W. W. Cohen, P. Ravikumar, and S. E. Fienberg, A comparison of string distance metrics for namematching tasks, Proc. of the Workshop on Information Integration on the Web (IIWeb-03), vol.47, 2003.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, GATE: A framework and graphical development environment for robust NLP tools and applications, Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002.

F. J. Damerau, A technique for computer detection and correction of spelling errors, Commun. ACM, vol.7, issue.3, pp.171-176, 1964.

L. Hawizy, D. Jessop, N. Adams, and P. Murray-rust, ChemicalTagger: a tool for semantic textmining in chemistry, Journal of cheminformatics, vol.3, issue.1, p.17, 2011.

D. Hiemstra, A probabilistic justification for using tf x idf term weighting in information retrieval, Int. J. on Digital Libraries, vol.3, issue.2, pp.131-139, 2000.

G. Hignette, P. Buche, O. Couvert, J. Dibie-barthélemy, D. Doussot et al., Semantic annotation of Web data applied to risk in food, International Journal of Food Microbiology, vol.128, issue.1, pp.174-180, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01384600

D. M. Jessop, S. E. Adams, and P. Murray-rust, Mining chemical information from open patents, Journal of cheminformatics, vol.3, issue.1, p.40, 2011.

D. M. Jessop, S. E. Adams, E. L. Willighagen, L. Hawizy, and P. Murray-rust, OSCAR4: a flexible architecture for chemical text-mining, Journal of cheminformatics, vol.3, issue.1, pp.1-12, 2011.

G. H. John and P. Langley, Estimating continuous distributions in bayesian classifiers, Proc. of the conf. on Uncertainty in artificial intelligence, pp.338-345, 1995.

K. S. Jones, S. Walker, and S. E. Robertson, A probabilistic model of information retrieval: development and comparative experiments -part 1, Inf. Process. Manage, vol.36, issue.6, pp.779-808, 2000.

R. Kohavi and J. R. Quinlan, Data mining tasks and methods: Classification: decision-tree discovery, Handbook of data mining and knowledge discovery, pp.267-276, 2002.

A. Maedche and S. Staab, Measuring similarity between ontologies, Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, vol.2473, pp.251-263, 2002.

D. Maynard, Y. Li, and W. Peters, Nlp techniques for term extraction and ontology population, Proceeding of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge, p.107127, 2008.

J. C. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods, pp.185-208, 1999.

H. Rijgersberg, M. Van-assem, and J. Top, Ontology of units of measure and related concepts, 2013.

H. Rijgersberg, M. Wigham, and J. Top, How semantics can improve engineering processes: A case of units of measure and quantities, Advanced Engineering Informatics, vol.25, pp.276-287, 2011.

J. Su, H. Zhang, C. X. Ling, and S. Matwin, Discriminative parameter learning for bayesian networks, Proc. of the int. conf. on Machine learning, pp.1016-1023, 2008.

A. Thompson and B. N. Taylor, Guide for the use of the international system of units (SI), 2008.

R. Touhami, P. Buche, J. Dibie-barthélemy, and L. Ibanescu, An ontological and terminological resource for n-ary relation annotation in web data tables, On the Move to Meaningful Internet Systems: OTM 2011, pp.662-679, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00616241

M. Van-assem, H. Rijgersberg, M. Wigham, and J. Top, Converting and annotating quantitative data tables, The Semantic Web-ISWC 2010, pp.16-31, 2010.

D. J. Willems, H. Rijgersberg, and J. Top, Identifying and extracting quantitative data in annotated text, 2012.

D. C. Wimalasuriya and D. Dou, Ontology-based information extraction: An introduction and a survey of current approaches, Journal of Information Science, vol.36, issue.3, p.306323, 2010.