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 

Abstract— This paper presents a novel 4 dofs (3T-1R (1)) 
parallel redundant mechanism, with its complete study 
regarding inverse and direct geometric models (IGM and 
DGM), as well as singularity and workspace analysis. The robot 
is capable of performing a half-turn about the z axis (a complete 
turn would be theoretically possible if it were not for possible 
unavoidable inter-collisions in the practical case), and having all 
of its prismatic actuators along one direction, enables it to have 
an independent x motion - only limited by the stroke of the 
prismatic actuators. The mechanism is characterized by 
elevated dynamical capabilities having its actuators at base. 
Moreover, the performance of the robot is evaluated 
considering isotropy in velocity and forces. 

I. INTRODUCTION 

Parallel mechanisms have been known for their increased 
rigidity, better accuracy, higher load and dynamical 
capacities as compared to their competent serial 
mechanisms. Unfortunately, these mechanisms are not 
without their own drawbacks such as limited workspace and 
presence of the so referred to as parallel singularities, in 
addition to the usual serial type singularities. However, the 
advantages of such mechanisms, are quite sufficient to be the 
motive behind the increasingly interest in these mechanisms, 
in which they have been under extensive research in the last 
decades.  

At their infancy, most of the parallel mechanisms that 
have been studied are of 6 dofs (3T-3R) known as the 
Gough-Stewart platforms or “hexapods” which appeared in 
the early 1950’s and 1960’s.  Later on, parallel mechanisms 
with lower mobility (2) have been studied and investigated. In 
fact, for most industrial applications-such as machining, laser 
cutting, pick-and-place applications- 6 dofs are too much. 
Thus studies have been conducted regarding the synthesis of 
3 dofs (3T), 4 dofs (3T-1R) and 5 dofs (3T-2R) parallel 
mechanisms. 
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(1) 3T-1R: Three-translational degrees of freedom and one rotational 

degree of freedom.  
(2) i.e. number of dofs<6 

In fact, regarding some tasks 4 dofs (3T-1R) parallel 
mechanisms are sufficient. In others, where another rotation 
is required it can be provided either by the table or by an 
additional actuator in series with the parallel mechanism 
(forming a hybrid mechanism).  Many 3T-1R parallel 
mechanisms exist in literature such as the famous Delta robot 
[1] (with the R-U-P-U (3)  chain), the Kanuk [2], the SMG in 
[3], the H4 in [4], the I4 in [5], the Par4 in [6] with its 
industrialized version Adept Quattro [7] (fastest industrial 
pick-and-place robot).  Also, an interesting family of fully-
isotropic parallel 4 dofs (3T-1R) mechanisms, in addition to 
decoupled mechanisms, has been synthesized in [8]. In [8], 
there is an elaborated referencing to other 4 dofs 
mechanisms. 

However, these and other existing mechanisms have some 
inconveniences. For example, in the case of Delta with a 
huge workspace (even much larger with linear Delta), the 
presence of the RUPU chain connecting the base to the 
platform to supply the rotational dof is a weak element 
reducing the workspace. Others present problems of 
singularities, limitation of workspace (and particularly) in 
rotational capability, complexity of obtaining analytical 
expressions for the direct geometric model, and /or the use of 
transmission systems with the articulated platform in the case 
[4-7]. Actually, the use of transmission systems such as gears 
or cable and pulleys in the platform, will impact accuracy 
and repeatability of the robot. The mechanisms in [8], 
despite their interesting isotropic property, have a limited 
workspace (having the prismatic actuators in different 
directions), and are complex from manufacturability and 
industrialization point of view. 

