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Abstract. Applications with very large databases, where data items are
continuously appended, are becoming more and more common. Thus, the
development of efficient data partitioning is one of the main requirements
to yield good performance. In the case of applications that have complex
access patterns, e.g. scientific applications, workload-based partitioning
could be exploited. However, existing workload-based approaches, which
work in a static way, cannot be applied to very large databases. In this
paper, we propose DynPart and DynPartGroup, two dynamic partition-
ing algorithms for continuously growing databases. These algorithms effi-
ciently adapt the data partitioning to the arrival of new data elements by
taking into account the affinity of new data with queries and fragments.
In contrast to existing static approaches, our approach offers constant
execution time, no matter the size of the database, while obtaining very
good partitioning efficiency. We validated our solution through experi-
mentation over real-world data; the results show its effectiveness.

1 Introduction

We are witnessing the proliferation of applications that have to deal with huge
amounts of data. The major software companies, such as Google, Amazon, Mi-
crosoft or Facebook have adapted their architectures in order to support the
enormous quantity of information that they have to manage. Scientific applica-
tions are also struggling with those kinds of scenarios and significant research
efforts are directed to deal with it [4]. An example of these applications is the
management of astronomical catalogs; for instance those generated by the Dark
Energy Survey (DES) [1] project with which we are collaborating. In this project,
huge tables with billions of tuples and hundreds of attributes (corresponding to
dimensions, mainly double precision real numbers) store the collected sky data.

⋆ Work partially funded by the CNPq-INRIA HOSCAR project.



Data are appended to the catalog database as new observations are performed
and the resulting database size is estimated to reach 100TB very soon. Scien-
tists around the globe can access the database with queries that may contain a
considerable number of attributes.

The volume of data that such applications hold poses important challenges for
data management. In particular, efficient solutions are needed to partition and
distribute the data in multiple servers, e.g., in a cluster. An efficient partitioning
scheme would try to minimize the number of fragments that are accessed in the
execution of a query, thus minimizing the overhead of the distributed execution.
Vertical partitioning solutions, such as column-oriented databases [18], may be
useful for physical design on each node, but fail to provide an efficient distributed
partitioning, in particular for applications with high dimensional queries, where
joins would have to be executed by transferring data between nodes. Traditional
horizontal partitioning approaches, such as hashing or range-based partitioning,
are unable to capture the complex access patterns present in scientific computing
applications, especially because these applications usually make use of compli-
cated relations, including mathematical operations, over a big set of columns,
and are difficult to be predefined a priori.

One solution is to use partitioning techniques based on the workload. Graph-
based partitioning is an effective approach for that purpose [8]. A graph (or
hypergraph) that represents the relations between queries and data elements is
built and the problem is reduced to that of minimum k-way cut problem, for
which several libraries are available. However, this method requires to process
the entire graph in order to obtain the partitioning. This strategy works well for
static applications, but scenarios where new data are inserted to the database
continuously, which is the most common case for scientific computing, introduce
an important problem. Each time a new set of data is appended, the partition-
ing should be redone from scratch, and as the size of the database grows, the
execution time of such operation may become prohibitive.

In this paper, we are interested in dynamic partitioning of large databases
that grow continuously. After modeling the problem of data partitioning in dy-
namic datasets, we propose two dynamic workload-based algorithms, called Dyn-

Part and DynPartGroup, that efficiently adapt the partitioning to the arrival of
new data elements. Our algorithms are designed based on a heuristic that we
developed by taking into account the affinity of new data with queries and frag-
ments. In contrast to the static workload-based algorithms, the execution time
of our algorithms do not depend on the total size of the database, but only on
that of the new data and this makes them appropriate for continuously growing
databases.

We validated our solutions through experimentation over real-world data
sets. The results show that they obtain high performance gains in terms of par-
titioning execution time compared to one of the most efficient static partitioning
algorithms. We also compared both algorithms and concluded that the grouping
strategy of DynPartGroup obtains better partitioning efficiencies and performs



better, specially in scenarios with high correlation between new data items and
strict imbalance constraints.

This paper is a major extension of [12], which only presented the DynPart al-
gorithm. Here, we propose a variation, DynPartGroup, which groups data items
before calculating fragment affinities. This strategy adapts better for the situa-
tions where there is high correlation on the new data items and the imbalance
constraints (maximum allowed imbalance) are strict, and offers an improved
performance. We also extend the imbalance constraint by adding the possibil-
ity of considering the load imbalance between fragments in addition to the size
imbalance. Moreover, we deal with data deletions and updates in addition to
insertions. Finally, we include an extended set of experimental results for the
new contributions.

The remainder of this paper is organized as follows. In Section 2, we describe
our assumptions and define formally the problem we address. In Section 3, we
propose our basic solution for dynamic data partitioning, that we extend in
Section 4 by grouping similar data items. Section 5 reports on the results of
our experimental validation. Section 6 discusses related work, and Section 7
concludes.

2 Problem Definition

In this section, we state the problem we are addressing and specify our assump-
tions. We start by defining the problem of static partitioning, and then extend
it for a dynamic situation where the database can evolve over time.

2.1 Static Partitioning

The static partitioning is done over a set of data items and for a workload. Let
D = {d1, ..., dn} be the set of data items. The workload consists of a set of queries
W = {q1, ..., qm}. We use q(D) ⊆ D to denote the set of data items that a query
q accesses when applied to the data set D. Given a data item d ∈ D, we say that
it is compatible with a query q, denoted as comp(q, d), if d ∈ q(D). Queries are
associated with a relative frequency f : W → [0, 1], such that

∑

q∈W f(q) = 1.
Partitioning of a data set is defined as follows.

