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Abstract. While significant work in data mining has been dedicated to
the detection of single outliers in the data, less research has approached
the problem of isolating a group of outliers, i.e. rare events represent-
ing micro-clusters of less – or significantly less – than 1% of the whole
dataset. This research issue is critical for example in medical applica-
tions. The problem is difficult to handle as it lies at the frontier between
outlier detection and clustering and distinguishes by a clear challenge
to avoid missing true positives. We address this challenge and propose
a novel two-stage framework, based on a backward approach, to isolate
abnormal groups of events in large datasets. The key of our backward
approach is to first identify the core of the dense regions and then gradu-
ally augments them based on a density-driven condition. The framework
outputs a small subset of the dataset containing both rare events and
outliers. We tested our framework on a biomedical application to find
micro-clusters of pathological cells. The comparison against two common
clustering (DBSCAN) and outlier detection (LOF) algorithms show that
our approach is a very efficient alternative to the detection of rare events
– generally a recall of 100% and a higher precision, positively correlated
wih the size of the rare event – while also providing a O(N) solution to
the existing algorithms dominated by a O(N2) complexity.

Keywords: rare events, outlier/anomaly detection, large scale, k-means.

1 Introduction

”An outlier is an observation which deviates so much from the other observa-
tions as to arouse suspicions that it was generated by a different mechanism”
[9]. Similarly, a rare event – cluster of outliers [18], clustered anomaly [13,14],
anomaly collection [6], micro-cluster [2] – is a group of observations which devi-
ates so much from the other groups of observations as to arouse suspicions that
it was generated by a different mechanism.
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(a) Original Data (b) RARE

Fig. 1. Detection of rare events with RARE on artificially generated data. The dataset
contains two normal populations and two rare events: one sparse and global and one
dense and local.

The detection of rare events with a high recall, i.e. no false negatives, is
intrinsic to those domains where the cost of missing rare events is significantly
high. The most representative example is the medical domain where, for example,
the cost of missing a pathological group of cells in a blood sample is significantly
higher than the cost of classifying a healthy group of cells as pathological, i.e.
favouring false positives over false negatives. Disease outbreaks in biosurveillance
[19], bursts of clustered attacks [13] or groups of spammers/fraudulent reviewers
in social media [6] are other examples of scenarios where the detection of rare
events is prevailing over the cost of detecting them.

An anomaly – single or clustered – is an event considered as not normal
with respect to a normal behaviour [4]. With any type of anomaly, the open
issue is to define normality. For single outliers, normality is defined in terms
of distance, distribution or neighbourhood similarity with other data instances.
For spatial anomalies, it is their occurence in a specific region of the space that
makes them abnormal. For collective anomalies, individual instances are normal
but it is their co-occurence that makes them anomalies. For rare events, it is
their small relative size with respect to other data subpopulations that makes
them anomalies. Contrary to collective anomalies, every instance contained in
a rare event is an anomaly. We consider an example of rare events detection in
Figure 1. The data distribution contains two normal populations of 10,000 points
and two rare events: a sparser one of 10 points far from the normal populations,
i.e. a global anomaly, and a denser one of 20 points close to one of the normal
populations, i.e. a local anomaly. Figure 1(b) shows the output of our approach,
RARE, isolating the rare events from the rest of the data.