In this paper we present, a 4 dofs (3T-1R) parallel 
mechanism with actuation redundancy (two degrees of 
redundancy) that responds to the major requirements: large 
operational workspace, high rotational capability, absence of 
singularities, design simplicity, high rigidity, and high 
dynamical capabilities with analytical expressions for the 
inverse and direct geometric models. Such mechanism is 
intended to be used as 4 dofs (3T-1R) module in a 5 dofs 
(3T-2R) parallel kinematic machine where the 5th dof (2nd 
rotational dof) is provided by a turntable according to left-
hand right-hand paradigm. Such machine can be used in 
many industrial applications requiring 5 dofs such as laser 
cutting, five-faces machining, etc...      

 
(3)  R, U, and P: correspond to rotational, universal, and prismatic joints. 

Bold face letter means actuated, and underlined letter means the joint 
position is measured. 
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The paper introduces the mechanism in section II  and its 
geometrical elements. Then sections III  and IV detail the 
inverse and direct geometric models respectively. Section V 
presents the singularity and workspace analysis of this 
mechanism. The paper ends with section VI  giving the 
conclusions. 

II.  THE NEW 4 DOFS (3T-1R) MECHANISM 

The graph diagram of the four dofs (3T-1R) parallel 
mechanism we propose is shown in fig.1 with its CAD 
drawing in fig. 2 and fig.3.  The platform, its dimensions and 
the platform connection points labeling are clarified in fig. 4. 
Note that this mechanism has been chosen among other 
synthesized mechanisms with same number of actuators and 
dofs, and after several studies. This synthesis procedure will 
not be discussed here for brevity. 

The robot consists of six actuators along the same 
direction (x-axis) and can perform four motions x, y, z and Θ 
(rotation about z-axis).  The robot is redundant (having two 
extra actuators).  It is quite clear that this robot can move 
along x independently of the other motions y, z and Θ. This 
motion along x is only limited by the available stroke for the 
prismatic actuators.  

The principle of functioning of this mechanism is straight 
forward. The role of parallelograms in chains (III) and (IV) 
is to constraint the platform rotation about any axis that is 
perpendicular to the z axis direction of the base frame.  
These two parallelogram arms cooperate with the other four 
simple arms to position the TCP and control the platform 
orientation about the axis parallel to the z axis of the base 
frame. 

 

Figure 1.  Graph diagram of the mechanism.  P: prismatic joint, S: 
spherical joint. Gray box means actuated, while white box means passive. 

The underlining signifies that the joint position is being measured.  

It is worth mentioning that the mechanism is theoretically 
capable of complete rotation, but in practical case there 
might be possibility of unavoidable inter-collisions, so we 
can guarantee practically a half-turn (  90 ; 90       ) free 

of inter-collisions which is considered by itself sufficient 
(maximum required rotation range in real applications). 
Moreover, the spherical joints can be practically replaced by 

three revolute joints as to overcome known limitations of the 
commercial spherical joints regarding rotation capabilities. 

We define the different geometrical elements of the 
mechanism before establishing its models and Jacobians. 
The following notations are used: 

 ( 1...6)iL i   is the length of the ith arm  of extremities iA  

and iB . 

  , ( 1...6)i iA B i   are the connection points of the arm 

i iA B  (ith arm) as shown in the figures 3 and 4. In case of 

parallelogram arm, they are along the mid-axis of the 
parallelogram. 

 

Figure 2.  Simplified CAD drawing of the mechanism for clarification 
purpose only. The rotation of the platform is greater than 90°. The x, y and 

z directions of the base frame are shown in the figure.   

 
Figure 3.  Frontal view of the robot. The pose illustrated is for ϴ=0°. The 

x, y and z directions of the base frame are shown in the figure. 

 

Figure 4.  Platform and its principal dimensions. The x, y and z directions 
of the moving frame connected to the platform are shown on the figure.   

 ( 1...6)i i u  is the unit vector along the direction of the 

linear actuators (it is the same for all actuators). 



  

 ( 1...6)i i n  is the unit vector along the vector i iA B . 

  Ti xi yi zip p pp  is the vector directed from P  (the 

TCP) to iB  expressed in the base frame of the robot. 