Definition 1. Partitioning of a data set D consists of dividing the data of D
into a set of fragments, π(D) = {F1, ..., Fp}, such that there is no intersection

between the fragments, ∀i 6= j : Fi ∩ Fj = ∅, and the union of all fragments is

equal to D, i.e.,
⋃p

i=1 Fi = D.

Let q(F ) denote the set of data items in fragment F that are compatible
with q. Given a partitioning π(D), the set of relevant fragments of a query q,
denoted as rel(q, π(D)), is the set of fragments that contain some data accessed
by q, i.e., rel(q, π(D)) = {F ∈ π(D) : q(F ) 6= ∅}.

To avoid a high imbalance on the size of the fragments, we use an imbalance

factor, denoted by ǫs. The size of the fragments at each time should satisfy the

following condition: |F | ≤
⌈

|D|
|π(D)| (1 + ǫs)

⌉

.



In this paper, we are interested in minimizing the number of query accesses to
fragments. Note that the minimum number of relevant fragments of a query q is

minfr(q, π(D)) =
⌈

|q(D)|
(|D| / |π(D)|)(1+ǫs)

⌉

. We define the efficiency of a partitioning

for a workload based on its efficiency for queries. Intuitively, the efficiency of a

partitioning for a query represents the ratio between the minimum number of
relevant fragments of q and the number of fragments that are actually accessed
under the given partitioning:

Definition 2. Given a query q, then the efficiency of a partitioning π(D) for q,
denoted as eff (q, π(D)) is computed as:

eff (q, π(D)) =
minfr(q, π(D))

|rel(q, π(D))|
(1)

When the number of accessed fragments is equal to the minimum possible,
i.e., minfr(q, π(D)), the efficiency is 1.

Using eff (q, π(D)), we define the efficiency of a partitioning π(D) for a work-
load W as follows.

Definition 3. The efficiency of a partitioning π(D) for a workload W , denoted

as eff (W,π(D)), is equal to the sum of the efficiencies of partitioning π(D) for

all queries in W multiplied by their relative frequencies. In other words,

eff (W,π(D)) =
∑

q∈W

f(q)× eff (q, π(D)) (2)

Given a set of data items D and a workload W , the goal of static partitioning
is to find a partitioning π(D) such that eff (W,π(D)) is maximized.

2.2 Dynamic Partitioning

Let us assume now that the data set D grows over time. For a given time t, we
denote the set of data items of D at t as D(t)4.

During the application execution, there are some events, namely data inser-

tions, by which new data items are inserted into D. These events in the model
correspond to the appending of the tuples corresponding to new observations in
the DES catalog. No changes in the schema are involved. Let Tev = (t1, . . . , tm)
be the sequence of time points corresponding to those events. Note that between
two consecutive time points ti, ti+1, D remains constant. In this paper, we as-
sume that the workload is stable and neither the queries nor their frequencies
change. However, the queries may access new data items as the data set grows.

Let us now define the problem of dynamic partitioning as follows. Let Tev =
(t1, . . . , tm) be the sequence of time points corresponding to data insertion
events; D(t1), . . . , D(tm) be the set of data items at t1, . . . , tm respectively; and

4 We confine this formulation to this subsection for the sake of simplicity, so that, in
the next sections, when we use D we mean D(ti).



W be a given workload. Note that, as we only consider data insertions, if ti < tj
then D(ti) ⊂ D(tj) ∀ti, tj ∈ Tev.

The goal is to find a set of partitionings π(D(t1)), ..., π(D(tm)) for data sets
D(t1), . . . , D(tm) respectively, such that the sum of the efficiencies of the parti-
tionings for W are maximized. In other words, our objective is as follows:

Objective: Maximize
(

∑

q∈W (f(q)× eff (q, π(D(t))))
)

∀t ∈ Tev

3 Affinity Based Dynamic Partitioning

In this section, we propose an algorithm, called DynPart, that deals with dy-
namic partitioning of data sets. It is based on a principle that we developed
using the partitioning efficiency measure described in the previous section.

3.1 System Overview

In this paper, our proposal mainly focuses on how the data is partitioned in
fragments. Here, we provide an overview of a system architecture taking advan-
tage of our partitioning approach. The components of this architecture are as
following (see Figure 1):

User

Query
Processor

PartitionerMetadata and
Index Manager

Physical
Manager

New data

Partitioned new data

MetadataMetadata

Results

Query

Results

Query plan

Data

F1 F2
...

Fn

Fig. 1. System architecture

– Query processor: It parses the user queries, accesses the metadata and
index manager, prepares an optimized execution plan and sends it to the
physical manager to retrieve the data from fragments.



– Metadata and Index Manager: Stores metadata about the partitioning,
and also indexes the location of the data items in the fragments.

– Physical Manager: It is in charge of storing/retrieving data to/from frag-
ments.

– Partitioner: It holds the data items until a given number of items is in-
serted. Then, it obtains the necessary metadata and executes the partitioning
algorithm. Finally, it transfers the data items to the corresponding fragments
and informs the metadata and index manager about the modifications in the
fragments. This component may also be contacted to include in the query
results the corresponding data items in new added data.

We assume a shared nothing architecture composed of data nodes containing
a physical data manager that stores one or several fragments at each node, and
dedicated nodes for other components. We used a shared nothing architecture
as it is the most common one since it is cheaper and can be scaled easily when
required. The query processor and the metadata and index manager are preferred
to be executed in the same node (nodes) to avoid communication overhead, as
the query processor always has to access the index.