Sharing common characteristics with both outliers and clusters, the detection
of rare events lies at the frontier between outlier detection and strongly imbal-
anced/unbalanced clustering. Both clustering and outlier detection algorithms,
by their construction, are generally prone at misclassifying positive examples,
i.e. rare events, as negative. Algorithms for unbalanced data have been mainly
proposed in supervised scenarios [20] for classification problems in the pres-
ence of unbalanced training data where the problem is generally handled using
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resampling, cost-sensitive or one-class learning methods [5]. In unsupervised sce-
narios the lack of ground truth information makes the problem even more difficult
to handle. One of the main causes is the size balancing effect, as for example in
k-means, which tends to reduce the variation in cluster sizes as a trade-off for
a better accuracy [21]. In spectral clustering, both RatioCut and Ncut [15] put
more emphasis on balancing clusters than on minimizing cut values. Both algo-
rithms propose through the balancing constraints introduced to handle the out-
lier sensitivity of the initial MinCut solution. On the other hand, outlier/anomaly
detection algorithms [1] are very effective at discovering single anomalies. Dif-
ferent approaches (density-based, distance-based, distribution-based) have been
proposed in the literature. The most common outlier detection algorithm, LOF
[3], Local Outlier Factor, outputs a list of top-k outliers according to an outlier-
ness score obtained by comparing the local density of each point against the local
density of the points in its neighbourhood. The performance of LOF depends
mainly on the construction of the local neighbourhood (parameter MinPts).

In this paper we address this gap between outlier detection and clustering
methods. Given our main challenge to avoid false negatives, i.e. avoid missing
true positives, we propose a density-based backward or bottom-up approach,
i.e. going from the most dense regions to the least dense ones. Common outlier
detection methods use a forward or top-down approach, i.e. they take the top-k
outliers according to an outlierness threshold score. The paper is organized as
follows. Section 2 is dedicated to a literature review for finding rare events in
large datasets. Section 3 introduces our RARE framework. We first perform
a clustering using DenseKMeans, a modified variant of k-means, designed to
find and cluster only points that lie in dense regions of the space. In the second
step, we gradually augment the dense regions found by DenseKMeans using
a density-based sliding region. As soon as the density inside the sliding region
fails to fullfill a density condition, we consider to have reached the border of the
dense regions. Rare events lie outside these borders. In section 4 experiments on
a biomedical data benchmark show that RARE is capable of isolating the rare
events with a higher precision than both DBSCAN and LOF. We discuss the
advantages and limitations of RARE in Section 5.

2 Related Work

Different approaches [4,7,8,10,13,14,17,22] in the literature have been proposed
for the detection of rare events in large datasets. A few techniques approach
it as cluster-based anomaly detection [4]: normal instances belong to large and
dense clusters, while anomalies either belong to small or sparse clusters. Such
methods rely on the output of a clustering algorithm. CBLOF [10] first performs
a clustering, using any clustering method, and subsequently separates small from
large clusters based on a predefined threshold. Using this threshold, it defines a
Cluster-Based Local Outlier Factor (CBLOF) outlierness score by taking into
account both the size of the cluster and the distance to the closest cluster center.
Overall, the performance of such techniques relies strongly on the choice and
quality of the initial clustering.
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Employing explicit cluster size constraints is another solution [22] that can
be used to handle the detection of rare events in datasets. While the tendency
in the literature is to concentrate on balancing clusters, this approach allows to
generate a partitioning with different cluster sizes. It can be very helpful when
an a priori knowledge on the size of each cluster in the data is known in advance.
Still, only a few applications benefit from such a faithful information.

A third approach is to use or adapt single outlier detection algorithms and
make them suitable for detecting micro-clusters of outliers. In LOF [3] the de-
tection of outlying clusters depends on the choice of the number of nearest neigh-
bours MinPts that define the local neighbourhood. The detection of very small
clusters requires a MinPts large enough to contain all the points in a cluster, i.e.
larger than the size of the cluster. LOCI [17] defines a multi-granularity devia-
tion factor (MDEF) and identifies outliers as those points whose neighbourhood
size is significantly different than the neighbourhood size of their neighbours.
Similarly to LOF, LOCI relies on an appropriate choice of the neighbourhood
size, except that, contrary to LOF, it requires the maximum radius of the neigh-
bourhood as input parameter.

Another different direction is to consider that normal instances belong to a
cluster in the data, while outliers do not belong to any cluster [4]. This approach
requires the use of methods (DBSCAN [8], SNN-based clustering [7]) that do
not force every point to belong to one of the clusters. DBSCAN [8] is the
most common density-based clustering algorithm. Its novel notion of density
reachability allows the detection of clusters of arbitrary sizes ans shapes, but it
cannot handle clusters of different densities. Both the run time complexity and
memory requirements of the original alorithm are high O(N2). Using efficient
indexing structures like k-d trees to find the nearest neighbours, the run time
complexity can be reduced to O(N logN). However such indexing structures are
not suitable for high-dimensional data.

