the two
our heuristics, NF results in lower diameter (lower than 35%
of the number of nodes). Especially, it gets closer to the FG
and NG, and almost the same when the group size gets closer
to 50%. In contrast, FF results in high diameter (around 50%
of the number of nodes).

In short, in arbitrary directed graphs, our algorithms produce
the light-trails with low number of required wavelengths, a
low cost but quite high diameter compared with the other
algorithms. Between the two heuristics, NF provides a good
trade-off among the performance metrics.
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Fig. 5: Performance of algorithms on 200-node bigraphs
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E. Experimental result analysis
MDT versus MMDT
MDT and MMDT are just suitable in symmetric networks

in which they always result in optimal wavelengths but
high cost and diameter. By taking advantage of multiple
transmitters, MMDT also needs just one wavelength (Figures
5(a) and 6(a)) and is even better than MDT in term of cost
(Figures 5(b) and 6(b)) and diameter (Figures 5(c) and 6(c)).
However, both have very poor performances in arbitrary
directed graphs, even have no solution in most of the cases.
This is because only one arc missing on the computing trail
can make MDT and MMDT fail to get a solution.

Light-hierarchy based solutions versus light-tree based
solutions

As seen in the experimental results above, our light-
hierarchy based solutions (FF and NF) outperform light-tree
based solutions (FG and NG) in term of the number of
wavelengths and also the total cost, especially in bidirectional
networks, with the expense of the diameter. This can be
explained as follows.

The two approaches start with the same DSPT tree. In the
rerouting phase, FG and NG try to extend the tree but always
keep the tree structure which does not allow multiple visits
at nodes. Moreover, the nodes used for the tree extension
are always restricted by the source or the leaves which are
either the farthest (FG) or nearest (NG) destinations in each
subtree of the computed trees. These two properties limit the
number of destinations to be covered in one tree, inducing
larger number of wavelengths needed and higher cost. Besides,
when the destinations cannot be routed in the current tree, they
are routed in a new tree by the shortest paths, so the diameter
is short.

In contrast, our approach is more flexible. After the first
step, the route structure is no longer a tree, but a set of trails
(composing a hierarchy) which allows to return some vertices
more than once without conflicts. Hence, more arcs can be
used for the trail extension. In addition, since all the terminals
of the existing trails (and the source) can be considered,
more nodes can be used for the trail extension. In short,
more nodes and arcs can be used for the trail extension. This
property helps to increase the number of destinations that
can be covered in one trail, resulting in a fewer number of
wavelengths required, but, of course, with a longer diameter.
Besides, because more nodes are considered for the lowest
cost, a lower total cost of the final trails can be achieved.

Farthest First versus Nearest First
As shown in the experimental results above, FF results in

higher diameter but a slightly fewer wavelengths and a quasi-
similar cost compared with NF. This can be explained as
follows.

First, the diameter is the number of hops (the length) of
the longest trail. When the selected trail (the routed trail) is
replaced by an other one (the routing trail), the new routing
trail must be longer (in term of cost) than the routed trail.
Thus, the longer the routed trail is, the longer the new length
can be. FF chooses the longest trail in the maximal clique,

hence it makes the new trail longer than NF does. Furthermore,
because the new trail is usually longer than routed trail in the
old maximal clique, and it will probably become the farthest
one in the new maximal clique and will be first considered
next time. Hence it becomes longer and longer, and finally it
can correspond to the diameter of the final trails. That is the
reason for the fact that FF results in a longer diameter than
NF.

Similarly, since FF tends to include more destinations in a
long trail, the probability that the number of wavelengths that
can be reduced by FF is higher than by NF. So FF results in
a fewer wavelengths than NF does.

Finally, when the routed trail is replaced, the reduced cost
is calculated by the cost of the routed trail minus the cost of
the extended path of the routing trail (or the total cost of the
routing trail if the source is selected). Thus, the longer the
selected trail is, probably that the more the reduced cost can
be. Since FF chooses the longest trail and NF chooses the
shortest one in the maximal clique to diminish first, FF can
reduce more cost than NF.

VI. CONCLUSION

In this paper we address the multicasting problem in all-
optical networks without splitters. The problem is to find a
set of light-trails which minimizes the number of required
wavelengths with a low cost. The problem is proved to be
NP-hard, and two heuristics based on Shortest Path Tree
are proposed to make a feasible solution, Farthest First and
Nearest First. The idea of our algorithm is to diminish the
conflict between the light-trails until it cannot be reduced.
Especially, unlike the common approaches which assume to
work on networks with bidirectional links, our algorithm can
work well in arbitrary networks.

The two heuristics of our algorithm are compared with
the proposed algorithms in the literature, and the simulation
results showed that our algorithm achieves low number of used
wavelengths, low cost but quite high diameter. Between the
two, although the Farthest First can result in smaller number
of wavelengths and lower cost, the Nearest First provides a
better trade-off among the three performance metrics.
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