3.2 Principle

Let d be a new inserted data item. We can express the efficiency of the new
dataset as:

eff (W,π(D ∪ {d})) = eff (W,π(D)) +∆ (3)

Let assume that F is the fragment selected to insert d. The efficiency will
remain the same for all queries but those which now have to access F in order
to retrieve d but did not before. Hence, we can calculate ∆ as5:

∆ ≈
∑

q:q(F )=∅∧comp(q,d)

f(q) (eff (q, π(D ∪ {d}))− eff (q, π(D))) (4)

=
∑

q:q(F )=∅∧comp(q,d)

f(q)

(

minfr(q, π(D))

|rel(q, π(D))|+ 1
−

minfr(q, π(D))

|rel(q, π(D))|

)

(5)

= −
∑

q:q(F )=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))|+ 1)
(6)

where q : q(F ) = ∅∧ comp(q, d) is the set of queries that will read d but no other
data items in F .

Based on this idea, we define the affinity between the data d and fragment F :

aff (d, F ) = −
∑

q:q(F )=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))|+ 1)
(7)

5 Note that this approximation is an equality in all cases except when the increment
in |q(D)| makes minfr(q, π(D)) to be increased by 1, which happens very rarely.



Using (7), we develop a heuristic algorithm that places the new data items in
the fragments based on the maximization of the affinity between the data items
and the fragments.

3.3 Algorithm

Our DynPart algorithm takes a set of new data items D′ as input and selects
the best fragments to place them. For each new data item d ∈ D′, it proceeds
as follows (see the pseudo-code in Algorithm 1). First, it finds the set of queries
that are compatible with the data item. This can be done by executing the
queries of W on D′ or by comparing their predicates with every new data item.
Then, for each compatible query q, DynPart finds the relevant fragments of q,
and increases the fragments affinity by using the expression in (7). Initially the
affinity of fragments is set to zero.

Algorithm 1 Algorithm DynPart

procedure DynPart(D’)
for each d ∈ D ′ do

for each q : comp(q, d) do
for each F /∈ rel(q, π(D)) do

if feasible(F ) then
//aff (F ) is initialized to 0

aff (F )← aff (F )− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

end if

end for

end for

if ∃F ∈ π(D) : aff (F ) > 0 then

dests← argmaxF∈π(D) aff (F )
else

dests← {F ∈ π(D) : feasible(F )}
end if

Fdest ← select from argminF∈dests |F |
move d to Fdest

update metadata
end for

end procedure

After computing the affinity of the relevant fragments, DynPart has to choose
the best fragment for d. Not all of the fragments satisfy the imbalance con-
straints, thus we must only consider those that do meet the restrictions. We
define the function feasible(F ) to determine whether a fragment can hold more
data items or not. Accordingly, DynPart selects from the set of feasible frag-
ments the one with the highest affinity. If there are multiple fragments that have
the highest affinity, then the smallest fragment is selected, in order to keep the
partitioning as balanced as possible.



DynPart works over a set of new data items D ′, instead of a single data
item. This allows the system to perform bulk operations over a set of n data
items instead of executing n times the same operations, which is in general more
costly. Moreover, it gives the algorithm more flexibility in the application of the
imbalance constraints and groups data insertions in each of the fragments.

Let compavg be the average number of compatible queries per data item, and
relavg be the average number of relevant fragments per query. Then, the average
execution time of the algorithm is O(compavg × relavg × |D′|), where |D′| is the
number of new data items to be appended to the fragments. The complexity can
be O(|W |× |π(D)|× |D′|) in the worst case, e.g. when all queries are compatible
to all new data and the partitioning has not been done well. However, in practice,
the averages are usually much smaller than the worst case values. The reason
is that the queries usually access a small portion of the data (not the whole
set), thus the average number of compatible queries per data item is low. In any
case, in order to reduce the number of queries, we may use a threshold on the
frequency, so that only queries above that threshold are considered. In addition,
the partitioning efficiency of our approach is good (see experimental results in
the next section), so the average number of relevant fragments per query is low.

3.4 Example

Figure 2 illustrates the execution of the DynPart algorithm. Before its execution,
the system is partitioned into 4 fragments, whose sizes are shown in the figure.
The workload consists of 5 queries, which are represented inside the fragments
they access. There are 16 new data items, d1, ..., d16, that should be distributed
over the fragments. The imbalance factor is ǫs = 0.05, so resulting maximum
size (taking into account new data items) is 42. We show the execution of the
algorithm for some of the steps.

In Step 1 we show the insertion of data item d1. The set of compatible queries
is indicated in comp(d1). For each of these queries, the affinity of the relevant
fragments is increased by the corresponding expression. As a consequence, F1

has a total affinity of −0.1, resulting from the affinity expression applied to q1
and q5; and F1, F2 and F3 have an affinity of −0.05, resulting from the expression
applied to q1 for F2 and q5 for F3 and F4. The three fragments have the highest
affinity, but F4 is selected since it is the smallest fragment.

In Step 2, the processing for data item d2 is depicted. Note that the infor-
mation has been updated as a consequence of last move: the size of F4 has been
incremented by 1 and the accessing queries now include q5, provided that d1 is
accessed by it. In this case, the highest affinity is that of fragment F4, so it is
selected and d2 is moved to it.

The algorithm continues to execute as before until Step 14. In that case, the
fragment with the highest affinity is F4, but it can not be selected, as it would
violate the imbalance constraint. As a consequence, the next fragment in terms
of affinity is selected and data item d14 is placed in fragment F3.