A relatively recent concept – isolation – was proposed [12,13,14] as an alter-
native to the concepts of distance and density used in most outlier detection
methods. The notion of isolation relies on the property of anomalies of being
’few and different’. The two methods, iForest [12,14] and SCiForest [13], that
rely on this concept build in the training phase forests of t binary trees using
sub-samplings of the data and compute in an evaluation step an anomaly score
based on the path length of each point, defined as the path from the root of
the tree to the node. While both methods are effective at discovering global
clustered anomalies, i.e. clusters far apart from normal populations, only SCi-
Forest is able to detect local clustered anomalies [14], i.e. clusters close to normal
populations (we presented both types of clustered anomalies in our example in
Figure 1). However the high complexity of SCiForest in both training and eval-
uation stages, respectively O(tτψ(qψ + logψ + ψ)) and O(qNtψ), where ψ is
the sampling size for building the iTrees and t the number of trees to build
in the training phase, makes it suitable only in the presence of local clustered
anomalies.
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(a) X (b) DenseKMeans (c) Rare events

Fig. 2. Illustrative example: a) Original data: the rare event contains 1% of the entire
data collection. b) The data subset after eliminating the core of the dense regions with
DenseKMeans. c) Rare events after DenseSlide.

The RARE framework that we propose in this paper proposes: 1) a backward
approach to the detection of rare events by first identifying the normal/dense
regions; 2) an approach designed to avoid false negatives and therefore accepting
false positives, favouring recall over precision; 3) a low complexity due to the
use of a variant of k-means (linear, scalable); 4) a lower bound density-driven
approach in both steps of the framework that allow the detection of rare events.

3 The RARE Framework

We describe in this section our two-stage framework for the detection of rare
events in large datasets. Given a dataset X with N data points, we consider a
rare event as a micro-cluster of size NR, where NR is significantly smaller than
the total size of the dataset (NR � N).

When expressed in terms of the ratio ε = NR

N between the number of points
in the rare event and the total number of points in the dataset, the above rare
event condition becomes ε � 1. Very small values of ε, i.e. ε < 10−2, place the
problem of abnormal events detection at the frontier between outlier detection
and strongly imbalanced clustering.

3.1 The Backward Approach: An Illustrative Example

We illustrate the backward approach of RARE by means of an example in
Figure 2. We consider a dataset X with two normal subpopulations and a rare
event representing 1% of the whole dataset.

First, we want to identify the core of the dense regions while handling twomajor
issues at this stage: the scalability and the density. We have no a priori knowledge
on the number of subpopulations in the data. To handle the scalability issue we
choose to cluster the dataset using k-means [16] due to both its linear complex-
ity and parallelization power. The density problem is then handled by modifying
k-means so that only points that lie in dense regions are clustered. We do this by
changing in the re-assignement phase of k-means the way cluster centers are esti-
mated, i.e. only points that lie within a maximum radius around cluster centers
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contribute to the reestimation of the centers. This radius-limited approach does
not force all points to belong to one of the clusters, i.e. some points will be left
unclustered. As the actual number of clusters in the dataset is unknown, we use
a large initial number of clusters KI and let each population be modelled using
multiple clusters. Figure 2(b) illustrates this first step of the analysis after the
convergence of the centers to the core of the dense regions. We useKI = 6 cluster
centers in this example and plot the output of DenseKMeans, i.e. the points left
unclustered after the first step, XKEEP .

