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Abstract

We address the issue of Ontology-Based Data Access, with ontologies repre-

sented in the framework of existential rules, also known as Datalog+/-. A well-

known approach involves rewriting the query using ontological knowledge. We

focus here on the basic rewriting technique which consists of rewriting the initial

query into a union of conjunctive queries. First, we study a generic breadth-first

rewriting algorithm, which takes as input any rewriting operator, and define prop-

erties of rewriting operators that ensure the correctness of the algorithm. Then, we

focus on piece-unifiers, which provide a rewriting operator with the desired prop-

erties. Finally, we propose an implementation of this framework and report some

experiments.

1 Introduction

We address the issue of Ontology-Based Data Access, which aims at exploiting knowl-

edge expressed in ontologies while querying data. In this paper, ontologies are repre-

sented in the framework of existential rules [BLMS11, KR11], also known as Datalog±
[CGK08, CGL09]. Existential rules allow one to assert the existence of new unknown

individuals, which is a key feature in an open-world perspective, where data are incom-

pletely represented. These rules are of the form body→ head, where the body and the

head are conjunctions of atoms (without functions) and variables that occur only in the

head are existentially quantified. They generalize lightweight description logics (DLs),

which form the core of the tractable profiles of OWL2.

The general query answering problem can be expressed as follows: given a knowl-

edge base (KB)K composed of a set of facts -or data- and an ontology (a set of existen-

tial rules here), and a query Q, compute the set of answers to Q in K. In this paper, we

consider Boolean conjunctive queries (Boolean CQs or BCQs). Note however that all

our results are easily extended to non-Boolean conjunctive queries as well as to unions

of conjunctive queries. The fundamental problem, called BCQ entailment hereafter,

can be recast as follows: given a KB K composed of facts and existential rules, and a

Boolean conjunctive query Q, is Q entailed by K?

∗This work was done when M. Thomazo was a PhD student at University Montpellier 2.

1



Figure 1: Forward / Backward Chaining

BCQ entailment is undecidable for general existential rules. There has been an

intense research effort aimed at finding decidable subsets of rules that provide good

tradeoffs between expressivity and complexity of query answering (see e.g. [Mug11]

for a synthesis). With respect to lightweight DLs, these decidable rule fragments are

more powerful and flexible. In particular, they have unrestricted predicate arity, while

DLs consider unary and binary predicates only, which allows one for a natural coupling

with database schemas, in which relations may have any arity; moreover, adding pieces

of information, for instance to take contextual knowledge into account, is made easier

by the unrestricted predicate arity, since they can be added as new predicate arguments.

There are two main approaches to solve BCQ entailment, which are linked to

the classical paradigms for processing rules, namely forward and backward chaining,

schematized in Figure 1. Both can be seen as ways of reducing the problem to a clas-

sical database query answering problem by eliminating the rules. The first approach

consists in applying the rules to the data, thus materializing entailed facts into the data.

Then, Q is entailed by K if and only if it can be mapped to this materialized database.

The second approach consists in using the rules to rewrite the query into a first-order

query (typically a union of conjunctive queries [CGL+07, PUHM09, GOP11, VSS12,

RMC12]) or a non-recursive Datalog program [RA10, GS12]. Then, Q is entailed by

K if and only if the rewritten query is entailed by the initial database. Materialization

has the advantage of enabling efficient query answering but may be not appropriate for

size, data access rights or data maintenance reasons. Query rewriting has the advantage

of avoiding changes in the data, however its drawback is that the rewritten query may

be large, even exponential in the size of initial query, hence less efficiently processed, at

least with current database techniques. Finally, techniques combining both approaches

have been developed, in particular so-called combined approach [LTW09, KLT+11].

In this paper, we focus on rewriting techniques, and more specifically on rewriting

the initial conjunctive query Q into a union of conjunctive queries, that we will see

as a set of conjunctive queries, called rewritings of Q. While previously cited work

focuses on specific rule sublanguages, we consider general existential rules. The goal

is to compute a set of rewritings both sound (if one of its elements maps to the initial

database, then K entails Q) and complete (if K entails Q then there is an element

that maps to the initial database). Minimality may also be a desirable property. In

particular, let us consider the generalization relation (a preorder) induced on Boolean

conjunctive queries by homomorphism: we say that Q1 is more general than Q2 if

there is a homomorphism from Q1 to Q2; it is well-known that the existence of such
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a homomorphism is equivalent to the following property: for any set of facts F , if the

answer to Q2 in F is positive so is the answer to Q1. We point out that any sound

and complete set of rewritings of a query Q remains sound and complete when it is

restricted to its most general elements. Since BCQ entailment is undecidable, there is

no guarantee that such a finite set exists for a given query and general existential rules.

A set of existential rules ensuring that a finite sound and complete set of most general

rewritings exists for any query is called a finite unification set (fus) [BLMS11]. The fus

property is not recognizable [BLMS11], but several easily recognizable fus classes have

been exhibited in the literature: atomic-body rules [BLMS09], also known as linear

TGDs [CGL09], multi-linear [CGL12],(join-)sticky rules [CGP10], weakly-recursive

rules [CR12] and sets of rules with an acyclic graph of rule dependencies [BLMS09].

Paper contributions. We start from a generic algorithm which, given a BCQ and a

set of existential rules, computes a rewriting set. This task can be recast in terms of

exploring a potentially infinite space of queries, composed of the initial conjunctive

query and its (sound) rewritings, structured by the generalization preorder. The algo-

rithm explores this space in a breadth-first way, with the aim of computing a complete

set of rewritings. It maintains a set of rewritingsQ and iteratively performs the follow-

ing tasks: (1) generate all the one-step rewritings from unexplored queries in Q; (2)

add these rewritings to Q and update Q in order to keep only incomparable most gen-

eral elements. We call rewriting operator the function that, given a query and a set of

rules, returns the one-step rewritings of this query. Note that it may be the case that the

set of sound rewritings of the query is infinite while the set of its most general sound

rewritings is finite. It follows that a simple breadth-first exploration of the rewriting

space is not sufficient to ensure finiteness of the process, even for fus rules; one also

has to maintain a set of the most general rewritings. This algorithm is generic in the

sense that it is not restricted to a particular kind of existential rules nor to a specific

rewriting operator.

This algorithmic scheme established, we then asked ourselves the following ques-

tions:

1. Assuming that the algorithm outputs a finite sound and complete rewriting set

of pairwise incomparable queries, is this set of minimal cardinality, in the sense

that no sound and complete set of rewritings produced by any other algorithm

can be strictly smaller?

2. At each step of the algorithm, some queries are discarded, because they are more

specific than other rewritings, even if they have not been explored yet. The ques-

tion is whether this dynamic pruning of the search space keeps the completeness

of the output. More generally, which properties have to be fulfilled by the oper-

ator to ensure the correctness of the algorithm and its termination for fus rules?

3. Finally, design a rewriting operator that fulfills the desired properties and leads

to the effective computation of the rewriting set.

With respect to the first question, we show that all sound and complete rewriting

sets restricted to their most general elements have the same cardinality, which is mini-

mal with respect to the completeness property. If we moreover delete redundant atoms

from the obtained CQs (which can be performed by a linear number of homomorphism

tests for each query), we obtain a unique minimal sound and complete set of CQs of

minimal size; unicity is of course up to a bijective variable renaming.
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To answer the second question, we define several properties that a rewriting op-

erator has to satisfy and show that these properties actually ensure the correctness of

the algorithm and its halting for fus rules. In particular, we point out that the fact that

a query may be removed from the rewriting set before being explored may prevent

the completeness of the output, even if the rewriting operator is theoretically able to

generate a complete output. The prunability of the rewriting operator ensures that this

dynamic pruning can be safely performed. Briefly, this property holds if, for all queries

Q1 and Q2, when Q1 is more general than Q2 then any one-step rewriting of Q2 is less

general than Q1 itself or one of the one-step rewritings of Q1; intuitively, this allows

to discard the rewriting Q2 even when its one-step rewritings have not been generated

yet. Note that this kind of properties ties in with an issue raised in [ISG12] about the

gap between theoretical completeness of some methods and the effective completeness

of their implementation, this gap being mainly due to algorithmic optimizations (here

the dynamic pruning).

Concerning the third question, we proceed in several steps. First, we rely on a

specific unifier, called a piece-unifier, that was designed for backward chaining with

conceptual graph rules (whose logical translation is exactly existential rules [SM96]).

As in classical backward chaining, the rewriting process relies on a unification opera-

tion between the current query and a rule head. However, existential variables in rule

heads induce a structure that has to be considered to keep soundness. Thus, instead

of unifying a single atom of the query at once, our unifier processes a subset of atoms

from the query. We call piece a minimal subset of atoms from the query that have to be

erased together, hence the name piece-unifier. We present below a very simple example

of piece unification (in particular, the head of the existential rule is restricted to a single

atom).

Example 1 Let R = ∀x (q(x) → ∃y p(x, y)) and the BCQ Q = ∃u∃v∃w(p(u, v) ∧
p(w, v) ∧ r(u,w)). Assume we want to unify the atom p(u, v) from Q with p(x, y), for

instance by a substitution {(u, x), (v, y)}. Since v is unified with the existential vari-

able y, all other atoms from Q containing v must also be considered: indeed, simply

rewriting Q into Q1 = q(x)∧p(w, y)∧ r(x,w) would be unsound: intuitively, the fact

that the atoms p(u, v) and p(w, v) in Q share a variable would be lost in atoms q(x)
and p(w, y); for instance F = q(a)∧p(b, c)∧r(a, b) would answer Q1 despite Q is not

entailed by F and R. Thus, p(u, v) and p(w, v) have to be both unified with the head

of R, for instance by means of the following substitution: µ = {(u, x), (v, y), (w, x)}.
{p(u, v), p(w, v)} is called a piece. The corresponding rewriting of Q is q(x)∧r(x, x).

Piece-unifiers lead to a logically sound and complete rewriting method. As far as

we know, it is the only method accepting any kind of existential rules, while staying in

this fragment, i.e., without Skolemization of rule heads to replace existential variables

with Skolem functions.

We show that the piece-based rewriting operator fulfills the desired properties en-

suring the correctness of the generic algorithm and its termination in the case of fus

rules. The next question was how to optimize the rewriting step. Indeed, the problem

of deciding whether there is a piece-unifier between a query and a rule head is NP-

complete and the number of piece-unifiers can be exponential in the size of the query.

To cope with these sources of complexity, we consider so-called single-piece unifiers,

which unify a single-piece of the query at once (like µ in Example 1). We also focus on

rules with a head restricted to an atom. This is not a restriction in terms of expressivity,

since any rule can be decomposed into an equivalent set of atomic-head rules by simply
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introducing a new predicate for each rule (e.g. [CGK08], [BLMS09]). The interesting

point is that each atom in Q belongs to at most one piece with respect to R when R has

an atomic head (which is false for general existential rules). In the case of rules with

atomic head, the number of (most general) single-piece unifiers of a query Q with the

head of a rule R is bounded by the size of the query. We show that the single-piece

based rewriting operator is able to generate a sound and complete set of rewritings.