D = {d1, ..., d16}, ǫs = 0.05, W = {q1, q2, q3, q4, q5},

f(q1) = 0.3, q1(D) = {d1, d2, d3, d4, d11, d12, d13, d14, d15, d16}
f(q2) = 0.2, q2(D) = {d2, d9, d10, d11, d12, d13, d14, d15, d16}
f(q3) = 0.3, q3(D) = {d2, d11, d12, d13, d14, d15, d16}
f(q4) = 0.1, q4(D) = {d9, d10}
f(q5) = 0.1, q5(D) = {d1, d3, d4}

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 34

q1, q2,
q3

comp(d1) = {q1, q5}
– aff (F1) = −0.1
– aff (F2) = −0.05, |F3| = 37
– aff (F3) = −0.05, |F3| = 35
– aff (F4) = −0.05, |F4| = 34⋆

d1 d2

d3 ...

Step 1

|F1| = 38

q2, q4

|F2| = 37

q3, q5

|F3| = 35

q1, q4

|F4| = 35

q1, q2,
q3, q5

comp(d2) = {q1, q2, q3}
– aff (F1) = −0.1
– aff (F2) = −0.08
– aff (F3) = −0.08
– aff (F4) = 0⋆

d2 d3

d4 ...

Step 2

. . .

|F1| = 40

q2, q4

|F2| = 40

q3, q5

|F3| = 35

q1, q4

|F4| = 42

q1, q2,
q3, q5

comp(d14) = {q1, q2, q3}
– aff (F1) = −0.1
– aff (F2) = −0.08, |F2| = 40
– aff (F3) = −0.08, |F3| = 35⋆
– aff (F4) = 0

d14 d15

d16

Step 14

Fig. 2. Example of operation of the DynPart algorithm



3.5 Data Structures

Our algorithm needs to maintain information about the relevant fragments of
each query, so that we can compute the affinity efficiently. Queries are assigned
a unique identifier and stored on a hash table for efficient access. For each of
them, we store the set of relevant fragments as a list, as they are always accessed
sequentially, i.e., no random access. Space complexity is O(|W | × |π(D)|) in the
worst case, but, as we have pointed out, the average number of relevant fragments
stays low even when the number of fragments increases. For example, in our
experiments, for 1024 fragments, the average number of relevant fragments do
not exceed 18 in any scenario. We also need to store the set of queries for each
of the new data items. Again, as this set is accessed sequentially, we keep a list
of query identifiers.

Our algorithm needs to create a data structure for each new data item to
store the affinity of the possible destination fragments. For this, there are several
alternatives. One option is to keep an array of size |π(D)| initialized to zero. Note
that, as the actual number of possible destinations is much lower than the total
number of fragments, we would waste a lot of space with zero-affinity entries.
Therefore, we keep a hash table of fragments and only compute those for which
the affinity is non-zero. By using this method, access time will be maintained,
while space requirements will be significantly reduced.

3.6 Dealing with Deletes and Updates

So far, we have only considered the case where data items are appended to the
database. However, we could easily extend our approach to deal with deletions
and updates. For a deletion, we only need to consider metadata maintenance.
Whenever a data item d is deleted, the size of the fragment where it was placed
should be reduced by one. We would also have to check for all queries compatible
with d whether they still have to access that fragment or not, and update their
set of relevant fragments if necessary. An efficient way to do this is to keep the
number of data items accessed by each query on every of its relevant fragments,
i.e., |q(F )| ∀F ∈ rel(q, π(D)). Then, whenever d is deleted from a fragment F ,
|q(F )| would be reduced by 1. If the size reaches 0, then F should be deleted
from the set of relevant fragments.

The case of updating a data item can be considered as a deletion followed
by an insertion. However, we can benefit from previous information, and only
recalculate the compatibility of queries that are affected by the changes.

4 Dealing with Imbalance

In the algorithm presented in the previous section, new data items are treated
individually even if they are highly correlated. As a consequence, the destination
chosen for them may differ if at a given point the selected fragment reaches
the maximum size constrained by the imbalance factor. The problem might be



specially important when there are big groups of similar elements and/or the
imbalance constraints are too restrictive. In this section we present a variation
of the previous algorithm which tries to avoid such a situation by grouping
similar elements together and taking a common decision for all the elements.

4.1 Algorithm

The extended version of our algorithm, which we call DynPartGroup, starts by
dividing the buffer of new data items D′ into a set of groups G such that all
members of each group are accessed exactly by the same set of queries. Thus, the
members of each group share exactly the same affinity for each given fragment.
If they are allocated to different fragments, the partitioning efficiency of each
of the incident queries is likely to decrease. The construction of the groups is
included in Algorithm 2. A list of groups is built, where each group stores the
set of composing tuples and the set of accessing queries. All items in a group are
treated in the same way.

Algorithm 2 Function CreateGroups

function CreateGroups(D’)
G← emptyList( )
for each d ∈ D ′ do

qs = {q : comp(q, d)}
if ∃g ∈ G : g.qs = qs then

g.ts ← g.ts ∪ {d}
else

gnew .ts ← {d}
gnew .qs ← qs

G← insert(G, gnew)
end if

end for

return G
end function

The algorithm (the pseudo-code is shown on Algorithm 3) first creates the
groups and orders them by size in descending order, i.e., the biggest groups are
considered before the smallest ones. The rationale is that, if we consider first the
biggest groups, there is more free space on the fragments and the probability
that all members of these groups fit on the same fragment is higher.