  T ( 1...6)m m m
i xi yi zip p p i mp  is the vector 

directed from P  (the TCP) to iB  expressed in moving 

frame of the platform.  

 , ,x y ze e e  are the unit vectors  along the x, y and z axis 

of the base frame respectively. 

  T ( 1...6)i i ix y z i   are the coordinates of the point 

iA   (note that iy  and iz  are constant). 

  Tx y zp is the vector  OP  where O  is the origin 

of the base frame.  

   is the rotational angle.  

  Tx y z x  is the pose of the robot. 

  T1 6q qq  is the joints displacement vector of 

linear actuators.  

  1

T

6r rx xrX  is the vector containing the values 

of  ( 1...6)ix i   corresponding to the assumed zero 

extension or displacement of the linear actuators (i.e. for 
which we consider q 0); it is constant vector just 

marking the origins of joints’ displacements meaning 
that ,  1...6i i irq x x i    or 

   T T

1 6 1 6r rx x x x q . One can assume 

joints’ displacements origins to be confounded with x-

axis origin i.e. at rX 0 and hence  T1 6x xq .   

 z

0

Rot ( ) 0

0 0 1

c s

s c
 
 

       
R is the rotational matrix of 

the platform frame with respect to the fixed base frame 

where cos( )c   and sin( )s  . 

 Define gξ  the geometric parameters vector with its 

elements being , , ,i i i irL y z x with 1...6i  . 

 Note that 1 3| |m m
x zd p p  which is shown in fig. 4. 

 Also note that 1 5 1 5|| || | |m m
z za p p  B B  which is shown 

also in fig. 4.  

We assume the following in our study:  1 2 3 4 5 6, ,B B B B B B    

 1 2 5 6 43,L L LL LL     

 1 5 2 6 3 4,y y y y y y        

 1 2 5 6 3 4, 0z zz zz z      

 1 3 1 3| | | ( ) |m m
z zz p pz   : This is a necessary condition 

to have a functioning mechanism (in order to be able to 
control the z position of the TCP). 

The coordinates of iB  are expressed in the base frame as 

 Ti bi bi bix y zB . 

III.  THE INVERSE GEOMETRIC MODEL (IGM) 

The inverse geometric model (IGM) for parallel robots is 
usually easy to determine and our mechanism is not an 
exception of this idea.   To establish the IGM we suppose 
that we have the robot’s pose x  and all the geometric 
parameters gξ , and then we need to calculate the joints 

variables IGM( , ) gq x ξ . Note that:  

    T T
x y z   x p  (1) 

Then, we can get the coordinates of iB  as follows: 

 , 1...6i i i   mB p R p  (2) 

Substituting  i
mp  and R , we get: 

 , 1...6

m m
xi yibi

m m
i bi xi yi

m
bi zi

x p

y p

c p sx

y s p c

z z p

i







    
           

B  (3) 

The term i
mp  is the vector coordinates of point iB  in the 

platform frame which is known.  Now, to get the coordinates 
of iA  we need to utilize the following equation: 

 2 2 , 1...6i i i iL  A B  (4) 

Equation (4) gives: 

 2 2 2( ) ) , 1...6(i bi i bi i bi ix L zx iy y z        (5) 

As long as the term within the square root is positive, two 
real solutions for each ix  are possible. The choice depends 

on the assembly mode we choose. In our case, we will 
choose to have the actuator to be before the platform, 
meaning: 

 2 2 2)( ( )i bi i bi i bi ix y yx zzL      (6) 

Substituting the value ofbix , we get: 

 
2 2 2) )( (

m m
i xi yi

m m m
i xi yi i zi i

x c p s

s p c

x p

L y pp y z z









 
 


       (7) 

Now, to get q  we need to assume a certain reference for the 

linear actuators, i.e. a set of values of ( 1...6)ix i   for which 

we consider q 0 . Call this reference  T1 6r rx xrX  

as we previously said in section (II), then: 

    1 6 1 6

T T

r rx x x x q  (8) 
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m m
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s p c y z p

s p c y

x x p

x x p

L y p z

L y p zz p

















      
           

 

 
 

    

q

 (9) 

 
Hence, the IGM is established. Note that regardingrX , 

one can take it as zero, assuming that 0iq   when the 

corresponding 0ix   or it can be chosen for example by 
assuming that q 0  when x 0 and thus in this case, we 

have    T T

1 6 1 6
at

r rx x x x


 
x

rX
0
. 