In the second stage (Figure 2(c)) the clusters that belong to the same pop-
ulation, i.e. they are adjacent as will be defined in Section 3.3, are merged to
form connected components. In our example each group of 3 clusters forms a
connected component. The two components are then gradually augmented, by
means of a density-based Gaussian sliding region (DenseSlide), to reach the
border of the dense regions. Everything that is outside these borders, XRARE ,
is considered a rare event. The framework retrieves both true positives, i.e. the
rare event, and false positives, i.e. points that lie close to the border of the dense
regions or outliers.

3.2 Dense Regions Clustering

The principle behind k-means relies on the minimization of a distance-based
objective function that clusters the dataset X around K cluster centers. But
this distance-based approach leaves k-means sensitive to density-related issues
and to the presence of outliers and noise. To adress this density problem and
cluster only points that lie in dense regions we propose a density-based radius-
limited variant of k-means – DenseKMeans – by bringing two modifications to
the original algorithm:

min

K∑

k=1

∑

xi∈Ck

‖ xi − CCk ‖2 (1)

s.t. | Ck |> NI

dist(xi, CCk) < DMAX , ∀xi ∈ Ck
where Ck denotes the clusters, CCk their corresponding centers, NI the min-

imum cluster density and DMAX the maximum radius around each cluster cen-
ter that constraints center positioning in the initialization phase and limits the
points considered by k-means in the reestimation of cluster centers. Thus the
two phases of k-means are modified as in the following:

1. initialization : choose cluster centers iteratively so that each new center is
positioned at a minimum of DMAX distance from all the other centers and
that each cluster center is assigned at least NI data points.

2. re-assignement : reestimate cluster centers using only points that are at a
maximum ofDMAX distance from one of the cluster centers and remove clus-
ter centers that fall below the initial NI threshold during the re-assignement
phase.
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Table 1. DenseKMeans

Algorithm 1: DenseKMeans

Input: X = {xi}, i = 1..N , xi ∈ R
D

KI - initial number of clusters
NI - minimum number of points (density)
DMAX - radius

Output: CC = {CCk}, k = 1..KF - final cluster centers
XKEEP - the subset of points left unclustered
XRMV - the subset of points clustered

Initialization:
1’: Choose cluster centers CC iteratively so that they are further than DMAX one from each
other:

‖CCk, CCl‖2 > DMAX , ∀k, l = 1..KI

2’: Check the density condition: | Ck |> NI

3’: Repeat steps 1’ and 2’ until convergence: all KI centers are assigned at least NI points.
DenseKMeans:
1”: Select all points XKEEP that are further than DMAX from all centers:

min(xi, CCk) > DMAX

2”: Reestimate cluster centers using XRMV = X \ XKEEP

3”: If a cluster center falls under the initial density threshold (| Ck |< NI) remove it.
4”: Repeat steps 1”-3” until convergence: a maximum number of iterations is reached or centers
do not change significantly.

DenseKMeans is summarized in Table 1. The reestimation of cluster centers
using only points that are at a maximum of DMAX distance from one of the
cluster centers eliminates k-means’ sensitivity to outliers – in our case to rare
events – as long as the radius DMAX is smaller than the distance to outliers.
Moreover clusters Ck that are not dense enough, | Ck |< NI , are discarded in the
re-assignement phase.

These two modifications allow to restrict the region of the space consid-
ered by k-means to only dense regions and iteratively move cluster centers to-
wards the core of the dense regions. Figure 3 illustrates a few examples with
different parameter combinations DMAX vs. K: 1) DMAX = 1.4, KI = 4
(Figure 3(a, b, c)); 2) DMAX = 1.2, KI = 6 (Figure 3(d, e, f);) 3) DMAX = 1,
KI = 8 (Figure 3(g, h, i)). The output of this first stage of the algorithm divides
the original dataset into two disjoint subsets X = XRMV ∪XKEEP : 1) XRMV

= points falling within a maximum of DMAX distance from the final cluster
centers, 2) XKEEP = points falling outside the region defined by the maximum
DMAX distance from the final cluster centers. Using this approach, only points
that are in dense regions are clustered.