Once groups are ordered, an affinity value is calculated for each group, exactly
in the same way it was done for individual data items in the basic algorithm. In
this case, function feasible(F, g) will return true if F plus the data items of the
group g does not violate the imbalance factor, i,e:

feasible(F, g) = |F ∪ g.ts| ≤

⌈

|D|

|π(D)|
(1 + ǫs)

⌉

(8)



Algorithm 3 Algorithm DynPartGroup

procedure DynPartGroup(D’)
G← createGroups(D′)
order G by |g.ts| in descending order
while G 6= ∅ do

g ← first(G)
G← G− {g}
for each q ∈ g.qs do

for each F /∈ rel(q, π(D)) do
if feasible(F ) then

//aff (F ) is initialized to 0

aff (F )← aff (F )− f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

end if

end for

end for

if ∃F ∈ π(D) : aff (F ) > 0 then

dests← argmaxF∈π(D) aff (F )
else

dests← {F ∈ π(D) : feasible(F )}
end if

if dests 6= ∅ then
Fdest ← select from argminF∈dests |F |
move d to Fdest

update metadata
else

split g into two equal sets g1 and g2
insert g1 and g2 in G maintaining G’s order

end if

end while

end procedure



If there is no feasible destination for F , the group is split into two equal
halves and the resulting groups are inserted back in the list in the corresponding
positions so that the order is maintained. At some point, those groups would
be considered again but, in this case, individually. Note that other splitting
strategies may be envisioned, e.g., assigning only the elements that fit in the
fragment with the highest affinity and considering the rest as a new group.
However, this will be in detriment of other big groups that might have to be
subsequently split, and they will not offer any gain regarding the partitioning
efficiency, as the group would be split anyway.

Let us now analyze the complexity of the algorithm. We divide the analysis
in two parts; first we analyze the group creation and ordering part, and then
the rest of the algorithm. Function createGroups(D′) has to go over all the
elements in D′. Each of them has to be compared with existing groups to check
if accessing queries match, which can be done by defining a hash function over
the query sets. This function has a complexity of O(|W |). As a result, the total
complexity of group creation is O(|D′| × |W |). Let |G| be the number of groups,
then the complexity of group sorting is O(|G| × log |G|). In the worst case,
|G| = |D′|, but as we will see in the experimental section, the number of groups
is usually much lower than that value.

The complexity of the rest of the algorithm is calculated in a similar way than
in the basic algorithm. The main difference is the number of times the outer loop
has to be executed. The worst case is the situation where there is a single group,
the imbalance factor is near 0 and |π(D)| ≥ |D′|. In that case, only one data item
can be inserted on each fragment, and the group would have been split in |D′|
groups of size 1. This would cause |D′| − 1 splits and require 2× |D′| ∈ O(|D′|)
executions of the outer loop, which would imply O(|W | × |π(D)| × |D′|) affinity
calculations, as in the basic algorithm.

The size of |G| can vary throughout the execution, as each split increases
its size by one. In the worst scenario explained above, its size will increase until
reaching |D′|, point from which it will be consumed, as all groups would be
of size 1. Assume that the ordered insertion on G is executed on O(log |G|).
Then, all the sequence of insertions would need O(log 1) + O(log 2) + ... +
O(log |D′|) = O(log |D′|!) = O(|D′| log |D′|). Hence, the worst case complexity
is O(|W | × |π(D)| × |D′|+ |D′| log |D′|)

However, that worst case is very rare as usually there are a higher number of
groups, and the splits are uncommon. Thus, we can say that in the average case
execution complexity of this part of the algorithm is O(compavg × relavg × |G|).

4.2 Example

Figure 3 compares the assignments performed by the basic version of the algo-
rithm (DynPart), and the algorithm we described above (DynPartGroup), in the
same scenario as in the previous section. Compatible queries for all data items
are shown in previous example but can also be inferred from the groupings shown
in the top of the figure, i.e., all the data items in a group have the corresponding
set of compatible queries. In the basic algorithm, data items are assumed to



be processed in the order indicated in the subindex, i.e., first d1, then d2, etc.
Finally, recall that an imbalance factor of 0.05 for a fragment of size 40 means
that the maximum size of the fragment at the end of the execution is 42.

Figure 3(a) shows the final assignment performed by the extended algorithm.
All the groups are assigned to a single fragment and the chosen fragments have
always one of the highest affinities, so the allocations are optimal. In figure 3(b)
the assignments resulting from the execution of the basic algorithm are depicted.
Note that, in this case, groups g1 and g2 have to be split into different fragments.
As a consequence, q1, q3 and q5 increment the number of accessed fragments by
1 and q2 by 2, thus decreasing partitioning efficiency. This is the consequence
of fragment F4 being at its maximum size in step 14, which prevents it to be
selected in further phases of the algorithm.

g1.ts = {d2, d11, d12, d13, d14, d15, d16} g1.qs = {q1, q2, q3}
g2.ts = {d5, d6, d7, d8} g2.qs = {q5}
g3.ts = {d1, d3, d4} g3.qs = {q1, q5}
g4.ts = {d9, d10} g4.qs = {q2, q4}

d9, d10

d1, d3, d4

|F1| = 40

q2, q4

|F2| = 41

q3, q5

|F3| = 38

q1, q4,
q5

|F4| = 41

q1, q2,
q3

d5, d6, d7, d8

d2, d11, d12, d13,
d14, d15, d16

(a)

d9, d10

d14, d15, d16

|F1| = 40

q2, q4

|F2| = 42

q3, q5,
q1, q2

|F3| = 36

q1, q4,
q2, q3

|F4| = 42

q1, q2,
q3, q5

d5, d6, d8

d1, d2, d3, d4,
d7, d11, d12, d13

(b)

Fig. 3. Example of execution of the distribution algorithms: a) algorithm DynPart-

Group, b) algorithm DynPart



4.3 Balancing Fragments Based on Load

In Section 2, we modeled the problem of data partitioning by using a size bal-
ancing constraint. Nonetheless, the problem may also be formalized if a load
balancing constraint is required. Intuitively, with load we mean the number of
accesses to the fragments.