IV.  THE DIRECT GEOMETRIC MODEL (DGM) 

 Unlike serial robots, the direct geometric model (DGM) 
of a parallel manipulator is most often difficult to be 
determined analytically. However, with this mechanism it is 
easy to establish its DGM.  Supposing that we have q  we 

need to get -1DGM( , ) IGM ( , ) g gx q ξ q ξ .  We 

emphasize that there is no unique way to establish the DGM 
in our case, the robot being redundant. Here, we present one 
possible way. Suppose we know q  then all points’ 
coordinates ( 1...6)i i A  are known. Let us get points 1B  
first. We have the following equations (we will be very brief 
due to space limitation): 
 2 2 2 2

1 1 1 1 1 1 1( ) ( ) ( )b b bx x y y z z L       (10) 

 2 2
2 2

1 2
2

1 1 2
2( ) ( ) ( )b b bx x y y z z L       (11) 

 5 5
2 2

5 5
2

5 5 5
2( ) ( ) ( )b b bx x y y z z L       (12) 

But at all times, we have: 

 
5 1 5 1 5 1

1 5 5 1 5 1|| |

, ,

|| | | |
b b b b b b

m m
z z z zp

x x y y z z a

a p p p

         B B
 (13) 

Then substituting (13) in (12), we get: 
 2 2

5 5
2 2

1 5 1 1 5( ) ( ) ( ( ))b b bx x y y z z La       (14) 

Subtracting (11) from (10), we get the equation of the plane 

1( )pl  (containing the intersection circle of the two spheres).  

Subtracting (14) from (10), we get plane 2( )pl  in which the 

intersection circle between the two corresponding spheres is 
present. 

Now, we have two planes that intersect at a 
line 1 1 2( ) ( ) ( )ln pl pl  whose parametric equations can be 

easily derived. To get the point 1B  of coordinates 1B , we 

need to substitute the parametric equations of  ( )1ln  in one 

of the equations (10), (11) or (12).  In general, we get two 
possible solutions call them 1

1
sB  and 2

1
sB .  Substituting the 

values of 1B  in (13), we get also two possible solutions for 

the coordinates of 5B , call them 1
5

sB and 2
5

sB , respectively. 

Now consider the equations, below to get coordinates3B : 

 2 2 2 2
3 3 3 3 3 3 3( ) ( ) ( )b b bx x y y z z L       (15) 

 4 4
2 2

3 4
2

3 3 4
2( ) ( ) ( )b b bx x y y z z L       (16) 

Note that z component of  3B  can be directly calculated 

using the following relation: 

 1 3 3 1 3 3( )   m mB B p p R p p  (17) 

But we have only one rotation which is about ze  meaning: 

 , 1...6m
zi zip p i    (18) 

Then: 
 3 1 3 1

m m
b b z zz z p p    (19) 

Since we have now 3bz  (two possible values), the system of 

equations formed by (15) and (16) reduces to be system of 
equations of two variables, namely 3bx  and 3by . The 

solution is simply the intersection of these two circles 
described in (15)  and (16). For each value of 3bz , we obtain 

two points, thus four possible coordinates in total, call them 
11

3
sB , 12

3
sB  (corresponding to 1

3
s

bz ), 21
3

sB  and 22
3

sB  

corresponding to 2
3

s
bz .  