However, as pointed out in several examples, it is not prunable. Hence, single-piece

unifiers have to be combined to recover prunability. We thus define the aggregation

of single-piece unifiers and show that the corresponding rewriting operator fulfills all

desired properties and generates less queries than the piece-based rewriting operator.

Detailed algorithms are given and first experiments are reported.

Paper organization. Section 2 recalls some basic notions about the existential rule

framework. Section 3 defines sound, complete and minimal sets of rewritings. In

Section 4 the generic breadth-first algorithm is introduced and general properties of

rewriting operators are studied. Section 5 presents the piece-based rewriting operator.

In Section 6, we focus on exploiting single-piece unifiers and introduce the rewriting

operator based on their aggregation. Finally, Section 7.2 is devoted to implementation

and experiments, as well as to further work.

This is an extended version of papers by the same authors published at RR 2012

and RR 2013 (International Conference on Web Reasoning and Rule Systems).

2 Preliminaries

An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti
are terms, i.e., variables or constants. Given an atom or a set of atoms A, vars(A),
consts(A) and terms(A) denote its set of variables, of constants and of terms, respec-

tively. In all the examples in this paper, the terms are variables (denoted by x, y, z,

etc.). |= denotes the classical logical consequence. Two formulas f1 and f2 are said to

be equivalent if f1 |= f2 and f2 |= f1.

A fact is an existentially closed conjunction of atoms.1 A conjunctive query (CQ)

is an existentially quantified conjunction of atoms. When it is a closed formula, it is

called a Boolean CQ (BCQ). Hence facts and BCQs have the same logical form. In

the following, we will see them as sets of atoms. Given sets of atoms A and B, a

homomorphism h from A to B is a substitution of vars(A) by terms(B) s.t. h(A) ⊆ B.

We say that A is mapped to B by h. If there is a homomorphism from A to B, we say

that A is more general than B, which is denoted A ≥ B.

Given a fact F and a BCQ Q, the answer to Q in F is positive if F |= Q. It is

well-known that F |= Q if and only if there is a homomorphism from Q to F . If Q is

a non-Boolean CQ, let x1 . . . xq be the free variables in Q. Then, a tuple of constants

(a1 . . . aq) is an answer to Q in F if there is a homomorphism from Q to F that maps

xi to ai for each i. In other words, (a1 . . . aq) is an answer to Q in F if and only if the

answer to the BCQ obtained from Q by substituting each xi with ai is positive.

In this paper, we consider only Boolean queries for simplicity reasons. This is

not a restriction, since our mechanisms can actually process a CQ with free variables

x1 . . . xq by translating it into a BCQ with an added atom ans(x1 . . . xq), where ans is

a special predicate not occurring in the knowledge base. Since ans can never be erased

1We generalize the classical notion of a fact in order to take existential variables into account.
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by a rewriting step, the xi can only be substituted and will not “disappear”. We can

thus compute the set of rewritings of a CQ as a Boolean CQ with a special ans atom,

then transform the rewritings into non-Boolean CQs by removing the ans atom and

consider its arguments as free variables. Note that our the generic algorithm can accept

as input a union of conjunctive queries as well, since it works exactly in the same way

if it takes as input a set of CQs instead of a single CQ.

Definition 1 (Existential rule) An existential rule (or simply a rule) is a formula R =
∀~x∀~y(B[~x, ~y] → ∃~zH[~y, ~z]) where ~x, ~y and ~z are tuple of variables, B = body(R)
and H = head(R) are conjunctions of atoms, resp. called the body and the head of R.

The frontier of R, noted fr(R), is the set vars(B)∩ vars(H) = ~y. The set of existential

variables in R is the set vars(H) \ fr(R) = ~z.

In the following, we will omit quantifiers in rules as there is no ambiguity.

A knowledge base (KB) K = (F,R) is composed of a fact F and a finite set of

existential rulesR. The BCQ entailment problem takes as input a KB K = (F,R) and

a BCQ Q, and asks if F,R |= Q holds.

3 Desirable Properties of Rewriting Sets

Given a query Q and a set of existential rulesR, rewriting techniques compute a set of

queriesQ, which we call a rewriting set hereafter. It is generally desired that such a set

satisfies at least three properties: soundness, completeness and minimality.

Definition 2 (Sound and Complete set) Let R be a set of existential rules and Q be

a BCQ. LetQ be a set of BCQs. Q is said to be sound w.r.t. Q andR if for all facts F ,

for all Q′ ∈ Q, if Q′ can be mapped to F then (R, F |= Q). Reciprocally, Q is said to

be complete w.r.t. Q and R if for all fact F , if (R, F |= Q) then there is Q′ ∈ Q s.t.

Q′ can be mapped to F .

We mentioned in the introduction that only the most general elements of a rewriting

set need to be considered. Indeed, let Q1 and Q2 be two elements of a rewriting set such

that Q1 ≥ Q2 and let F be any fact: if Q1 maps to F , then Q2 is useless; if Q1 does not

map to F , neither does Q2; thus removing Q2 will not undermine completeness (and

it will not undermine soundness either). The output of a rewriting algorithm should

thus be a minimal set of incomparable queries that “covers” the set of all the sound

rewritings of the initial query.

Definition 3 (Covering relation) LetQ1 andQ2 be two sets of BCQs. Q1 coversQ2,

which is denoted Q1 ≥ Q2, if for all Q2 ∈ Q2 there is Q1 ∈ Q1 with Q1 ≥ Q2.

Definition 4 (Minimal set of BCQs, Cover) Let Q be a set of BCQs. Q is said to be

minimal if there is no Q ∈ Q such that (Q \ {Q}) ≥ Q. A cover of Q is a minimal

set Qc ⊆ Q such that Qc ≥ Q.

Since a cover is a minimal set, its elements are pairwise incomparable.

Example 2 See also Figure 2. Let Q = {Q1, . . . , Q6} and the following preorder

over Q: Q1 ≥ Q2, Q4, Q5, Q6 ; Q2 ≥ Q1, Q4, Q5, Q6 ; Q3 ≥ Q4 ; Q5 ≥ Q6 (note

that Q1 and Q2 are equivalent). There are two covers of Q, namely {Q1, Q3} and

{Q2, Q3}.
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Figure 2: Cover (Example 2)

A set of (sound) rewritings may have a finite cover even when it is infinite, as illustrated

by Example 3.

Example 3 Let Q = t(u), R1 = t(x) ∧ p(x, y)→ r(y), R2 = r(x) ∧ p(x, y)→ t(y).
R1 and R2 have a head restricted to a single atom and no existential variable, hence

the classical most general unifier can be used, which unifies the first atom in the query

with the atom of a rule head. The set of rewritings of Q with {R1, R2} is infinite. The

first generated queries are the following (note that rule variables are renamed when

needed):

Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1 with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q2 and R2 with {(x0, y1)}
Q4 = t(x2) ∧ p(x2, y2) ∧ p(y2, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q3 and R1

and so on . . .

However, the set of the most general rewritings is {Q0, Q1} since any other query than

can be obtained is more specific than Q0 or Q1.

It can be easily checked that all covers of a given set have the same cardinality. We

now prove that this property can be extended to the covers of all sound and complete

finite rewriting sets of Q, no matter of the rewriting technique used to compute these

sets.

Theorem 1 Let R be a set of rules and Q be a BCQ. Any finite cover of a sound and

complete rewriting set of Q with R is of minimal cardinality (among all sound and

complete rewriting sets of Q).

Proof: LetQ1 andQ2 be two arbitrary sound and complete rewriting sets of Q withR,

and Qc
1 and Qc

2 be one of their respective finite covers. Qc
1 and Qc

2 are also sound and

complete, and are of smaller cardinality. We show that they have the same cardinality.

Let Q1 ∈ Q
c
1. There exists Q2 ∈ Q

c
2 such that Q2 ≥ Q1. If not, Q would be entailed

by F = Q1 and R since Qc
1 is a sound rewriting set of Q (and Q1 maps to itself), but

no elements of Qc
2 would map to F : thus, Qc

2 would not be complete. Similarly, there

exists Q′
1 ∈ Q

c
1 such that Q′

1 ≥ Q2. Then Q′
1 ≥ Q1, which implies that Q′

1 = Q1

7



by assumption on Qc
1. For all Q1 ∈ Q

c
1, there exists Q2 ∈ Q

c
2 such that Q2 ≥ Q1

and Q1 ≥ Q2. Such a Q2 is unique: indeed, two such elements would be comparable

for ≥, which is not possible by construction of Qc
2. The function associating Q2 with

Q1 is thus a bijection from Qc
1 to Qc

2, which shows that these two sets have the same

cardinality. �

Furthermore, the proof of the preceding theorem shows that, given any two sound

and complete rewriting sets of Q, there is a bijection from any cover of the first set

to any cover of the second set such that two elements in relation by the bijection are

equivalent. However, these elements are not necessarily isomorphic (i.e., equal up to

a variable renaming) because they may contain redundancies. Consider the preorder

induced by homomorphism on the set of all BCQs definable on some vocabulary. It

is well-known that this preorder is such that any of its equivalence classes possesses a

unique element of minimal size (up to isomorphism), called its core (notion introduced

for graphs, but easily transferable to queries). Every query can be transformed into its

equivalent core by removing redundant atoms. We recall that a set of existential rules

ensuring that a finite sound and complete set of most general rewritings exists for any

query is called a finite unification set (fus).2

From previous remark and Theorem 1, we obtain:

Corollary 1 Let R be a fus and Q be a BCQ. There is a unique finite sound and

complete rewriting set of Q with R that has both minimal cardinality and elements of

minimal size.

4 A Generic Breadth-First Algorithm

We will now present a generic rewriting algorithm that takes as input a set of existential

rules and a query, and as parameter a rewriting operator. The studied question is

the following: which properties should this operator fulfill in order that the algorithm

outputs a sound, complete, finite and minimal set?

4.1 Algorithm

Definition 5 (Rewriting operator) A rewriting operator rew is a function which takes

as input a conjunctive query Q and a set of rules R and outputs a set of conjunctive

queries denoted by rew(Q,R).

Since the elements of rew(Q,R) are queries, it is possible to apply further steps of

rewriting to them. This naturally leads to the notions of k-rewriting and k-saturation.

Definition 6 (k-rewriting) Let Q be a conjunctive query,R be a set of rules and rew

be a rewriting operator. A 1-rewriting of Q (w.r.t. rew and R) is an element of

rew(Q,R). A k-rewriting of Q, for k > 1, (w.r.t. rew and R) is a 1-rewriting of

a (k − 1)-rewriting of Q.

The term k-saturation is convenient to name the set of queries that can be obtained

in at most k rewriting steps.