Let us first define formally the load of a dataset as follows.

Definition 4. The load of a data set D, denoted L(D) is defined as the sum of

the frequencies of the queries accessing its data items:

L(D) =
∑

q∈W

f(q)× |q(D)| (9)

Given this definition, we can reformulate the imbalance constraint in the

following way: L(F ) ≤ L(D)
|π(D)| (1 + ǫl). As a result, the formula for the minimum

number of fragments that should be accessed for a given query should be modified
accordingly:

minfr(q, π(D)) =

⌈

L(q(D))

(L(D) / |π(D)|)(1 + ǫl)

⌉

(10)

Note that in the numerator we use L(q(D)) instead of |q(D)| because we
should take into account that items accessed by q are also accessed by other
queries that we have to consider.

To use this new imbalance constraint, our algorithms only need some minor
modifications as follows. In Algorithm 1, in case of ties in the affinity measure, the
least loaded fragment should be selected instead of the smallest one. Moreover, in
Algorithm 3, groups should be ordered by load instead of by size. Furthermore,
function feasible should be redefined as follows:

feasible(F, g) = L(F ∪ g.ts) ≤

⌈

L(D)

|π(D)|
(1 + ǫl)

⌉

(11)

5 Experimental Evaluation

To validate our dynamic partitioning algorithms, we conducted a thorough ex-
perimental evaluation over real-world data. In Section 5.1, we describe our exper-
imental setup. In Section 5.2, we report on the execution time of our algorithms
and compare them with a well known static workload-based algorithm. In Sec-
tion 5.3, we study the effect of the heuristic, which we used in our algorithms,
on partitioning efficiency. Finally, Section 5.4 studies how the imbalance factor
and the correlation of new data affect the partitioning efficiency.

5.1 Set-up

For our experimental evaluation we used the data from the Sloan Digital Sky
Survey catalog, Data Release 8 (DR8) [2], as it is being used in LIneA in Brazil6.

6 Data from the DES project is still unavailable, so we have used data from SDSS,
which is a similar, previous project



0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

DB size (# of tuples)

SPSP

rs

rs

rs

rs
rs

rs
rs

rs

rs
rs

rs rs

rs
rs

rs

rs

rs

rs rs
rs

rs

rs

rs rs rs
rs

rs
rs

rs

rs rs

rs

rs
rs

rs

rs

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(a)

0.1

1

10

100

1000

2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

P
a
r
t
it
io

n
in

g
t
im

e
(
s
)

DB size (# of tuples)

SP

rs

rs
rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs
rs

rs

rs

rs rs
rs

rs

rs

rs rs
rs rs rs rs

rs

rs

rs rs
rs

rs rs
rs

rs

DP, |D′| = 0.5M
DP, |D′| = 1M
DPG, |D′| = 0.5M
DPG, |D′| = 1M

(b)

Fig. 4. Comparison of partitioning times of the dynamic and graph-based partitioning
algorithms as the DB size increases (|π(D)| = 16) for a) data size balancing (ǫs = 0.15)
and b) load balancing (ǫl = 0.15).

It consists of a relational database with several observations for both stars and
galaxies. We obtained a workload sample from the SDSS SkyServer SQL query
log data, which stores the information about the real accesses performed by
users. In total, the database comprises almost 350 million tuples, that take 1.2
TB of space. The query log consists of a total of 27000 queries, some of which
are similar in the SQL form but produce different results, as they use different
parameters.

All queries were executed on the database and the tuple ids accessed by
each of them were recorded. Only tuples accessed by at least one query were
considered. We simulated the insertions on the database by selecting a subset of
the tuples as the initial state and appending the rest of the tuples in groups. We
varied the following parameters: 1) the number of tuples inserted to the database
on each execution of our algorithm, |D′|; 2) the number of fragments in which
the database is partitioned, |π(D)|; 3) the imbalance factors, ǫs and ǫl; and 4) the
order of data items, so as to produce datasets with higher correlation between
consecutive data items. On each of the experiments, the specific numbers are
detailed.

All experiments were executed in a 3.0 GHz Intel Core 2 Duo E8400, running
Ubuntu 11.10 64-bit with 4GB of memory.

5.2 Partitioning Time

In this section, we study the execution time of the dynamic algorithms DynPart

(DP in the figure) and DynPartGroup (DPG) and compare them with a static
graph partitioning algorithm (SP). For the later, we use PaToH7, an hyper-
graph partitioner. Figure 4 shows the comparison of the partitioning time for 16
fragments and for data size balancing (ǫs = 0.15) and load balancing (ǫl = 0.15).
We executed the dynamic algorithms with two values for |D′|: 500000 and 1

7 http://bmi.osu.edu/~umit/software.html



million tuples. Similar results are obtained for different values of |π(D)|. As the
difference between execution times of the static and the dynamic algorithms is
significant, we use a logarithmic scale for the y-axis in order to show the results.
The results are only depicted until a database size of 20 million tuples, as the
memory requirements for the static partitioning are bigger than the memory
of our servers. The dynamic algorithms, on the other hand, do not cause any
problem as the memory footprint depends on |D′|, which is constant throughout
the experiment.

As it can be seen, partitioning time increases for the graph partitioning algo-
rithm as the size of the database increases, provided that the size of the graph
increases accordingly. For the dynamic algorithms, on the other hand, the exe-
cution time stays at the same level, as it is always executed for the same number
of data items. Some variation is observed since the features of the new items
adapt differently to the partitioning. However the trend is constant.