Recall that 1 2 3 4 5 6, ,  B B B B BB . At the end, we 

have a set of four possible solutions, call it . This set is: 

 

      
1 2 3 4

1 1 11 1 1 12
1 1 2 3 2 1 2 3

2 2 21 2 2 22
3 1 2 3 4 1 2 3

, , ,

, , , , ,

, , , , ,

     
s s s s s s

s s s s s s

S S S S

S B B B S B B B

S B B B S B B B

 (20) 

Then, the solution is S  and such that we have the 

relation below satisfied (implied from (6)): 
 , 1...6i bix x i    (21) 

Now having determined the coordinates iB  for all points iB , 

we can determine the pose by taking only the x and y 
components of the vector 1 3B B  , call them x  and y  

respectively. Knowing these latter two components we can 
determine  ;      using arctan 2 ( , )y x   .  Then 

we have the rotational matrix R , and the position of the 
TCP is calculated by: 

    T

1 1 1 1 z,  Rotx y z      mp B p B R p R  (22) 

The pose  Tx y z x  is calculated and hence the 

DGM is analytically established, for this new mechanism. 

V. SINGULARITY AND WORKSPACE ANALYSIS 

An important step in the study of a parallel mechanism is 
investigating the presence of singularities. To do this, we 
need to establish the Jacobian J  or the inverse Jacobian mJ  
For redundant parallel mechanisms, the inverse Jacobian is 
straight forward whereas J  requires in case of redundancy 
the use of pseudo-inversion procedure. 



  

 Let us consider the velocity and angular velocity of the 
TCP to be denoted by v  and w , respectively.  These are 
given in our case as follows (4): 

  Td
x y z

dt
  p

v p  (23) 

 zw  z zw e e  (24) 

Then, we define our reduced 4x1 twist vector t  as 
follows: 

    TT

x y z zv v v w x y z  t  (25) 

Then inverse Jacobian mJ  relates the joint velocity vector  

q  to the twist vector t  by: 

  mq J t  (26) 

To find the above relation, we need to differentiate 
2 2 constantii i L A B  with respect to time which gives the 

following expression: 
 , 1...6

i i i ii i i i i i i    A B A BA B v A B v n v n v  (27) 

The terms 
iAv  and 

iBv  are the linear velocities of the points 

iA  and iB  respectively and are calculated using the 

following two equations: 
 , 1...6

i i i iq q i   A xv u e  (28) 

 
( ) ,

1...6
i i i i

i

         
 

B z zv v w p v e p v p e
 (29) 

Substituting the latter two equations in (27) and writing the 6 
equations in matrix form we get: 
 q xJ q J t  (30) 

 The matrices qJ   and xJ  are given as follows: 

 
diag( ) diag( ) diag( )

di )m( 6 6
ii i i xn


 


q x

q

J n u n e

J
 (31) 

 

6

T T
1 1 1

T
6
T

6

( )

) 6 4

( )

, dim(


 

      
z

x x

z

p e

J

p e

n n

J

n n

 (32) 

Then, when the inverse of qJ  exists, the inverse Jacobian 

matrix mJ  is given by the following equality: 

 1 , dim( ) 6 4  m q x mJ JJ J  (33) 

It is important to note that in what follows, we will be 
talking about the yz region rather than talking about the 
xyz region, simply due to the fact that x motion can be 
provided independently of the other y, z and ϴ motions.  
We do not talk about accessibility region regarding ϴ 
since we mean by the yz region with full rotational 
capability (that is practically guaranteed), the region 
where the robot can perform half-turn (practically we 
are interested in half-turn rather than full rotation 
because 180° is the maximally needed rotation range on 

 

(4) 
df

f
dt

   where t   is time and f  is a function of time.  

one hand and on the other hand in practice we would 
have unavoidable inter-collisions in case of complete 
rotation as discussed earlier in section (II) but this has 
nothing to do with singularity).  

A.  Series Type Singularities  

The series type singularities correspond to the case where 
the twist t 0 , but the joint velocity is non-zero i.e. q 0 . 

