Forbidding Kuratowski Graphs as Immersions

Abstract : The immersion relation is a partial ordering relation on graphs that is weaker than the topological minor relation in the sense that if a graph $G$ contains a graph $H$ as a topological minor, then it also contains it as an immersion but not vice versa. Kuratowski graphs, namely $K_{5}$ and $K_{3,3}$, give a precise characterization of planar graphs when excluded as topological minors. In this note we give a structural characterization of the graphs that exclude Kuratowski graphs as immersions. We prove that they can be constructed by applying consecutive $i$-edge-sums, for $i\leq 3$, starting from graphs that are planar sub-cubic or of branch-width at most 10.
Type de document :
Article dans une revue
Journal of Graph Theory, Wiley, 2015, 78 (1), pp.43-60. 〈10.1002/jgt.21790〉
Liste complète des métadonnées
Contributeur : Dimitrios M. Thilikos <>
Soumis le : jeudi 14 novembre 2013 - 16:14:06
Dernière modification le : vendredi 5 octobre 2018 - 21:14:01

Lien texte intégral




Archontia C. Giannopoulou, Marcin Kaminski, Dimitrios M. Thilikos. Forbidding Kuratowski Graphs as Immersions. Journal of Graph Theory, Wiley, 2015, 78 (1), pp.43-60. 〈10.1002/jgt.21790〉. 〈lirmm-00904533〉



Consultations de la notice