In the figure, we can also observe that the execution times of the DynPart-

Group algorithm are better that those of the basic algorithm. This is caused by
the reduced number of affinity calculations, as we will show later.
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Fig. 5. Partitioning time vs. |D′| for a) DynPart and data size balancing (ǫs = 0.15),
b) DynPartGroup and data size balancing (ǫs = 0.15), c) DynPart and load balancing
(ǫl = 0.15) and d) DynPartGroup and load balancing (ǫl = 0.15).



We compared the execution of our algorithms for different sizes of D′. Fig-
ure 5 shows the average execution time of the DynPart and the DynPartGroup

algorithms as |D′| increases for different number of fragments and for both bal-
ancing strategies. As expected, the execution time is linearly related to the buffer
size. Also, the higher number of fragments, the higher the execution time. This
increase is not linear since the number of relevant fragments does not increase
at the same pace. In fact, the number of relevant fragments does not exceed 8
for |π(D)| = 256 and 16 for |π(D)| = 1024. The difference on the execution time
between the DynPart and the DynPartGroup algorithms is also noticeable.

In Figure 6, we represent the average execution times for the different stages
of the dynamic algorithms corresponding to the same scenario of Figure 4. Both
algorithms contain the following stages: calculate affinities, select max affin-
ity and update metadata. The extended algorithm also contains two additional
stages, namely create groups and sort groups. Finally, another phase is depicted,
which represents the rest of the operations executed during the distribution but
not linked to a particular algorithm.

Other
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Fig. 6. Comparison of dynamic algorithms’ execution times (data size balancing with
ǫs = 0.15)

As we can observe in the figure, the distribution of execution times is com-
pletely different for both algorithms. The DynPart algorithm spends most of the
time in the calculation of the affinities, although the time spent in the rest of the
phases is also significant. On the other hand, DynPartGroup spends almost all
the time in the creation of the groups, whereas the time spent in the rest of the
stages is negligible. This can be explained by considering the number of groups
created in average, 664 for |D′| = 500k and 1360 for |D′| = 1M , which represent
around 0.13% of the number of tuples. As a consequence, with DynPartGroup

the time for computing affinities, selecting the best fragment, and updating the
corresponding metadata is significantly reduced.



5.3 Partitioning Efficiency

One of the important issues to consider for the dynamic algorithms is how they
affect the partitioning efficiency.

We executed the algorithms as the database is fed with new data after an ini-
tial partitioning using the graph-based partitioning approach. With |D′| = 1M,
Figure 7 shows how the partitioning efficiency evolves as the database grows
for different number of fragments, |π(D)|. Similar results were obtained for
other configurations of |D′|. The efficiency decreases as the database grows,
as expected, but this reduction is very small. For example, in the worst case,
|π(D)| = 1024 and data size balancing, the partitioning efficiency decreases
2.82 × 10−3 in average for each 10 million new tuples. The difference between
DynPart and DynPartGroup is very small for small values of |π(D)|, but in-
creases for higher values. In any case, it is below 5% for the worst case.
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Fig. 7. Comparison of partitioning efficiency as the size of the DB grows (|D′| = 1M)
for a) data imbalance and b) load imbalance

To evaluate the quality of our partitioning approach, in addition to the par-
titioning efficiency metrics, as in [8, 16] we studied the percentage of single-node
queries, which means the percentage of the queries that can be executed by us-
ing the data of only one fragment. Figure 8 shows the results. As seen, when
the number of fragments is small, the results are similar to what we reported for
partitioning efficiency metrics. However, for higher number of nodes, the number
of single-node queries is lower. The reason is that in these cases the partitions
are smaller, so it is more difficult to confine all the results of a query in a single
fragment

5.4 Effect of Imbalance Factor and Data Correlation

The imbalance factor (ǫs or ǫl) may affect the efficiency as it constraints the
flexibility of the algorithm in allocating new data items. The lower the imbalance
factor, the less flexibility, which may imply that some data items are not placed
in the optimal fragments because they are full. Figures 9(a) and 9(c) show the
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Fig. 8. Comparison of percentage of single-node queries as the size of the DB grows
(|D′| = 1M) for a) data imbalance and b) load imbalance

average partitioning efficiency for different values of ǫs and ǫl, respectively. The
efficiency decreases as the imbalance factor decreases, as expected, but it is much
more noticeable for the DynPart algorithm.

To enrich our study, we have considered other scenarios by reordering the data
so that correlated data items arrive together. In order to do that, we executed
the DynPart algorithm over the initial data set and created the corresponding
partitions. Then we reordered the data by placing on defined intervals data of
only one of the fragments at a time. That way, we increase the correlation of
new data (D′) on each execution of the algorithm.

Figures 9(b) and 9(d) show the same configuration as before but with a
new ordering created by producing 8 fragments on the original data and placing
items of one of those fragment in intervals of 10M8. As we see, in the case of
correlated data, the impact of the imbalance factor is higher than in the previous
scenario. Nevertheless, the DynPartGroup algorithm still shows good behavior
for different values of ǫs and ǫl.

Finally, in Figure 10 we show the evolution of the partitioning efficiency as
the database grows for imbalance factors of 0.001 and 0.5, which represent both
extremes on the studied values of ǫs and ǫl. This confirms that higher correlations
on the inserted data affect the resulting partitioning efficiency. At the beginning
the efficiency is low, since all the inserted data is highly correlated and data
items that should be allocated together have to be split because of imbalance
constraints. However, as new data items with different affinities are included and
the imbalance is more flexible, the efficiency increases.