2The finite unification set notion was first introduced in [BLMS09] and defined with respect to piece-

unifiers. However, since piece-unifiers provide a sound and complete rewriting operator, as recalled in

Section 5, and all the covers of a given set have the same cardinality, both definitions are equivalent.
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Definition 7 (k-saturation) Let Q be a query, R be a set of rules and rew be a

rewriting operator. We denote by rewk(Q,R) the set of k-rewritings of Q. We call

k-saturation, and denote by Wk(Q,R), the set of i-rewritings of Q for all i ≤ k. We

denote W∞(Q,R) =
⋃

k∈N
Wk(Q,R).

In the following, we extend the notations rew, rewk and Wk to a set of queries

Q instead of a single query Q: rew(Q,R) =
⋃

Q∈Q rew(Q,R), rewk(Q,R) =⋃
Q∈Q rewk(Q,R) and Wk(Q,R) =

⋃
i≤k rewi(Q,R).

Algorithm 1 performs a breadth-first exploration of the rewriting space of a given

query. At each step, only the most general elements are kept thanks to a covering

function, denoted by cover , that computes a cover of a given set. For termination

reasons (see the proof of Property 2), we require that if both Qc ∪ {q} and Qc ∪ {q
′}

are covers of QF ∪ rew(QE ,R), with q and q′ homomorphically equivalent and {q}
belongs to QF , then cover does not output Qc ∪ {q

′} – which intuitively means

that queries already explored are preferred to non-explored queries in the choice of a

cover. If rew fulfills some good properties (subsequently specified), then after the ith

iteration of the while loop the i-saturation of Q (with respect toR and rew) is covered

by QF , while QE contains the queries that remain to be explored.

Algorithm 1: A GENERIC BREADTH-FIRST REWRITING ALGORITHM

Data: A set of rulesR, a BCQ Q

Access: A rewriting operator rew , a covering function cover

Result: A cover of the set of all the rewritings of Q

QF ← {Q}; // resulting set

QE ← {Q}; // queries to be explored

while QE 6= ∅ do
QC ← cover(QF ∪ rew(QE ,R)); // update cover

QE ← QC\QF ; // select unexplored queries

QF ← QC ;

return QF

In the remainder of this section, we study the conditions that a rewriting operator

must meet in order that: (i) the algorithm halts and outputs a cover of all the rewritings

that can be obtained with this rewriting operator, provided that such a finite cover exists;

(ii) the output cover is sound and complete.

4.2 Correctness and Termination of the Algorithm

We now exhibit a sufficient property on the rewriting operator that ensures that Algo-

rithm 1 outputs a cover of W∞(Q,R).

Definition 8 (Prunable) Let rew be a rewriting operator. rew is prunable if for any

set of rules R and for all queries Q1, Q2, Q
′
2 such that Q1 ≥ Q2, Q′

2 ∈ rew(Q2,R)
and Q1 6≥ Q′

2, there is Q′
1 ∈ rew(Q1,R) such that Q′

1 ≥ Q′
2.

Intuitively, if an operator is prunable then it is guaranteed that for every Q1 more

general than Q2, the one-step rewritings of Q2 are covered by the one-step rewritings

of Q1 or by Q1 itself. The following lemma states that this can be generalized to

k-rewritings for any k.
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Lemma 1 Let rew be a prunable rewriting operator, and let Q1 and Q2 be two sets

of queries. If Q1 ≥ Q2, then W∞(Q1,R) ≥W∞(Q2,R).

Proof: We prove by induction on i that Wi(Q1,R) ≥ rewi(Q2,R).
For i = 0, W0(Q1,R) = Q1 ≥ Q2 = rew0(Q2,R).
For i > 0, for any Q2 ∈ rewi(Q2,R), there is Q′

2 ∈ rewi−1(Q2,R) such that

Q2 ∈ rew(Q′
2,R). By induction hypothesis, there is Q′

1 ∈ Wi−1(Q1,R) such that

Q′
1 ≥ Q′

2. rew is prunable, thus either Q′
1 ≥ Q2 or there is Q1 ∈ rew(Q′

1,R) such

that Q1 ≥ Q2. Since Wi−1(Q1,R) and rew(Q′
1,R) are both included in Wi(Q1,R),

we can conclude. �

This lemma would not be sufficient to prove the correctness of Algorithm 1, as will

be discussed in Section 6.1. We need a stronger version, which checks that a query

whose 1-rewritings are covered needs not to be explored.

Lemma 2 Let rew be a prunable rewriting operator, and letQ1 andQ2 be two sets of

queries. If (Q1∪Q2) ≥ rew(Q1,R), then (Q1∪W∞(Q2,R)) ≥W∞(Q1∪Q2,R).

Proof: We prove by induction on i that Q1 ∪Wi(Q2,R) ≥ rewi(Q1 ∪ Q2,R).
For i = 0, rew0(Q1 ∪ Q2,R) = Q1 ∪ Q2 = Q1 ∪W0(Q2,R).
For i > 0, for any Qi ∈ rewi(Q1 ∪ Q2,R), there is Qi−1 ∈ rewi−1(Q1 ∪ Q2,R)
such that Qi ∈ rew(Qi−1,R). By induction hypothesis, there is Q′

i−1 ∈ Q1 ∪
Wi−1(Q2,R) such that Q′

i−1 ≥ Qi−1. Since rew is prunable, either Q′
i−1 ≥ Qi

or there is Q′
i ∈ rew(Q

′
i−1,R) such that Q′

i ≥ Qi. Then, there are two possibilities:

• either Q′
i−1 ∈ Q1: since Q1 ∪ Q2 ≥ rew(Q1,R), we have Q1 ∪ Q2 ≥ {Q

′
i}

and so Q1 ∪Wi(Q2,R) ≥ {Q
′
i}.

• or Q′
i−1 ∈Wi−1(Q2,R): then Q′

i ∈Wi(Q2,R).

�

Finally, the correctness of Algorithm 1 is based on the following loop invariants.

Property 1 (Invariants of Algorithm 1) Let rew be a rewriting operator. After each

iteration of the while loop of Algorithm 1, the following properties hold:

1. QE ⊆ QF ⊆W∞(Q,R);

2. QF ≥ rew(QF \ QE ,R);

3. if rew is prunable then (QF ∪W∞(QE ,R)) ≥W∞(Q,R);

4. for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥ Q.

Proof: Invariants are proved by induction on the number of iterations of the while loop.

Below Qi
F and Qi

E denote the value of QF and QE after i iterations.

Invariant 1: QE ⊆ QF ⊆W∞(Q,R).

basis: Q0
E = Q0

F = {Q} = W0(Q,R) ⊆W∞(Q,R).

induction step: by construction, Qi
E ⊆ Q

i
F and Qi

F ⊆ Q
i−1

F ∪ rew(Qi−1

E ,R).
For any Q′ ∈ Qi

F we have: either Q′ ∈ Qi−1

F and then by induction hy-

pothesis Q′ ∈ W∞(Q,R); or Q′ ∈ rew(Qi−1

E ,R) and then by induction

hypothesis we have Qi−1

E ⊆W∞(Q,R), which implies Q′ ∈W∞(Q,R).
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Invariant 2: QF ≥ rew(QF \ QE ,R).

basis: rew(Q0
F \ Q

0
E ,R) = rew(∅,R) = ∅ and any set covers it.

induction step: by construction, Qi
F ≥ Q

i−1

F ∪ rew(Qi−1

E ,R); since by induc-

tion hypothesisQi−1

F ≥ rew(Qi−1

F \Qi−1

E ,R), we haveQi
F ≥ rew(Qi−1

F \
Qi−1

E ,R) ∪ rew(Qi−1

E ,R) = rew(Qi−1

F ,R). Furthermore, by construc-

tion,Qi
E = Qi

F \Q
i−1

F ; thusQi
F \Q

i
E ⊆ Q

i−1

F and so rew(Qi
F \Q

i
E ,R) ⊆

rew(Qi−1

F ,R). Thus Qi
F ≥ rew(Qi

F \ Q
i
E ,R).

Invariant 3: if rew is prunable then (QF ∪W∞(QE ,R)) ≥W∞(Q,R).

basis: (Q0
F ∪W∞(Q0

E ,R)) = ({Q} ∪W∞({Q},R)) = W∞(Q,R).

induction step: we first show that (i): (Qi
F ∪ W∞(Qi

E ,R)) ≥ W∞(Qi
F ,R),

then we prove by induction that (ii): W∞(Qi
F ,R) ≥W∞(Q,R):

(i) by construction Qi
E ⊆ Q

i
F , thus (Qi

F \ Q
i
E) ∪ Q

i
E = Qi

F , and by

Invariant 2, we have (Qi
F \Q

i
E)∪Q

i
E ≥ rew(Qi

F \Q
i
E ,R). Lemma

2 then entails that ((Qi
F \Q

i
E)∪W∞(Qi

E ,R)) ≥W∞((Qi
F \Q

i
E)∪

Qi
E ,R) and we can conclude since Qi

F = (Qi
F \ Q

i
E) ∪ Q

i
E .

(ii) by construction, we haveQi
F ≥ Q

i−1

F ∪rew(Qi−1

E ,R); so, by Lemma

1, we have W∞(Qi
F ,R) ≥ W∞(Qi−1

F ∪ rew(Qi−1

E ,R),R) =
W∞(Qi−1

F ,R) ∪ W∞(rew(Qi−1

E ,R),R). Moreover, Qi−1

E ⊆
Qi−1

F ⊆ W∞(Qi−1

F ,R), thus W∞(Qi
F ,R) ≥ Qi−1

F ∪ Qi−1

E ∪
W∞(rew(Qi−1

E ,R),R) = Qi−1

F ∪ W∞(Qi−1

E ,R). Using (i), we

have W∞(Qi
F ,R) ≥ W∞(Qi−1

F ,R) and conclude by induction hy-

pothesis.

Invariant 4: for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥ Q. Trivially satisfied

thanks to the properties of cover .

�

The next property states that if rew is prunable then Algorithm 1 halts for each

case where W∞(Q,R) owns a finite cover.

Property 2 Let rew be a rewriting operator, R be a set of rules and Q be a query. If

W∞(Q,R) has a finite cover and rew is prunable then Algorithm 1 halts.

Proof: LetQ be a finite cover of W∞(Q,R) and let m be the largest k for a k-rewriting

in Q. We thus have Wm(Q,R) ≥ Q ≥ W∞(Q,R). Since the operator is prunable,

we have Qi
F ≥ Wi(Q,R) for all i ≥ 0 (which can be proved with a straightforward

induction on i). Thus Qm
F ≥ W∞(Q,R). Thus, rew(Qm

E ,R) is covered by Qm
F , and

since already explored queries are taken first for the computation of a cover, we have

that Qm+1

E = ∅. Hence Algorithm 1 halts. �

Theorem 2 Let rew be a rewriting operator, R be a set of rules and Q be a query. If

W∞(Q,R) has a finite cover and rew is prunable then Algorithm 1 outputs this cover

(up to query equivalence).