This situation is present when the square diagonal matrix  

qJ  is non-invertible. This is expressed mathematically as: 

 
00det ( 1, 2 ,...,6 ;) 0 0i    q i xJ n e  (34) 

Relation (34) simply implies that we have serial type 
singularity when one of the arms is perpendicular to the x 
axis, meaning when the arm is in the yz plane.  If the pose 
that might lead to such a case exists (i.e. it is geometrically 
accessible), such pose will obviously be at the envelope of 
the yz geometrically accessible workspace, because in this 
case the corresponding point 

0iB  will belong to a circle of 

center 
0i

A  and radius 
0i

L  in the plane parallel to the yz 

plane, and there is no doubt that in the geometrically 
accessible yz region of the TCP, the point 

0iB  for sure 

cannot be except on this circle and not outside it or within it. 
This means since the TCP is at constant distance from

0i
B , it 

is necessary that the TCP is in this case at the boundary of 
the yz geometrically accessible region. 

B. Parallel Type Singularities 

Parallel type singularities occur when the joint velocity is 
null i.e. q 0 , while the platform is capable of infinitesimal 

motion i.e. t 0 . This means that matrix xJ  is rank 

deficient.  In our case, xJ  is singular when its rank is less 

than 4. We know that the rank of the matrix will not change 
if we do linear operations on the matrix columns or rows. In 

our case, we will add  TT T
1 1 6 1( ) ( ) z zn p e n p e  to 

the 4th column of xJ  which is a linear combination of the 

first three columns. We will call the new matrix N . Note 

that: 1 2B B , 3 4B B  and 5 6B B .  Then the new matrix 

is: 
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 (35) 

The vector r  is given by: 

 1 3 1 4 r B B B B  (36) 

Consider the matrix M  defined by: 

  T 1 2 5 6M n n n n  (37) 



  

The vectors which form the matrix M  form the basis of two 
non-parallel planes which are plane 1 2 1( )pl A A B  and plane 

5 6 5( )pl A A B  since  51 1 5| | | | |z z  B B  (refer to the figures 

at beginning). This obviously means that: 

    1 2 5 6span , , , span , , x y zn n n n e e e  (38) 

Relation (38) implies that M  is of rank 3 since the span of 
its row vectors is equal to the span of the basis of3 . Hence, 
for N  (and thus xJ ) to be full rank, it is necessary and 

sufficient that at least T
3 ( ) 0 zn r e  or T

4 ( ) 0 zn r e .  

However, having 3 4
T T( ) ( ) 0   z zn r e n r e  implies that 

all the vectors 3n , 4n , r  and ze  are in the same vertical 

plane (i.e. containing ze ), which is only possible when these 

vectors are in a plane parallel to the yz plane,  since we 
always have , 1...6

ii bx x i    due to relation (6).  Having 

the vectors 3n  and 4n  in plane parallel to yz plane, simply 

means that we also have –if pose is geometrically accessible-
serial type singularity which cannot occur except at the 
boundary of the yz accessible region as we explained earlier 
in the previous section. 

Hence, N  (equivalently xJ ) is always of full rank within 

the yz geometrically accessible region, and if it is to be rank 
deficient, this would not happen except at boundary of this 
region. 

C. Conclusion on Singularity Analysis 

Hence, within the geometrically accessible yz region 
excluding its boundary, we can guarantee always that there 
are neither serial nor parallel type singularities. This is due to 
the fact that these singularities if were to occur, are not 
possible except at boundary of this region. 

D. Workspace Analysis 

As we mentioned earlier, the workspace analysis can be 
limited to investigating the yz region that allows for half-turn 
and where the value of the chosen performance index is 
within the acceptable range. 