By comparing the behavior of both dynamic algorithms we can state that
the DynPartGroup algorithm obtains better partitioning efficiencies consistently.
The DynPart algorithm approaches DynPartGroup when the imbalance factor
is high, but degrades as the imbalance constraints are stricter. This difference
between the partitioning efficiency of the two algorithms is even higher for con-
figurations with more number of fragments.

8 We have produced different reorderings and the experiments show similar results
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Fig. 9. Partitioning efficiency vs. imbalance factor for a) original data set and data
size balancing, b) reordered data set and data size balancing, c) original data set and
load balancing and d) reordered data set and load balancing
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Fig. 10. Partitioning efficiency for the reordered data (|π(D)| = 16) for a) data size
balancing and b) load balancing



6 Related Work

Partitioning has been used both for declustering (whose goal is to maximize
parallelism) and clustering (to minimize the fragment accesses). In this paper,
we are interested in the later, as we are trying to reduce the number of query
accesses to the fragments.

The most popular approaches for database partitioning [10] are 1) round-
robin, which consists on assigning each tuple to a different fragment; 2) hash-
partitioning, which applies a hash function of a predefined set of attributes;
and 3) range-based partitioning, which splits data on ranges on a given set
of attributes. Recently, distributed key-value stores have been applying them.
Dynamo [9] uses a modified version of hash-partitioning on the key and, as a
consequence, only obtain single-site query executions when the query contains
equality predicates on the key. In general, hash-based partitions are good for
clustering only when the queries contain equality predicates on the partitioning
attributes, which is not the case of our workload. BigTable [5] and PNUTS [7] use
range-based partitioning on the keys; which still is too simple for our reference
queries. In general, the complexity of scientific workloads makes it hard to design
a good partitioning strategy manually, so automatic partitioning is preferred [15].

Automatic database partitioning have received significant attention from re-
searchers and applied by some database vendors, notably Microsofts SQL Server
AutoAdmin [6, 3] and IBMs DB2 Database Advisor [17, 19]. Many of these works
have focused on partitioning (both vertical and horizontally) as an element of
physical design for a single-node, along with indexing and materialized views.
For instance, in [3] a set of physical design alternatives (that includes partition-
ing) is generated. Then, in order to limit the search space they prune the set of
candidates. Similar procedures are used in other works, such as AutoPart [15],
which is focused on scientific workloads. In this case only vertical and categorical
partitioning are considered. After generating a set of fragment candidates from
the predicates in the workload, composition of fragments is evaluated to reduce
the overhead of joins. The resulting partitionings are also used for physical design
in a single-node.

Some other proposals use analogous techniques to automatically generate
partitions in distributed systems. The solution proposed in [17] uses a similar
approach but with the goal of distributing the queries over all the nodes (data
declustering). For the queries in the workload model a set of candidate parti-
tions, which consist of applying a hash partitioning over a subset of columns, is
generated. Then, they use the optimizer to estimate the costs under the new par-
titioning and eventually recommend some of the candidates. Automatic database
partitioning for distributed databases has recently received further attention. In
[14], data is partitioned automatically to optimize the execution of MPP sys-
tems. As a possible alternative they only consider hash-based partitioning over
a single column. In [16], both hash and range-based partitioning on the most
accessed attributes are considered for partitioning in OLTP systems. To find a
near optimal solution, their approach explores a solution space by adapting the
large-neighborhood search technique. However, this approach and most of the



approaches mentioned above are not well suited for our underlying scientific ap-
plications that are characterized by complex workload predicates involving many
attributes; and this significantly degrades the efficiency of those approaches

Graph-based approaches have been used to capture more complex relations
between the workload and the data both for partitioning with the objective
of declustering [13, 11] and clustering [8]. They use two different models to
represent data and queries: simple graph and hypergraph. In the hypergraph
model [11], each query is modeled as a hyperedge (a set of vertices). In the simple
graph model [13, 8], queries are modeled as cliques of simple edges. Schism [8]
is a recent system that partitions the data by building a graph containing the
relations between queries and tuples. Data items are retrieved using an index or
by means of predicate-based explanations, depending on the scenario. However,
like other existing graph-based approaches, it is static and needs to redo the
partitioning from scratch when the data changes. As we showed in the paper, this
approach does not perform well for growing databases, and a dynamic approach
is hence required. Furthermore, as new produced partitionings are not aware of
previous ones, large amounts of data transfers may have to take place in order
to apply the new data placements.

7 Conclusions

In this paper, we proposed a pair of dynamic algorithms for partitioning continu-
ously growing large databases. We modeled the partitioning problem for dynamic
datasets and proposed a new heuristic to efficiently distribute new arriving data,
based on the affinity it has with the different fragments in the application. We
designed two alternatives, DynPart, the basic algorithm, and DynPartGroup,
which deals better with strict imbalance constraints.

We validated our approach through implementation, and compared its exe-
cution time with that of a static graph-based partitioning approach. The results
show that as the size of the database grows, the execution time of the static algo-
rithm increases significantly, but that of our algorithms remains stable. They also
show that, for the given dataset, our algorithms, although based on a heuristic
approach, do not degrade partition efficiency considerably.

The results show that in the case of datasets in which there is a high corre-
lation between new data items, the DynPartGroup algorithm maintains a very
good behavior. The also show that this algorithm is not highly affected by the
imbalance of fragments’ sizes.

On the whole, our experiments show that our dynamic partitioning strategy
is able to efficiently deal with the data of our astronomic application. But, we
believe that its utilization is not limited to this application, and it can be used
for data partitioning in many other applications in which the data items are
appended continuously. We leave for a possible future work the scenarios with
even higher data correlation where a simple eager approach, like ours, does not
work and some form of data reorganization is needed.
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