Proof: By Property 2, Algorithm 1 halts. By Invariant 3 from Property 1, (Qf
F ∪

W∞(Qf
E ,R)) ≥W∞(Q,R) where Q

f
F and Q

f
E denote the final values of QF and QE

in Algorithm 1. Since Q
f
E = ∅ when Algorithm 1 halts, we have Qf

F ≥ W∞(Q,R).

Thanks to Invariants 1 and 4 from Property 1 we conclude that Qf
F is a cover of

W∞(Q,R). �
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4.3 Preserving Soundness and Completeness

We consider two further properties of a rewriting operator, namely soundness and com-

pleteness, with the aim of ensuring the soundness and completeness of the obtained

rewriting set within the meaning of Definition 2.

Definition 9 (Soundness/completeness of a rewriting operator) Let rew be a rewrit-

ing operator. rew is sound if for any set of rules R, for any query Q, for any Q′ ∈
rew(Q,R), for any fact F , F |= Q′ implies that F,R |= Q. rew is complete if

for any set of rules R, for any query Q, for any fact F s.t. F,R |= Q, there exists

Q′ ∈W∞(Q,R) s.t. F |= Q′.

Property 3 If rew is sound, then the output of Algorithm 1 is a sound rewriting set of

Q andR.

Proof: Direct consequence of Invariant 1 from Property 1. �

Perhaps surprisingly, the completeness of the rewriting operator is not sufficient to

ensure the completeness of the output rewriting set. Examples are provided in Sec-

tion 6.1. This is due to the dynamic pruning performed at each step of Algorithm 1.

Therefore the prunability of the operator is also required.

Property 4 If rew is prunable and complete, then the output of Algorithm 1 is a com-

plete rewriting set of Q andR.

Proof: Algorithm 1 returns QF when QE is empty. By Invariant 3 of Property 1, we

know that (QF ∪W∞(∅,R)) ≥ W∞(Q,R). Since W∞(∅,R)) = ∅, we are sure that

QF ≥W∞(Q,R). �

Theorem 3 If rew is a sound, complete and prunable operator, andR is a finite unifi-

cation set of rules, then for any query Q, Algorithm 1 outputs a minimal (finite) sound

and complete rewriting set of Q withR.

Proof: If R is a fus and rew is a sound and complete operator then W∞(Q,R) has a

finite cover. We conclude with Properties 3 and 4 and Theorem 2. �

5 Piece-Based Rewriting

As mentioned in the introduction (and illustrated in Example 1), existential variables

in rule heads induce a structure that has to be taken into account in the rewriting mech-

anism. Hence the classical notion of a unifier is replaced by that of a piece-unifier

[BLMS11]. A piece-unifier “unifies” a subset Q′ of Q with a subset H ′ of head(R),
in the sense that the associated substitution u is such that u(Q′) = u(H ′). Given a

piece-unifier, Q is partitioned into “pieces”, which are minimal subsets of atoms that

must processed together. More specifically, we call cutpoints, the variables from Q′

that are not unified with existential variables from H ′ (i.e., they are unified with fron-

tier variables or constants); then a piece in Q is a minimal non-empty subset of atoms

“glued” by variables other than cutpoints, i.e., connected by a path of variables that are

not cutpoints. We recall below the definition of pieces given in [BLMS11] (where T

corresponds to the set of cutpoints).

Definition 10 (Piece) [BLMS11] Let A be a set of atoms and T ⊆ vars(A). A piece of

A according to T is a minimal non-empty subset P of A such that, for all a and a′ in

A, if a ∈ P and (vars(a) ∩ vars(a′)) 6⊆ T , then a′ ∈ P .

12



In this paper, we give a definition of a piece-unifier based on partitions rather than

substitutions, which simplifies subsequent notions and proofs. For any substitution u

from a set of variables E1 to a set of terms E2 associated with a piece-unifier, it holds

that E1 ∩ E2 = ∅. We can thus assign with u a partition Pu of E1 ∪ E2 such that two

terms are in the same class of Pu if and only if they are merged by u; more specifically,

we consider the equivalence classes of the symmetric, reflexive and transitive closure

of the following relation ∼: t ∼ t′ if u(t) = t′. Conversely, to a partition on a set

of terms E, such that no class contains two constants, can be assigned a substitution

u obtained by selecting an element of each class with priority given to constants: let

{e1 . . . ek} be a class in the partition and ei be the selected element, then for all ej with

1 ≤ j 6= i ≤ k, we set u(ej) = ei. If we consider a total order on terms, such that

constants are smaller than variables, then a unique substitution is obtained by taking

the smallest element in each class. We call admissible partition a partition such that no

class contains two constants.

The set of all partitions over a given set is structured in a lattice by the “finer than”

relation (given two partitions P1 and P2, P1 is finer than P2, denoted by P1 ≥ P2,

if every class of P1 is included in a class of P2).3 The join of several partitions is

obtained by making the union of their non-disjoint classes until stability. The join

of two admissible partitions may be a non-admissible partition. We say that several

admissible partitions are compatible if their join is an admissible partition. Note that if

the concerned partitions are relative to the same set E, then their join is their greatest

lower bound in the partition lattice of E.

The following immediate property makes a link between comparable partitions and

comparable substitutions.

Property 5 Let P1 and P2 be two admissible partitions over the same set such that

P1 ≥ P2, with associated substitutions u1 and u2 respectively. Then there is a substi-

tution u such that u2 = s ◦ u1 (i.e., u1 is “more general” than u2).

In the following definition of a piece-unifier, we assume that Q and R have disjoint

sets of variables.

Definition 11 (Piece-Unifier, Separating Variable, Cutpoint) A piece-unifier of Q with

R is a triple µ = (Q′, H ′, Pu), where Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ head(R) and Pu is a

partition on terms(Q′) ∪ terms(H ′) satisfying the three following conditions:

1. Pu is admissible, i.e., no class in Pu contains two constants;

2. if a class in Pu contains an existential variable (from H ′) then the other terms

in the class are non-separating variables from Q′; we call separating variables

from Q′, and note sep(Q′), the variables occurring in both Q′ and (Q \ Q′):
sep(Q′) = vars(Q′) ∩ vars(Q \Q′).

3. let u be a substitution associated with Pu obtained by selecting an element in

each class, with priority given to constants; then u(H ′) = u(Q′).

We call cutpoints, and note cutp(µ), the variables from Q′ that are not unified with

existential variables from H ′ (i.e., they are unified with frontier variables or constants):

cutp(µ) = {x ∈ vars(Q′) | u(x) ∈ fr(R) ∪ consts(Q′) ∪ consts(H ′)}.

3Usually, the notation ≤ is used to denote the relation “finer than”. We adopt the converse convention,

which is more in line with substitutions and the ≥ preorder on CQs.
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Figure 3: Piece-unifier

Condition 2 in the piece-unifier definition ensures that a separating variable in Q′ is

necessarily a cutpoint. It follows that Q′ is composed of pieces: indeed, an existential

variable from H ′ is necessarily unified with a non-separating variable from Q′, say x,

which ensures that all atoms from Q′ in which x occurs are also part of Q′. Figure 5

illustrates these notions.

We provide below some examples of piece-unifiers.

Example 4 Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(w, v) ∧ p(w, t) ∧ r(u,w).
Let H ′ = {p(x, y)}. They are three piece-unifiers of Q with R:

µ1 = (Q′
1, H

′, P 1
u) with Q′

1 = {p(u, v), p(w, v)} and P 1
u = {{x, u, w}, {y, v}}

µ2 = (Q′
2, H

′, P 2
u) with Q′

2 = {p(w, t)} and P 2
u = {{x,w}, {y, t}}

µ3 = (Q′
3, H

′, P 3
u) with Q′

3 = {p(u, v), p(w, v), p(w, t)} and P 3
u =

{{x, u, w}, {y, v, t}}
Note that Q′

1 and Q′
2 are each composed of a single piece; Q′

3 = Q′
1 ∪ Q′

2 and P 3
u is

the join of P 1
u and P 2

u .

In the previous example, R has an atomic head, thus a piece-unifier of Q′ with R

actually unifies the atoms from Q′ and the head of R into a single atom. In the general

case, a piece-unifier unifies Q′ and a subset H ′ of head(R) into a set of atoms, as

illustrated by the next example.

Example 5 Let R = q(x) → p(x, y) ∧ p(y, z) ∧ p(z, t) ∧ r(y) and Q = p(u, v) ∧
p(v, w) ∧ r(u). A piece-unifier of Q with R is µ1 = (Q′

1, H
′
1, P

1
u) with Q′

1 =
{p(u, v), p(v, w)}, H ′

1 = {p(x, y), p(y, z)} and P 1
u = {{x, u}, {v, y}, {w, z}}. An-

other piece-unifier is µ2 = (Q′
2, H

′
2, P

2
u) with Q′

2 = Q, H ′
2 = {p(y, z), p(z, t), r(y)}

and P 2
u = {{u, y}, {v, z}, {w, t}}.

Note that µ3 = (Q′
3, H

′
3, P

3
u) with Q′

3 = {p(u, v)}, H ′
3 = {p(x, y)} and P 3

u =
{{x, u}, {v, y}} is not a piece-unifier because the second condition in the definition

of piece-unifier is not fulfilled: v is a separating variable and is matched with the

existential variable y.

Then, the notions of a one-step rewriting based on a piece-unifier and of a rewriting

obtained by a sequence of one-step rewritings are defined in the natural way.

Definition 12 (One-step Piece-Rewriting) Given a piece-unifier µ = (Q′, H ′, Pu) of

Q with R, the one-step piece-rewriting of Q according to µ, denoted β(Q,R, µ), is the

BCQ u(body(R)) ∪ u(Q \Q′), where u is a substitution associated with Pu.
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We thus define inductively a k-step piece-rewriting as a (k−1)-step piece rewriting

of a one-step piece-rewriting. For any k, a k-step piece-rewriting of Q is a piece-

rewriting of Q.

The next theorem states that piece-based rewriting is logically sound and complete.

Theorem 4 (basically [SM96]; see also [BLMS11]) Let K = (F,R) be a KB and Q

be a BCQ. Then F,R |= Q iff there is Q′ a piece-rewriting of Q such that Q′ ≥ F .

It follows from Theorem 4 that a sound and complete rewriting operator can be

based on piece-unifiers: we call piece-based rewriting operator, the rewriting operator

that, given Q and R, outputs all the one-step piece-rewritings of Q according to a

piece-unifier of Q with R ∈ R. We denote it by β(Q,R).
Actually, as detailed hereafter, only most general piece-unifiers are to be consid-

ered, since the other piece-unifiers produce more specific queries.