There are several indices in literature that might be used to 
evaluate the robot’s performance [9-11] and each has its own 
problems which is not our concern here. However, in our 
case, we are interested in isotropic performance of the robot 
regarding operational velocity and static operational force. 
The robot under study being redundant the singular values of 
the inverse Jacobian matrix are no longer significant 
regarding this aspect and so is the condition number based 
on the ratio of largest singular value to the minimal one, as 
discussed in [12].  So, in our study and evaluation of 
workspace, we defined the following index: 

 min ,w w

wl wl

v f
FVI

v f

      (39) 

The terms wv  and wf  are the worst speed and the worst 

force (5) respectively, whereas wlv  and wlf  are the desired 

lower bounds for the worst speed and worst force   
respectively. Actually, wv  is nothing except the largest 

isotropic speed (radius of the largest sphere included in the 
zonotope of the operational velocities), and wf  is similarly 

the largest isotropic force (radius of largest sphere included 
in operational force zonotope considering that joint torque 

vector satisfies   T
Tnull  mJ τ 0 (refer to footnote (5))). In 

our case, we have chosen max 2wlv q  and max 2wlf  . 

The terms maxq  and max  are respectively the maximum 

speed and maximum force for the linear actuator (all 
actuators are considered identical).  

Since we have mixed degrees of freedom (translation and 
rotation), it is mandatory to homogenize mJ  before 

evaluating the index at each pose. For this purpose, we use a 
suitable weighing matrix as suggested in [13].  

Our weighing matrix is  diag 1,1,1, 2dW . The term 

d  is the distance shown in fig. 4. Then, consider the 

homogeneous inverse Jacobian matrix 1mw mJ J W  and its 

pseudo-inversewJ .  We then have: 
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 (40) 

The terms 
imwrj  and 

iwcj  mean the ith row vector of matrix 

mwJ  and ith column vector of the matrix wJ . The proof of 

(40) is similar to the proof of the dynamical index introduced 
in [14]. 

So, in what follows we established the yz region with null 
orientation ( 0   ) and the yz region with rotational range 

of 180° (  90 ; 90      ), and where 1FVI  .  Regarding 

the case of yz region with rotational capacity, we have 
evaluated FVI  for a set of different rotational angles 
particularly (-90° , -60°, -45°, -30°, 0°, 30° , 45°, 60°, 90°) 
for the purpose of reducing computation time and we 
assumed the worst value of this index for the corresponding 
( , )y z  position (in this case the minimal value of FVI ). 

Note although the mechanism is capable of full turn 

 
(5) wf  is calculated considering minimum norm torque vector solution 

of T mf J τ  i.e. considering the joint torques vector τ  satisfying 

  T
Tnull  mJ τ 0  and thus having: T T *

mJ fτ J f  with  *
mJ J  the 

pseudo-inverse of mJ  and f  the operational force vector. Note to have 

physical significance and consistency of wf  , the matrix mJ  must be 

homogeneous. 



  

theoretically, we evaluated performance on  90 ; 90      which we usually need for most 

applications (maximum required range for most applications) 
and since for complete turn we might have practically 
unavoidable inter-collisions as previously mentioned. For 
this study, we used the following optimized parameters:  

1 1

3

3 3

1

1.25 , 1.0926 , 0.375 , 0.4602

0.3 , 0 , 0.1126 , 0.2

L m L m y m y m

z m z m d m a m

   
  





The other parameters can be determined using the relations 
we have already given at the end of section II.   The figures 
below show boundary plots of yz region accessible with 

0    and with full range of   satisfying 1FVI  . Also, we 

provided a contour plot to show how the value of the index 
changes as function of ( , )y z .  Note that the yz regions in 

both cases are symmetric with respect to the y and z axes. 
So, we have shown in the figures the boundaries and contour 
plots of the yz regions belonging to the first quadrant for 
clarity purpose only. These plots show that the yz region 
with and without orientation is large, especially when we 
consider the available space between its slider guides, which 
is quite interesting (in the evaluation of the workspace we 
posed the condition 1 22 2y d y y d     in order to 

avoid collisions with the sliders guides).  

