R. C. Prim, Shortest Connection Networks And Some Generalizations, Bell System Technical Journal, vol.36, issue.6, pp.1389-1401, 1957.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, vol.7, issue.1, pp.48-50, 1956.
DOI : 10.1090/S0002-9939-1956-0078686-7

C. H. Papadimitriou and M. Yannakakis, The complexity of restricted minimum spanning tree problems, Lecture Notes in Computer Science, vol.71, pp.460-470, 1979.
DOI : 10.1007/3-540-09510-1_36

D. Cieslik, The vertex degrees of minimum spanning trees, European Journal of Operational Research, vol.125, issue.2, pp.278-282, 2000.
DOI : 10.1016/S0377-2217(99)00458-0

S. Ruzika and H. W. Hamacher, A Survey on Multiple Objective Minimum Spanning Tree Problems, Algorithmics of Large and Complex Networks: Design, Analysis, and Simulation, pp.104-116, 2009.
DOI : 10.1002/net.3230130203

N. Deo and S. Hakimi, The shortest generalized Hamiltonian tree, Sixth Annual Allerton Conference, pp.879-888, 1968.

F. Bauer and A. Varma, Degree-constrained multicasting in point-to-point networks, Proceedings of INFOCOM'95, p.369, 1995.
DOI : 10.1109/INFCOM.1995.515897

R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Iii, Approximation Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems, Algorithmica, vol.31, issue.1, pp.58-78, 2001.
DOI : 10.1007/s00453-001-0038-2

M. Molnár, Optimisation des communications multicast sous contraintes. Mémoire of habilitation, University Rennes, vol.1, 2008.

M. Molnár, Hierarchies to Solve Constrained Connected Spanning Problems, LIRMM, 2011.

M. Merabet, S. Durand, and M. Molnar, Exact solution for connected spanning problems with degree constraint, 2013.

Y. Zhou and G. S. Poo, Optical multicast over wavelength-routed WDM networks: A survey, Optical Switching and Networking, vol.2, issue.3, pp.176-197, 2005.
DOI : 10.1016/j.osn.2005.10.001

X. Zhang, J. Wei, and C. Qiao, Constrained multicast routing in WDM networks with sparse light splitting, IEEE INFOCOM, pp.1781-1790, 2000.

M. Ali and J. Deogun, Cost-effective implementation of multicasting in wavelength-routed networks, Journal of Lightwave Technology, vol.18, issue.12, pp.1628-1638, 2000.
DOI : 10.1109/50.908667

A. K. Obruca, Spanning tree manipulation and the travelling salesman problem, The Computer Journal, vol.10, issue.4, pp.374-377, 1968.
DOI : 10.1093/comjnl/10.4.374

URL : http://comjnl.oxfordjournals.org/cgi/content/short/10/4/374

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, I. Hunt et al., Many birds with one stone, Proceedings of the twenty-fifth annual ACM symposium on Theory of computing , STOC '93, pp.438-447, 1993.
DOI : 10.1145/167088.167209

M. Fürer and B. Raghavachari, Approximating the minimum degree spanning tree to within one from the optimal degree, Proceedings of the third annual ACM- SIAM symposium on Discrete algorithms. SODA '92, pp.317-324, 1992.

M. Goemans, Minimum Bounded Degree Spanning Trees, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), pp.273-282, 2006.
DOI : 10.1109/FOCS.2006.48

M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within one of optimal, STOC '07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp.661-670, 2007.

S. C. Narula and C. A. Ho, Degree-constrained minimum spanning tree, Computers & Operations Research, vol.7, issue.4, pp.239-249, 1980.
DOI : 10.1016/0305-0548(80)90022-2

M. W. Savelsbergh and T. Volgenant, Edge exchanges in the degree-constrained minimum spanning tree problem, Computers & Operations Research, vol.12, issue.4, pp.341-348, 1985.
DOI : 10.1016/0305-0548(85)90032-2

B. Gavish, Topological design of centralized computer networks???formulations and algorithms, Networks, vol.4, issue.4, pp.355-377, 1982.
DOI : 10.1002/net.3230120402

Y. Bau, C. Ho, and H. Ewe, An Ant Colony Optimization Approach to the Degree-Constrained Minimum Spanning Tree Problem, In: Computational Intelligence and Security. Lecture Notes in Computer Science, vol.3801, pp.657-662, 2005.
DOI : 10.1007/11596448_97

T. N. Bui and C. M. Zrncic, An ant-based algorithm for finding degree-constrained minimum spanning tree, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.11-18, 2006.
DOI : 10.1145/1143997.1144000

M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha, Comparison of algorithms for the degree constrained minimum spanning tree, Journal of Heuristics, vol.7, issue.6, pp.587-611, 2001.
DOI : 10.1023/A:1011977126230

J. Knowles and D. Corne, A new evolutionary approach to the degree-constrained minimum spanning tree problem, IEEE Transactions on Evolutionary Computation, vol.4, issue.2, pp.125-134, 2000.
DOI : 10.1109/4235.850653

L. J. Mao, N. Deo, and S. D. Lang, A parallel algorithm for the degree-constrained minimum spanning tree problem using nearest-neighbor chains, Parallel Architectures , Algorithms, and Networks, 1999. (I-SPAN '99) Proceedings. Fourth InternationalSymposium on, pp.184-189, 1999.

C. C. Ribeiro and M. C. Souza, Variable neighborhood search for the degree-constrained minimum spanning tree problem, Discrete Applied Mathematics, vol.118, issue.1-2, pp.43-54, 2002.
DOI : 10.1016/S0166-218X(01)00255-4

G. Gutin and A. Punnen, The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, 2002.

F. Lam and A. Newman, Traveling salesman path problems, Mathematical Programming, vol.58, issue.1, pp.39-59, 2008.
DOI : 10.1007/s10107-006-0046-8

C. H. Papadimitriou, Computational complexity, 1994.

R. Garfinkel, E. L. Lawler, J. K. Lenstra, and A. H. Kan, Motivation and Modeling The Traveling Salesman Problem, pp.17-36, 1985.

N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976.

J. A. Hoogeveen, Analysis of Christofides' heuristic: Some paths are more difficult than cycles, Operations Research Letters, vol.10, issue.5, pp.291-295, 1991.
DOI : 10.1016/0167-6377(91)90016-I