Definition 13 (Most General Piece-Unifier) Given two piece-unifiers defined on the

same subsets of a query and a rule head, µ1 = (Q′, H ′, P 1
u) and µ2 = (Q′, H ′, P 2

u),
we say that µ1 is more general than µ2 (notation µ1 ≥ µ2) if P 1

u is finer than P 2
u (i.e.,

P 1
u ≥ P 2

u ). A piece-unifier µ = (Q′, H ′, Pu) is called a most general piece-unifier if it

is more general than all piece-unifiers on Q′ and H ′.

Property 6 Let µ1 and µ2 be two piece-unifiers with µ1 ≥ µ2. Then µ1 and µ2 have

the same pieces.

Proof: µ1 and µ2 have the same pieces iff they have the same cutpoints. It holds that

cutp(µ1) ⊆ cutp(µ2) since every class from P 1
u is included in a class from P 2

u : hence

a variable from Q′ that is in the same class as a frontier variable or a constant in P 1
u

also is in P 2
u . It remains to prove that cutp(µ2) ⊆ cutp(µ1). Let x be a cutpoint of µ2

and P 2
u(x) be the class of x in P 2

u . Since x is a cutpoint of µ2, there is a term t in P 2
u(x)

that is a constant or a frontier variable. Since P 1
u ≥ P 2

u , we know that P 1
u(x) ⊆ P 2

u(x).
Let t′ be a term of H ′ from P 1

u(x) (there is at least one term of H ′ and one term of Q′

in each class since the partition is part of a unifier of H ′ and Q′). We are sure that t′ is

not an existential variable because t′ ∈ P 2
u(x) too and an existential variable cannot be

in the same class as t (Condition 2 in the definition of a piece-unifier), so t′ is a frontier

variable or a constant, hence x is a cutpoint of µ1. �

Property 7 Let µ1 = (Q′, H ′, P 1
u) and µ2 = (Q′, H ′, P 2

u) be two piece-unifiers such

that µ1 ≥ µ2. Then β(Q,R, µ1) ≥ β(Q,R, µ2).

Proof: Let u1 (resp. u2) be a substitution associated with P 1
u (resp. P 2

u ). Since P 1
u ≥

P 2
u , there is a substitution s such that u2 = s◦u1 . Then β(Q,R, µ2) = u2(body(R))∪

u2(Q \ Q
′) = (s ◦ u1)(body(R)) ∪ (s ◦ u1)(Q \ Q

′) = (s ◦ u1)(body(R) ∪ (Q \
Q′)) = s(u1(body(R) ∪ (Q \ Q′))) = s(β(Q,R, µ1)). s is thus a homomorphism

from β(Q,R, µ1) to β(Q,R, µ2), hence β(Q,R, µ1) ≥ β(Q,R, µ2). �

The following lemma expresses that the piece-based rewriting operator is prunable.

Lemma 3 If Q1 ≥ Q2 then for any piece-unifier µ2 of Q2 with R: either (i) Q1 ≥
β(Q2, R, µ2) or (ii) there is a piece-unifier µ1 of Q1 with R such that β(Q1, R, µ1) ≥
β(Q2, R, µ2).

Proof: Let h be a homomorphism from Q1 to Q2. Let µ2 = (Q′
2, H

′
2, P

2
u) be a piece-

unifier of Q2 with R, and let u2 be a substitution associated with P 2
u . We consider two

cases:
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(i) If h(Q1) ⊆ (Q2\Q
′
2), then u2◦h is a homomorphism from Q1 to u2(Q2\Q

′
2) ⊆

β(Q2, R, µ2). Thus Q1 ≥ β(Q2, R, µ2).

(ii) Otherwise, let Q′
1 be the non-empty subset of Q1 mapped by h to Q′

2, i.e.,

h(Q′
1) ⊆ Q′

2, and H ′
1 be the subset of H ′

2 matched by u2 with u2(h(Q
′
1)), i.e.,

u2(H
′
1) = u2(h(Q

′1)). Let P 1
u be the partition on terms(H ′

1) ∪ terms(Q′
1)

such that two terms are in the same class of P 1
u if these terms or their images

by h are in the same class of P 2
u (i.e., for a term t, we consider t if t is in Q′

1,

and h(t) otherwise). By construction, (Q′
1, H

′
1, P

1
u) is a piece-unifier of Q1 with

R. Indeed, P 1
u fulfills all the conditions of the piece-unifier definition since P 2

u

fulfills them.

Let u1 be a substitution associated with P 1
u . For each class P of P 1

u (resp. P 2
u ),

we call selected element the unique element t of P such that u1(t) = t (resp.

u2(t) = t). We build a substitution s from the selected elements of the classes in

P 1
u which are variables to the selected elements of the classes in P 2

u as follows:

for any class P of P 1
u , let t be the selected element of P : if t is a variable of H ′

1

then s(t) = u2(t) , otherwise s(t) = u2(h(t)) (t occurs in Q′
1). Note that for

any term t in P 1
u we have s(u1(t)) = u2(h(t)).

We build now a substitution h′ from vars(β(Q1, R, µ1)) to terms(β(Q2, R, µ2)),
by considering three cases according to the part of β(Q1, R, µ1) in which the

variable occurs (in Q1 but not in Q′
1, in body(R) but not in H ′

1, or in the remain-

ing part corresponding to the images of sep(Q′
1) by u1):

1. if x ∈ vars(Q1) \ vars(Q′
1), h

′(x) = h(x);

2. if x ∈ vars(body(R)) \ vars(H ′
1), h

′(x) = u2(x);

3. if x ∈ u1(sep(Q′
1))(or alternatively x ∈ u1(fr(R) ∩ vars(H ′

1))), h
′(x) =

s(x) ;

We conclude by showing that h′ is a homomorphism from β(Q1, R, µ1) =
u1(body(R)) ∪ u1(Q1 \ Q

′
1) to β(Q2, R, µ2) = u2(body(R)) ∪ u2(Q2 \ Q

′
2)

with two points:

1. h′(u1(body(R))) = u2(body(R)). Indeed, for any variable x of body(R):

– either x ∈ vars(body(R)) \ vars(H ′
1), so h′(u1(x)) = h′(x) = u2(x)

(u1 is a substitution from variables of Q′
1 ∪H ′

1),

– or x ∈ fr(R) ∩ vars(H ′
1), so h′(u1(x)) = s(u1(x)) = u2(h(x)) =

u2(x) (h is a substitution from variables of Q1).

2. h′(u1(Q1 \ Q
′
1)) ⊆ u2(Q2 \ Q

′
2). We show that h′(u1(Q1 \ Q

′
1)) =

u2(h(Q1 \ Q
′
1))) and since h(Q1 \ Q

′
1) ⊆ Q2 \ Q

′
2, we have h′(u1(Q1 \

Q′
1)) ⊆ u2(Q2 \Q

′
2). To show that h′(u1(Q1 \Q

′
1)) = u2(h(Q1 \Q

′
1))),

just see that for any variable x from Q1 \Q
′
1:

– either x ∈ vars(Q′
1), then h′(u1(x)) = s(u1(x)) = u2(h(x))

– or x ∈ vars(Q1) \ vars(Q′
1), then h′(u1(x)) = h′(x) = h(x) =

u2(h(x)) (u1 is a substitution from variables of Q′
1 ∪ H ′

1 and u2 is a

substitution from variables of Q′
2 ∪H ′

2 and h(x) 6∈ vars(Q′
2 ∪H ′

2)).

�

We are now able to show that the piece-based rewriting operator fulfills all the

desired properties introduced in section 4.
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Theorem 5 Piece-based rewriting operator is sound, complete and prunable; this

property is still true if only most general piece-unifiers are considered.

Proof: Soundness and completeness follow from Theorem 4. Prunability follows from

Lemma 3. Thanks to Property 7, the proof remains true if most general piece-unifiers

are considered. �

6 Exploiting Single-Piece Unifiers

We are now interested in the efficient computation of piece-based rewritings. We iden-

tify several sources of combinatorial explosion in the computation of the piece-unifiers

between a query and a rule:

1. The problem of deciding whether there is a piece-unifier of a given query Q

with a given rule R is NP-complete in the general case. NP-hardness is easily

obtained by considering the case of a rule with an empty frontier: then there is a

piece-unifier between Q and R if and only if there is a homomorphism from Q

to H = head(R), which is an NP-complete problem, Q and H being any sets of

atoms.

2. The number of most general piece-unifiers can be exponential in |Q|, even if the

rule head H is restricted to a single atom. For instance, assume that each atom of

Q unifies with H and forms its own piece; then there may be 2|Q| piece-unifiers

obtained by considering all subsets of Q.

3. The same atom in Q may belong to distinct pieces according to distinct unifiers,

as illustrated by the next example.

Example 6 Let Q = r(u, v) ∧ q(v) and R = p(x) → r(x, y) ∧ r(y, x) ∧ q(y). Atom

r(u, v) belongs to two single-piece unifiers: ({r(u, v), q(v)}, {r(x, y), q(y)}, {{u, x}, {v, y}})
and ({r(u, v)}, {r(y, x)}, {{u, y}, {v, x}}). For an additional example, see Example

5, where p(u, v) and p(v, w) both belong to µ1 and µ2.

To cope with this complexity, one idea is to rely on single-piece unifiers, i.e., piece-

unifiers of the form (Q′,−,−) where Q′ is a single piece of Q. This section is devoted

to the properties of rewriting operators exploiting this notion. Another idea is to focus

on rules with an atomic head, which will be done in the next section. Atomic-head rules

are often considered in the literature, specifically in logic programming or in deductive

databases. Furthermore, any existential rule can be decomposed into an equivalent set

of rules with atomic head by introducing a new predicate gathering the variables of the

original head (e.g. [CGK08, BLMS09]). Hence, this restriction can be made without

loss of expressivity. Considering atomic-head rules does not simplify the definition of a

piece-unifier in itself, but its computation: there is now a unique way of associating any

atom from Q with the head of a rule. Thus, deciding whether there is a piece-unifier

of Q with a rule can be done in linear time with respect to the size of Q (which tames

complexity source 1 in the above list) and each atom belongs to a single piece ( see

complexity source 3), thus the set of all single-piece unifiers of Q with a rule can be

computed in polynomial time.

In this section, we show that the rewriting operator based on single-piece (most

general) unifiers is sound and complete. However, perhaps surprisingly, it is not prun-

able, which prevents to use it in the generic algorithm. To recover prunability, we will
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define the aggregation of single-piece unifiers, which provides us with a new rewriting

operator, which has all the desired properties and generates less rewritings than the

standard piece-unifier. Note however that this will not completely remove the second

complexity source (i.e., the exponential number of unifiers to consider) since the num-

ber of agregations of single-piece unifiers can still be exponential in the size of Q, even

with atomic-head rules.

6.1 Single-Piece Based Operator

As expressed by the following theorem, (most general) single-piece unifiers provide a

sound and complete operator.

Theorem 6 Given a BCQ Q and a set of rules R, the set of rewritings of Q obtained

by considering exclusively most general single-piece unifiers is sound and complete.

