Bidimensionality of Geometric Intersection Graphs

Abstract : Let B be a finite collection of geometric (not necessarily convex) bodies in the plane. Clearly, this class of geometric objects naturally generalizes the class of disks, lines, ellipsoids, and even convex polygons. We consider geometric intersection graphs GB where each body of the collection B is represented by a vertex, and two vertices of GB are adjacent if the intersection of the corresponding bodies is non-empty. For such graph classes and under natural restrictions on their maximum degree or subgraph exclusion, we prove that the relation between their treewidth and the maximum size of a grid minor is linear. These combinatorial results vastly extend the applicability of all the meta-algorithmic results of the bidimensionality theory to geometrically defined graph classes.
Type de document :
Communication dans un congrès
SOFSEM: Theory and Practice of Computer Science, Jan 2014, Špindlerův Mlýn, Czech Republic. 40th International Conference on Current Trends in Theory and Practice of Computer Science, LNCS (8327), pp.293-305, 2014, 〈10.1007/978-3-319-04298-5_26〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00904537
Contributeur : Dimitrios M. Thilikos <>
Soumis le : jeudi 14 novembre 2013 - 16:16:36
Dernière modification le : jeudi 15 novembre 2018 - 20:44:14

Lien texte intégral

Identifiants

Collections

Citation

Alexander Grigoriev, Athanassios Koutsonas, Dimitrios M. Thilikos. Bidimensionality of Geometric Intersection Graphs. SOFSEM: Theory and Practice of Computer Science, Jan 2014, Špindlerův Mlýn, Czech Republic. 40th International Conference on Current Trends in Theory and Practice of Computer Science, LNCS (8327), pp.293-305, 2014, 〈10.1007/978-3-319-04298-5_26〉. 〈lirmm-00904537〉

Partager

Métriques

Consultations de la notice

130