To have better insight of the index variation within the 
workspace, we have provided a table (table I) presenting the 
value of area in case of null orientation and full orientation 
capacity (between -90° and +90°), together with mean value 
and standard deviation of the index over the corresponding 
yz region. The small standard deviation as compared to the 
corresponding mean value shows that the index variation 
over the yz region is relatively low which is advantageous. 

 
 

Figure 5.  On the left we show the boundary of yz region accessible with 
null orientation. On the right we show the contour plot showing the 

variation of the FVI index as function of the position (y, z) in the case of 
null orientation. These have been  shown on the quarter of the workspace 

due to symmetry with respect to the y-axis and z-axis.  

 
Figure 6.  Boundary of the accessible yz region with full orientation 

capability (between -90° and +90°). It has been  shown on the quarter of the 
workspace due to symmetry with respect to the y-axis and z-axis. 

 
Figure 7.  Contour plot showing the variation of the index FVI as function 
of the position (y, z) and for full orientation capacity (the value shown at 

each position is the worst value (smallest) of the index among the different 
angles tested between -90° and 90°). It has been  shown on the quarter of 

the workspace due to symmetry with respect to the y-axis and z-axis. 

TABLE I.  RESULTS OF THE WORKSPACE ANALYSIS REGARDING AREA 
OF THE ACCESSIBLE YZ REGION AND THE VARIATION OF THE INDEX OF 

PERFORMANCE FVI DESCRIBED BY THE   VALUE AND STANDARD DEVIATION. 

Case Estimated 

Area (m2) 

Mean 

Value 

of FVI 

Standard 

Deviation 

of FVI 

Null Orientation 

(ϴ=0°) 

0.79 1.21 0.08 

Full rotational 

capacity (range of ϴ:          

-90°  to +90°) 

0.69 1.14 0.07 

 

VI.  CONCLUSIONS AND FURTHER WORK 

In this paper, we have presented a new 4 dofs (3T-1R) 
parallel redundant mechanism. It has 6 actuators for 4 dofs; 
the interest in this actuation redundancy is eliminating 



  

singularities and improving performance. We also have 
established both the inverse and direct geometric models, 
and presented a complete analysis of the Jacobians and the 
singularities. Moreover, we have calculated the different 
workspaces and presented a new singularity index “ FVI ” 
which is suitable for redundant and non-redundant robots as 
well.  In case, of heterogeneous Jacobian (case of mixed 
dofs), a homogenization is needed prior to evaluation of the 
index for a certain pose. 

The workspace of this mechanism along x direction is 
independent of the other motions and only limited by the 
available stroke of the linear actuators, which is one of its 
major advantages. The yz accessible regions are large in both 
cases with and without orientation, especially when 
compared to the space between its slider guides. The 
mechanism is particularly interesting having the capability to 
perform a half-turn (which is large and maximum required 
rotation capability for most applications), knowing that a 
complete rotation would be possible if it had not been for the 
possibility of unavoidable inter-collisions in practical 
situation.  

Furthermore, another advantage of this robot is having its 
workspace symmetric with respect to xz and yz planes, free 
of collisions and also convex. The latter property, namely 
convexity, is very advantageous regarding trajectory 
planning; any two points in the workspace can be connected 
by a straight line trajectory. 

Besides, having the arms connected to platform and 
actuators via spherical joints, puts these arms under 
tension/compression forces making it easier to model 
deformation and compensate for it.   

In brief the simplicity of the design, the actuation 
redundancy, the actuation at base, and the high stiffness of 
the mechanism contribute to the high dynamical performance 
capabilities (regarding pay-load, acceleration and velocity) 
as well as to its enhanced performance regarding accuracy 
and precision.  

Regarding the future work, it is important to optimize the 
design further in the sense of implementing it and producing 
a prototype on which real performance can be evaluated. 
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