Proof: See Appendix. �

The proof of this theorem is given in Appendix since it is not reused hereafter.

Indeed, the restriction to single-piece unifiers is not compatible with selecting most

general rewritings at each step, as done in Algorithm 1. We present below some exam-

ples that illustrate this incompatibility.

Example 7 (Basic example) Let Q = p(y, z) ∧ p(z, y) and R = r(x, x) → p(x, x).
There are two single-piece unifiers of Q with R, µ1 = ({p(y, z)}, {p(x, x)}, {{x, y, z}})
and µ2 = ({p(z, y)}, {p(x, x)}, {{x, y, z}}), which yield the same rewriting, e.g.

Q1 = r(x, x)∧p(x, x). There is also a two-piece unifier µ = (Q, {p(x, x)}, {{x, y, z}}),
which yields e.g. Q′ = r(x, x). A query equivalent to Q′ can be obtained from Q1 by

a further single-piece unification. Now, assume that we restrict unifiers to single-piece

unifiers and keep most general rewritings at each step. Since Q ≥ Q1, Q1 is not kept,

so Q′ will never be generated, whereas it is incomparable with Q.

Concerning the preceding example, one may argue that u1(Q) is redundant (and the

same holds for u2(Q)), and that the problem would be solved by computing u1(Q) \
u1(Q

′) instead of u1(Q \Q
′) and making u1(Q) non-redundant (i.e., equal to p(x, x))

before computing u1(Q) \ u1(Q
′), which would then be empty. However, the problem

goes deeper, as the next examples show it.

Example 8 (Ternary predicates) Let Q = r(u, v, w)∧r(w, t, u) and R = p(x, y)→
r(x, y, x). Again, there are two single-piece unifiers of Q with R: µ1 = ({r(u, v, w)},
{r(x, y, x)}, {{u,w, x}, {v, y}}) and µ2 = ({r(w, t, u)}, {r(x, y, x)}, {{u,w, x},
{t, y}}). One obtains two rewritings more specific than Q, e.g. Q1 = p(x, y) ∧
r(x, v, x), and Q2 = p(x, y) ∧ r(x, t, x), which are isomorphic. There is also a two-

piece unifier (Q, {r(x, y, x)}, {{u,w, x}, {v, t, y}}), which yields e.g. p(x, y). If we

remove Q1 and Q2, no query equivalent to p(x, y) can be generated.

Example 9 (Very simple rule) This example has two interesting characteristics: (1)

it uses unary/binary predicates only (2) it uses a very simple rule expressible with any

lightweight description logic, i.e., a linear existential rule where no variable appears

twice in the head or the body. Let Q = r(u, v)∧ r(v, w)∧ p(u, z)∧ p(v, z)∧ p(v, t)∧
p(w, t) ∧ p1(u) ∧ p2(w) (see Figure 4) and R = b(x) → p(x, y). Note that Q is

not redundant. There are two single-piece unifiers of Q with R, say µ1 and µ2, with
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Figure 4: The queries in Example 9

pieces Q′
1 = {p(u, z), p(v, z)} and Q′

2 = {p(v, t), p(w, t)} respectively. The obtained

queries are pictured in Figure 4. These queries are both more specific than Q. The

removal would prevent the generation of a query equivalent to r(x, x)∧p1(x)∧p2(x)∧
b(x), which could be generated from Q with a two-piece unifier.

Property 8 The single-piece-based operator is not prunable.

Proof: Follows from the above examples. �

By Theorem 5 and Property 13, one can show that the conclusion of Lemma 1 is

valid for single-piece unifiers, even though they are not prunable. This justifies that

Lemma 1 is not enough to prove the correctness of Algorithm 1. However, single-

piece unifiers can still be used as an algorithmic brick to compute more complex piece-

unifiers, as shown in the next subsection.

6.2 Aggregated-Piece Based Operator

We first explain the ideas that underline aggregated single-piece unifiers. Let us con-

sider the set of single-piece unifiers naturally associated with a piece-unifier µ. If we

apply successively each of these underlying single-piece unifiers, we may obtain a CQ

strictly more general than β(Q,R, µ), as illustrated in the next example.

Example 10 Let R = p(x, y) → q(x, y) and Q = q(u, v) ∧ r(v, w) ∧ q(t, w).
Let µ = (Q′, H ′, Pu) be a piece-unifier of Q with R with Q′ = {q(u, v), q(t, w)},
H ′ = {q(x, y)} and Pu = {{u, t, x}, {v, w, y}}. β(Q,R, µ) = p(x, y) ∧ r(y, y).
Q′ has two pieces w.r.t. µ: P1 = {q(u, v)} and P2 = {q(t, w)}. If we successively

computing the rewritings with the underlying single-piece unifiers µP1
and µP2

, we

obtain β(β(Q,R, µP1
), R, µP2

) = β(p(x, y) ∧ r(y, w) ∧ q(t, w), R, µP2
) = p(x, y) ∧

r(y, y′) ∧ p(x′, y′), which is strictly more general than β(Q,R, µ).

Given a set U of “compatible” single-piece unifiers of a query Q with a rule (the no-

tion of “compatible” will be formally defined below), we can thus distinguish between

the usual piece-unifier performed on the union of the pieces from the unifiers in U
and an “aggregated unifier” that would correspond to a sequence of applications of the

single piece-unifiers in U . This latter unifier is more interesting than the piece-unifier

because, as illustrated by Example 10, it avoids generating some rewritings which are

too specific. We will thus rely on the aggregation of single-piece unifiers to recover

prunability.

Note that, in this paper, we combine single-piece unifiers of the same rule whereas

in [KLMT13] we consider the possibility of combining unifiers of distinct rules (and
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thus compute rewritings from distinct rules in a single step). We keep here the defini-

tions introduced in [KLMT13], while pointing out that, in the context of this paper, the

rules R1 . . . Rk are necessarily copies of the same rule R.

Definition 14 (Compatible Piece-Unifiers) Let U = {µ1 = (Q′
1, H

′
1, P1) . . . µk =

(Q′
k, H

′
k, Pk)} be a set of piece-unifiers of Q with rules R1 . . . Rk respectively, where

all Ri have disjoint sets of variables (hence, for all 1 ≤ i, j ≤ k, i 6= j, vars(H ′
i) ∩

vars(H ′
j) = ∅). U is said to be compatible if (1) all Q′

i and Q′
j are pairwise disjoint;

(2) the join of P1 . . . Pk is admissible.

Definition 15 (Aggregated unifier) Let U = {µ1 = (Q′
1, H

′
1, P1), . . . , µk =

(Q′
k, H

′
k, Pk)} be a compatible set of piece-unifiers of Q with rules R1 . . . Rk. An

aggregated unifier of Q with R1 . . . Rk w.r.t. U is µ = (Q′, H ′, P ) where: (1)

Q′ = Q′
1 ∪ . . . ∪ Q′

k; (2) H ′ = H ′
1 ∪ . . . ∪ H ′

k; (3) P is the join of P1 . . . Pk. It

is said to be single-piece if all the piece-unifiers of U are single-piece. It is said to be

most general if all the piece-unifiers of U are most general.

Definition 16 (Aggregation of a set of rules) The aggregation of a set of rules R =
{R1 . . . Rk}, denoted by R1 ⋄ . . . ⋄ Rk, is the rule body(R1) ∧ . . . ∧ body(Rk) →
head(R1) ∧ . . . ∧ head(Rk), where it is assumed that all rules have disjoint sets of

variables.

Property 9 Let Q be a BCQ and U = {µ1 = (Q′
1, H

′
1, P1) . . . µk = (Q′

k, H
′
k, Pk)}

be a compatible set of piece-unifiers of Q with R1 . . . Rk. Then the aggregated unifier

of U is a piece-unifier of Q with the aggregation of {R1 . . . Rk}.

Proof: We show that the aggregated unifier µ = (Q′, H ′, Pu) of U satisfies the condi-

tions of the definition of a piece-unifier. Condition 1 is fulfilled since by definition of

compatibility, the join of P1 . . . Pk is admissible. Condition 2 is satisfied too, because

since P1 . . . Pk satisfy it, so does their join. Indeed, if a class contains an existential

variable, it cannot be merged with another by aggregation because its other terms are

non-separating variables, hence do not appear in other classes. Concerning the last

condition, for all 1 ≤ i ≤ k we have ui(H
′
i) = ui(Q

′
i) where ui is a substitution

associated with Pi. Since Q′ =
⋃k

i=1
Q′

i and H ′ =
⋃k

i=1
H ′

i we are sure that for any

substitution u associated with Pu we have u(H ′) = u(Q′). �

The rewriting associated with an aggregated unifier µ can thus be defined as β(Q,R1⋄
. . . ⋄Rk, µ). It is equivalent to the rewriting obtained by applying the single-piece uni-

fiers one after the other.

Example 11 Consider again Example 10. Let R′ = p(x′, y′)→ q(x′, y′) be a copy of

R. Then the aggregation R ⋄ R′ is the rule p(x, y) ∧ p(x′, y′) → q(x, y) ∧ q(x′, y′).
Let U = {µP1

, µP2
} where µP1

= ({q(u, v)}, {q(x, y)}, {{u, x}, {v, y}}) and µP2
=

({q(t, w)}, {q(x′, y′)}, {{t, x′}, {w, y′}}) . The aggregated unifier of Q with R,R′

w.r.t. U is ({q(u, v), q(t, w)}, {q(x, y), q(x′, y′)}, {{u, x}, {v, y}, {t, x′}, {w, y′}}).
The associated rewriting of Q is p(x, y) ∧ r(y, y′) ∧ p(x′, y′).

Note that, if we assumed, in the definition of an aggregated unifier, that R1 =
. . . Rk = R (and in particular have the same variables), then the aggregated unifier

would be the usual piece-unifier, and the aggregation of R1 . . . Rk would be exactly R

after removal of duplicate atoms. In other words, to build a standard piece-unifier of Q

with R we consider partitions of terms(Q)∪ terms(head(R)), while in the aggregation
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operation we consider terms(Q) ∪
⋃k

i=1
terms(head(Ri)), where k is the number of

single-piece unifiers of Q with R and each Ri is safely renamed from R.

The next property shows that from any piece-unifier µ, one can build a most general

single-piece aggregated unifier, which produces a rewriting more general than the one

produced by µ.

Property 10 For any piece-unifier µ of Q with R, there is a most general single-

piece aggregated unifier µ⋄ of Q with R1 . . . Rk copies of R such that β(Q,R1 ⋄ . . . ⋄
Rk, µ⋄) ≥ β(Q,R, µ).

Proof: Let Q′
1, . . . , Q

′
k be the pieces of Q′ according to µ = (Q′, H ′, Pu) and let

u be a substitution associated to Pu. Let R1 . . . Rk be safely renamed copies of R.