3.3 Dense Regions Augmentation

DenseKMeans identifies the core of the dense regions using an initial number of
clusters KI larger than the actual number of clusters/data subpopulations. The
radius-limited approach of DenseKMeans allows to define the cluster adjacency
property as in the following:
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(a) X (initialization) (b) XKEEP (interme-
diary step)

(c) XKEEP (final)

(d) X (initialization) (e) XKEEP (intermedi-
ary step)

(f) XKEEP (final)

(g) X (initialization) (h) XKEEP (interme-
diary step)

(i) XKEEP (final)

Fig. 3. Varying DMAX and KI in DenseKMeans considering the original data from
Figure 2: (a,b,c) DMAX = 1.4, KI = 4; (d,e,f) DMAX = 1.2, KI = 6; (g,h,i) DMAX =
1, KI = 8. Red points represent cluster centers. The initial, intermediary and final step
for each case illustrate the convergence of cluster centers towards the core of the dense
regions, eliminating the sensitivity of the original k-means to outliers.

Definition 1. Two clusters defined by centers CCk and CCl and maximum
radius DMAX are adjacent if they are overlapping, i.e. the Euclidean distance
between the centers CCk and CCl is less than 2×DMAX :

‖CCk, CCl‖2 < 2×DMAX

Among the final KF dense clusters found by DenseKMeans, adjacent clus-
ters are merged to build connected components and provide a more faithful
representation of the real data subpopulations.
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A spherical model like the one used by k-means andDenseKMeans considers
that the intrinsic dimensionality of the data is equal to the original dimensional-
ity. However in real scenarios the intrinsic dimensionality of the data - especially
locally, i.e. one data subpopulation/cluster - is rarely equal to the original di-
mensionality [11]. To address this challenge, we treat the output of the spherical
model by means of a model that is better adapted to handle the intrinsic di-
mensionality of the data. The most common is the Gaussian model. In the first
step of the analysis, the spherical approach was preferred due to the scalability
advantage of k-means. The use of the Gaussian mixture model in the first step
would have required the estimation of K(D2+D+1) parameters for every value
of K – as K is not known in advance. Even if parsimonius models, e.g. diagonal,
can replace the full Gaussian model, the challenge to detect rare events is too
sensitive and requires the use of a full model.

(a) DMAX = 1.4, KI = 4 (b) DMAX = 1.2, KI = 6 (c) DMAX = 1, KI = 8

Fig. 4. Points in green are eliminated through DenseSlide. The same combinations
of DMAX and KI as in Figure 3 are used. c) Only 7 out of 8 clusters are left, one was
eliminated because it did not fullfill the density condition (| Ck |< NI) in DenseK-
Means.

The subset XRMV allows to quickly estimate both the means μj and covari-
ance matrices Σj of the core dense regions defined by the connected components.
These dense regions are augmented using a sliding region SR defined based on
the Mahalanobis distance DM and an increase parameter εS. The sliding regions
approach the border of the dense regions gradually and the process is repeated
as long as a density condition is fullfilled, nbPoints(SR) > NS, i.e. the number
of points inside the sliding region is larger than a predefined threshold NS . When
the density inside the sliding region drops below this threshold, we consider to
have reached the border of the dense regions. The algorithm for dense regions
augmentation, DenseSlide, is summarized in Table 2 and a few examples for
various combinations of parameters DMAX and KI are shown in Figure 4. The
parameters for DenseSlide were εS = 0.1 and NS = 10. The output of the
algorithm returns the subset XRARE of positive examples.
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Table 2. DenseSlide

Algorithm 2: DenseSlide
Input: XKEEP , XRMV , CC - output of DenseKMeans

εS - increase parameter for the sliding region
NS - number of points in the sliding region

Output: XRARE - output of RARE
Connected components:
1’: Build the graph G = (CC, E) using the cluster adjacency property.
2’: Find connected components Gj in G.
3’: Use XRMV to model Gj as N (μj , Σj).
Sliding Region:
1”: Initialize XRARE=XKEEP .
2”: For each Gj compute the Mahalanobis distance:

Dj
M =

√
(XRARE − μj)TΣ−1

j (XRARE − μj)

3”: Eliminate points from XRARE that are closer to one of the component centers than the

farthest point from XRMV : Dj
M (xi) > Dj

max.
4”: Create a moving sliding region SR(Dj

max, εS) around each component N (μj , Σj).
5”: Eliminate points from XRARE inside SR.
6”: Repeat steps 4” and 5” as long as the density condition is respected: nbPoints(SR) > NS.