Let hi denote the variable renaming used to produce Ri from R. Let U = {µ1 =
(Q′

1, H
′
1, P

1
u), . . . , µk = (Q′

k, H
′
k, P

k
u )} be a set of piece-unifiers of Q with R1, . . . , Rk

built as follows for all i:

• H ′
i is the image by hi of the subset of H ′ unified by u with Q′

i

• let hi(Pu) be the partition built from Pu by replacing each x ∈ vars(H ′) by

hi(x); then P i
u is obtained from hi(Pu) by (1) restricting it to the terms of Q′

i and

H ′
i (2) refining it as much as possible while keeping the property that ui(H

′
i) =

ui(Q
′
i), where ui is a substitution associated with the partition.

For any µi = (Q′
i, H

′
i, P

i
u) we immediately check that:

1. µi is a most general piece-unifier.

2. µi is a single-piece unifier.

3. ∀µj ∈ U , µi 6= µj , µj and µi are compatible.

Let µ⋄ = (Q′
⋄, H

′
⋄, P

⋄
u ) be the aggregated unifier of Q with R1, . . . , Rk w.r.t. U .

Note that Q′
⋄ = Q′. The above properties fulfilled by any µi from U ensure that µ⋄ is

a most general single-piece aggregated unifier.

We note R⋄ = R1 ⋄ . . . ⋄Rk. It remains to prove that β(Q,R⋄, µ⋄) ≥ β(Q,R, µ).
Let u⋄ be a substitution associated with P ⋄

u . For each class P of Pu (resp. P ⋄
u ), we call

selected element the unique element t of P such that u(t) = t (resp. u⋄(t) = t).

We build a substitution s from the selected elements in P ⋄
u which are variables to

the selected elements in Pu as follows: for any class P of P ⋄
u , let t be the selected

element of P : if t is a variable of Q′ then s(t) = u(t); else t is a variable of a H ′
i: then

s(t) = u(h−1

i (t)). Note that for any term t in P ⋄
u , there is a variable renaming hi such

that s(u⋄(t)) = u(h−1

i (t)) (if t is a constant or a variable from vars(Q) then any hi

can be chosen).

We build now a substitution h from vars(β(Q,R⋄, µ⋄)) to terms(β(Q,R, µ)), by

considering three cases according to which part of β(Q,R⋄, µ⋄) the variable occurs (in

Q but not in Q′, in body(Ri) but not in H ′
i , or in the remaining part corresponding to

the images of sep(Q′) by u⋄):

1. if x ∈ vars(Q) \ vars(Q′), h(x) = x;

2. if x ∈ vars(body(Ri)) \ vars(H ′
i), h(x) = h−1

i (x);

3. if x ∈ u⋄(sep(Q′))(or alternatively x ∈ u⋄(fr(R⋄) ∩ vars(H ′
⋄))), h(x) = s(x) ;
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We conclude by showing that h is a homomorphism from β(Q,R⋄, µ⋄) = u⋄(body(R1)∪
. . . ∪ body(Rk)) ∪ u⋄(Q \ Q

′) to β(Q,R, µ) = u(body(R)) ∪ u(Q \ Q′) with two

points:

1. for all i, h(u⋄(body(Ri))) = u(body(R)). Indeed, for any variable x ∈ vars(body(Ri)):

• either x ∈ vars(body(Ri)) \ vars(H ′
i), so h(u⋄(x)) = h(x) = h−1

i (x) =
u(h−1

i (x)) (u does not substitute the variables in vars(body(R))\vars(H ′)),

• or x ∈ fr(Ri) ∩ vars(H ′
i), so h(u⋄(x)) = s(u⋄(x)) = u(h−1

i (x));

2. h(u⋄(Q \Q
′)) = u(Q \Q′). Indeed, for any variable x ∈ vars(Q \Q′):

• either x ∈ vars(Q′), then h(u⋄(x)) = s(u⋄(x)) = u(h−1

i (x)) = u(x)
(h−1

i does not substitute the variables in Q),

• or x ∈ vars(Q) \ vars(Q′), then h(u⋄(x)) = h(x) = x = u(x) (u⋄ and u

do not substitute the variables in vars(Q) \ vars(Q′)).

�

We call single-piece aggregator the rewriting operator that computes the set of one-

step rewritings of a query Q by considering all the most general single-piece aggregated

unifiers of Q.

Theorem 7 The single-piece aggregator is sound, complete and prunable.

Proof: Soundness comes from Property 9 and from the fact that for any set of rulesR,

let the rule R be its aggregation, one has R |= R. Completeness and prunability rely

on the fact that the piece-based rewriting operator fulfills these properties and the fact

that for any queries Q and Q′ and any rule R, if Q′ = β(Q,R, µ), where µ is a piece-

unifier, then the query Q′′ obtained with the single-piece aggregator corresponding to

µ is more general than Q′, as expressed by Property 10. �

7 Implementation and Experiments

As explained in Section 6, we now restrict our focus to rules with an atomic head.

We first detail algorithms for computing all the most general single-piece unifiers of

a query Q with a rule R and explain how we use them to compute all single-piece

aggregators. Then we report first experiments.

7.1 Computing single-piece unifiers and their aggregation

When a rule R has an atomic head, it holds that every atom in Q participates in at most

one most general single-piece unifier of Q with R (up to bijective variable renaming).

This is is a corollary of the next property.

Property 11 Let R be an atomic-head rule and Q be a BCQ. For all atom a ∈ Q,

there is at most one Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a piece-unifier of

Q with R.

Proof: We prove by contradiction that two single-piece unifiers cannot share an atom

of Q. Assume there are Q′
1 ⊆ Q and Q′

2 ⊆ Q such that Q′
1 6= Q′

2 and Q′
1 ∩ Q′

2 6= ∅,
and µ1 = (Q′

1, H, P 1
u) and µ2 = (Q′

2, H, P 2
u) two single-piece-unifiers of Q with R,
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with H = head(R). Since Q′
1 6= Q′

2, one has Q′
1 \Q

′
2 6= ∅ or Q′

2 \Q
′
1 6= ∅. Assume

Q′
1 \ Q

′
2 6= ∅. Let A = Q′

1 ∩ Q′
2 and B = Q′

1 \ A. There is at least one variable

x ∈ vars(A) ∩ vars(B) such that there is an existential variable e of head(R) in the

class of P 1
u containing x (otherwise µ1 has more than one piece). Since H is atomic,

there is a unique way of associating any atom with H , thus the class of P 2
u containing

x contains also e. It follows that Q′
2 is not a piece since one atom of A and one atom

of B share x unified with an existential variable in µ2 while A is included in Q′
2 and B

is not. �

To compute most general single-piece unifiers, we first introduce the notion of the

unification of a set of atoms with the head of a rule. This notion is an adaptation of

the classical logical unification that takes existential variables into account. To define

a piece-unifier, the set of atoms has to satisfy an additional constraint on its separating

variables.

Definition 17 (Partition by Position) Let A be a set of atoms with the same predicate

p. The partition by position associated with A, denoted by Pp(A), is the partition on

terms(A) such that two terms of A appearing in the same position i (1 ≤ i ≤ arity(p))
are in the same class of Pp(A).

Definition 18 (Unifiability) Let R be an atomic head rule and let A be a set of atoms

with same predicate p as head(R). A is unifiable with R if no class of Pp(A∪head(R))
contains two constants, or contains two existential variables of R, or contains a con-

stant and an existential variable of R, or contains an existential variable of R and a

frontier variable of R.

Definition 19 (Sticky Variables) Let Q be a BCQ, R be an atomic head rule and Q′

be a subset of atoms in Q with the same predicate p as head(R). The sticky variables

of Q′ with respect to Q and R, denoted by sticky(Q′), are the separating variables of

Q′ that occur in a class of Pp(Q
′ ∪ head(R)) containing an existential variable of R.

The following property follows from the definitions:

Property 12 Let Q be a BCQ, R be an atomic head rule, and Q′ a subset of atoms in

Q with the same predicate p as head(R). Then µ = (Q′, head(R), Pp(Q
′ ∪ head(R)))

is a piece-unifier of Q with R iff Q′ is unifiable with head(R) and sticky(Q′) = ∅.

The fact that an atom from Q participates in at most one most general single-piece

unifier suggests an incremental method to compute these unifiers. Assume that the

head of R has predicate p. We start from each atom a ∈ Q with predicate p and

compute the subset of atoms from Q that would necessarily belong to the same piece

as a; more precisely, at each step, we build Q′ such that Q′ and head(R) can be unified,

then check if sticky(Q′) = ∅. If there is a piece-unifier of Q′ built in this way with

head(R), all atoms in Q′ can be removed from Q for the search of other single-piece

unifiers; otherwise, a is removed from Q for the search of other single-piece unifiers

but the other atoms in Q′ still have to be taken into account. Note that in both cases,

the notion of separating variables is still relative to the original Q.

Example 12 Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(v, t). Let us start from

p(u, v): this atom is unifiable with head(R) and p(v, t) necessarily belongs to the same

piece-unifier (if any) because v ∈ sticky({p(u, v)}) (v is in the same class that the

existential variable y); however, {p(u, v), p(v, t)} is not unifiable with head(R) be-

cause, since v occurs at the first and at the second position of a p atom, x and y should
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be unified, which is not possible since y is an existential variable; thus p(u, v) does

not belong to any piece-unifier with R. However, p(v, t) still needs to be considered.

Let us start from it: p(v, t) is unifiable with head(R) and forms its own piece because

sticky({p(v,t)}) is empty (t is in the same class that the existential variable y but is not

shared with another atom). There is thus one (most general) piece-unifier of Q with R,

namely ({p(v, t)}, {p(x, y)}, {{v, x}, {t, y}}).

More precisely, Algorithm 2 first builds the subset A of atoms in Q with the same

predicate as head(R). While A has not been emptied, it initializes a set Q′ by picking

an atom a in A, then repeats the following steps:

1. check if Q′ is unifiable with head(R); else, the attempt with a fails;

2. check if sticky(Q′) = ∅; if so, it is a single-piece unifier and all the atoms in Q′

are removed from A;

3. otherwise, the algorithm tries to extend Q′ with all the atoms in Q containing a

variable from sticky(Q′); if these atoms are in A, Q′ can grow, otherwise the

attempt with a fails.

Algorithm 2: Computation of all most general single-piece unifiers

Data: a CQ Q and an atomic-head rule R

Result: the set of most general single-piece unifiers of Q with R

begin

U ← ∅; // resulting set

A← {a ∈ Q | predicate(a) = predicate(head(R))};
while A 6= ∅ do

a← choose an atom in A ;

Q′ ← {a} ;

while Q′ ⊆ A and unifiable(Q′, head(R)) and sticky(Q′) 6= ∅ do

Q′ ← Q′ ∪ {a′ ∈ Q | a′ contains a variable in sticky(Q′)} ;

if Q′ ⊆ A and unifiable(Q′, head(R)) then

U ← U ∪ {(Q′, head(R), Pp(Q
′ ∪ head(R)))} ;

A← A \Q′

else
A← A \ {a}

return U

Now, to compute the set of single-piece aggregators of Q with R, we proceed as

follows:

1. Compute all (most general) single-piece unifiers of Q with R:

U1 = {µ1, . . . , µk};

2. For i from 2 to the greatest possible rank (as long as Ui is not empty): let Ui be

the set of all i-unifiers obtained by aggregating an i− 1-unifier from Ui−1 and a

single-piece unifier from U1.

3. Return the union of all the Ui obtained.
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7.2 Experiments and Perspectives

The generic breadth-first algorithm, instantiated with the rewriting operator described

in the preceding section, has been implemented in Java. First experiments were led

on sets of existential rules obtained by translation from ontologies expressed in the de-

scription logic DL-LiteR and developed in several research projects, namely ADOLENA

(A), STOCKEXCHANGE (S), UNIVERSITY (U) and VICODI (V). See [GOP11] for

more details. The obtained rules have atomic head and body, which corresponds to the

linear Datalog+/- fragment. The associated queries were generated by the tool Sygenia

[ISG12]. Sygenia provided us with 114, 185, 81 and 102 queries for ontologies A, S, U

and V respectively. In [KLMT12] we compared with other systems concerning the size

of the output and pointed out that none of the existing systems output a complete set

of rewritings. However, beside the fact that these systems have evolved since then, one

can argue that the size of the rewriting set should not be a decisive criterion (indeed,

assuming that the systems are sound and complete, a minimal rewriting set can be ob-

tained by selecting most general elements, see Theorem 1). Therefore, other criteria

have to be taken into account, such as the running time or the total number of BCQs

built during the rewriting process.

Table 1 presents for each ontology the total number of generated rewritings, i.e.,

the sum of the number of generated BCQs for all the queries associated with a given

ontology (# generated column). This number can be compared with the total number

of output rewritings, i.e., the sum of the cardinalities of the final output sets for all the

queries associated with a given ontology (# output column). The generated rewritings

are all the rewritings built during the rewriting process (excluding the initial query and

possibly including some multi-occurrences of the same rewritings). Since we remove

the subsumed rewritings at each step of the breadth-first algorithm, only some of the

generated rewritings at a given step are explored at the next step. We can see that the

number of generated queries can be huge with respect to the size of the output, specially

for Ontology A.

Concerning the running time, our implementation is yet far from being optimized.

Moreover, our system is able to process any kind of existential rules, which involves

complex mechanisms. Much time could be saved by processing specific kinds of rules

in a specific way. In particular, a large part of available ontologies is actually com-

posed of concept and role hierarchies. For instance, 64%, 31%, 47% and 90% of the

rules in ontologies A, S, U and V respectively, express atomic concept or atomic role

inclusions. By simply processing these sets of rules as preorders, we can dramatically

decrease the running time and the number of generated queries. First experiments with

ontology A show that the running time is decreased by a factor of 74 approximatively,

and the number of generated queries is divided by 37.

Further work includes processing specific kinds of rules in a specific way while

keeping a system able to process any set of existential rules. Other optimizations could

be implemented such as exploiting dependencies between rules to select the rules to be

considered at each step. Moreover, the form of the considered output itself, i.e., a union

of conjunctive queries, leads to combinatorial explosion. Considering semi-conjunctive

queries instead of conjunctive queries as in [Tho13] can save much with respect to

both the running time and the size of the output, without compromising the efficiency

of query evaluation; to generate semi-conjunctive queries, the piece-based rewriting

operator is combined with query factorization techniques. Finally, further experiments

should be performed on more complex ontologies. However, even if slightly more

complex ontologies could be obtained by translation from decription logics, real-world
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rule base # output # generated

A 3209 146 523

S 557 6515

U 486 2122

V 2694 5318

Table 1: Generated Queries with the Single-Piece Aggregator

ontologies that would take advantage of the expressiveness of existential rules, as well

as associated queries, are currently lacking.
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Appendix: Proof of Theorem 6

To prove the completeness of the single-piece based operator, we first prove the fol-

lowing property:

Property 13 For any piece-unifier µ of Q with R, there is a sequence of rewritings of

Q with R using exclusively most general single-piece unifiers and leading to a BCQ

Qs such that Qs ≥ β(Q,R, µ).

Proof: We first introduce some notations. Given a partition P and x a term occurring

in P , P (x) is the class of P that contains x. Let P and P ′ be two partitions such that

the terms of P ′ are included in the terms of P and any class of P ′ is included in a class

of P : then we say that P ′ is a subpart of P (note that if P ′ and P are defined on the

same set, it means that P ′ is finer than P )

Let Pc1, . . . , P cn be the pieces of Q′ according to µ = (Q′, H ′, Pu) and let u

be a substitution associated to Pu. Let Q0 = Q,Q1, . . . Qn = Qs be a sequence

of rewritings of Q built as follows: for 1 ≤ i ≤ n, Qi = β(Qi−1, Ri, µi) where

µi = (Q′
i, H

′
i, P

i
u) and ui is a substitution associated with P i

u with:

• Ri is a safely renamed copy of R by a variable renaming hi.

• H ′
i is the image by hi of the subset of H ′ unified by u with Pci

• P i
u is obtained from partition hi(Pu) (built from Pu by applying hi) by (1) re-

stricting it to the terms of Q′
i and H ′

i (2) refining it as much as possible while

keeping the property that it is associated with a unifier of H ′
i and Q′

i. Note that

P i
u is a subpart of hi(Pu).

• Let u◦
i = ui ◦ ui−1 ◦ . . . ◦ u1. Let P i◦

u be the partition assigned to u◦
i . We know

that P i◦
u is the join of P 1

u , . . . P
i
u, thus P i◦

u is a subpart of Ph
u , the join of the

hi(Pu) for 1 ≤ i ≤ n. Indeed, for each i, P i
u is a subpart of hi(Pu) and the

following property is easily checked: let s1 and s2 be substitutions with disjoint

domains, and P 1
s , P 2

s be their associated partitions; then, the partition assigned

to s1 ◦ s2 (and to s2 ◦ s1) is exactly the join of P 1
s and P 2

s .

• Q′
1 = Pc1 and for i > 1, Q′

i = u◦
i−1(Pci). We ensure the property than ∀i,

u◦
i−1(Pci) ∩ u◦

i−1(Q \Q
′) = ∅. If u◦

i−1(Pci) ∩ u◦
i−1(Q \Q

′) 6= ∅, we remove

µi from the sequence because it is useless since u◦
i−1(Pci) ⊆ u◦

i−1(Q \ Q
′).

Indeed, let a ∈ u◦
i−1(Pci) ∩ u◦

i−1(Q \ Q
′), there are b ∈ Pci and b′ ∈ Q \ Q′,

b 6= b′ such that u◦
i−1(b) = u◦

i−1(b
′) = a, so terms(b) ⊆ sep(Pci), so {b} is a

piece, so Pci = {b} and then u◦
i−1(Pci) = {a} ⊆ u◦

i−1(Q \ Q
′). For similar

reasons, we ensure the property that ∀i, ∀j > i, u◦
i−1(Pci) ∩ u◦

i−1(Pcj) = ∅.

We now show that:

1. µi is a piece-unifier

2. µi is a most general piece-unifier

3. µi is a single-piece unifier

For the first point:

• Q′
i ⊆ Qi−1 since ∀i, u◦

i−1(Pci)∩u
◦
i−1(Q\Q

′) = ∅ and ∀i, ∀j > i u◦
i−1(Pci)∩

u◦
i−1(Pcj) = ∅
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• H ′
i ⊆ head(Ri) by construction.

• P i
u satisfies the conditions of a piece-unifier because Pu satisfies them and P i

u is

a subpart of hi(Pu).

For the second point, since P i
u is the finest partition associated with a piece-unifier

of H ′
i and Q′

i, we are sure that µi is a most general piece-unifier.

For the third point, note that each atom of Q′
i corresponds to at least one atom of

Pci. Thus if Pci is composed of a unique atom, so is H ′
i which thus forms a single-

piece. Otherwise, Pci is a single-piece from more than one atom; each atom a of Pci
contains a variable x such that Pu(x) contains an existential variable y which comes

from the subset of H ′ unified by u with Pci. Thus the corresponding atom u◦
i−1(a)

in Q′
i is such that P i

u(u
◦
i−1(x)) contains the existential variable hi(y). So Q′

i forms a

single piece.

At the end of the sequence, Qn ⊆ u◦
n(Q \ Q

′) ∪
⋃

j∈1..n(un(. . . uj(body(Rj))))

and the terms of Pn◦
u are the same as the terms of Ph

u . Since Pn◦
u is a subpart of Ph

u ,

we can say that Pn◦
u is finer than Ph

u so, there is a substitution s such that uh = s ◦ u◦
n

and s(u◦
n(Q \ Q

′)) = uh(Q \ Q′). Let h be the substitution obtained by making

the union of the inverses of the hi, then h(uh(Q \ Q′) = u(Q \ Q′), so h ◦ s is a

homomorphism from u◦
n(Q \Q

′) to u(Q \Q′). Then we can prove that for all j, 1 ≤
j ≤ n, h(s(un(. . . uj(body(Rj))))) = u(body(R)). Indeed, un(. . . uj(body(Rj))) =
un(. . . u1(body(Rj))) since the terms of body(Rj) do not appear in ui (i < j).

To conclude the proof, we have h(s(Qn)) ⊆ u(body(R))∪u(Q\Q′) = β(Q,µ,R),
hence h ◦ s is a homomorphism from Qn to β(Q,µ,R), thus Qn ≥ β(Q,µ,R). �

Theorem 6 Given a BCQ Q and a set of rulesR, the set of rewritings of Q obtained

by considering exclusively most general single-piece unifiers is sound and complete.

Proof: Soundness holds trivially since a single-piece unifier is a piece-unifier.

For completeness, thanks to Theorem 4, we just have to show by induction on k, the

length of the rewriting sequence leading from Q to a k-piece-rewriting of Q, that: for

any k-piece-rewriting Qr of Q, there exists Qs a piece-rewriting of Q obtained by

using exclusively most general single-piece unifiers such that Qs ≥ Qr.

For k = 0 the property is trivially satisfied.

For k ≥ 1, one has Qr = β(Qr′ , R, µ), with Qr′ being a piece-rewriting of Q obtained

by a piece-rewriting sequence of length k − 1. By induction hypothesis, there exists

Qs′ a piece-rewriting of Q obtained by using exclusively single-piece unifiers such that

Qs′ ≥ Qr′ . By Lemma 3, either Qs′ ≥ Qr, or there is a piece-unifier µ′ of Qs′ with

R such that β(Qs′ , R, µ′) ≥ Qr. In this latter case, thanks to Property 13, there is a

sequence of rewritings of Qs′ with R using only single-piece unifiers and leading to a

CQ Qs such that Qs ≥ β(Qs′ , R, µ′). �
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