4 Experimental Results

In this section we test RARE on a large-scale biomedical application in a di-
agnosis purpose, to isolate pathological group of cells in flow cytometry. We
perform experiments on multiple data sets with varying sizes of the rare event.
A practical analysis of the influence of parameter values is also performed on
the benchmark data. Finally we compare RARE against both clustering – DB-
SCAN – and outlier detection – LOF – algorithms1. We experiment with various
parameter values to illustrate the behaviour of each of the above methods.

We use Precision and Recall to evaluate the performance of the algorithms.
RARE is an unsupervised method and ground-truth information on positive
and negative examples is used only in the evaluation phase. Given our main
challenge to avoid missing true positives, it is Recall that becomes the most
important evaluation measure in this scenario.

P =
TP

TP + FP
=

TP

|XRARE | , R =
TP

TP + FN
=

TP

NRS
(2)

where |XRARE | = the number of data points retrieved by RARE and NRS =
the number of positives in the data, i.e. the size of the rare event.

4.1 A Real Case: Flow Cytometry

In flow cytometry each cell is characterised by fluorescence levels in response to
cell markers, i.e. attributes. Nowadays flow cytometers can count up to tens of

1 We used the ELKI implementation available at: http://elki.dbs.ifi.lmu.de/.

http://elki.dbs.ifi.lmu.de/
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Fig. 5. Initialization of DMAX and KI for the flow cytometry dataset

millions of cells representing normal cell populations found in any healthy
patient, such as lymphocytes or monocytes. In patients presenting a blood pathol-
ogy, the blood samples also contain micro-clusters of cells with abnormal signa-
tures, i.e. abnormal combinations of cell marker fluorescence levels. The human
detection of these rare events is performed visually by sequentially inspecting
two-dimensional spaces, i.e. combinations of two markers.

Experiment 1. DMAX and KI . We first estimate the percentage of data cov-
ered by DenseKMeans in the first step of the algorithm for various values of
the parameters DMAX and KI (Figure 5). We fixed NI = N

100×KI
because we

know that the rare event is significantly smaller that the total size of the dataset.
Those combinations of values for DMAX and KI – closely related – covering ap-
proximately 80− 90% of the dataset in DenseKMeans (XRMV ) generally led
to very good final results in the experiments. This is due to the fact that the
rare events represent significantly less than the rest of 10 − 20% of the whole
dataset, allowing in the meantime the detection of the core dense regions by
DenseKMeans.

Throughout our evaluation, we experimented with different values of the pa-
rameters and observed that the choice of the parameter values was consistent
across different datasets for a given application.

Experiment 2: Varying NR. We now wish to test the performance of RARE
for varying levels of unbalancedness. In this purpose we will keep the total size of
the dataset fixed and vary the size of the rare event - which is an indicator of the
phase of the pathology. On the biological side, this experiment was performed
by injecting grown cells from a blood pathology into a cell sampling of a healthy
patient. The size of the rare population injected was of {5, 10, 20, 50, 100, 500}.
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Due to flow cytometers machine error, a difference appears between the number
of injected cells and the actual size NRS of the rare cell population found in the
blood samples, i.e. positive examples (corresponding to a pathology signature
in flow cytometry). The whole dataset contained N = NH + NRS cells, where
NH ≈ 700.000 cells. In this experiment the free parameters DMAX and KI in

DenseKMeans were chosen to guarantee the ratio |XKEEP |
N ≈ 10− 20% across

the different blood samples (as discussed in Experiment 1). Here we choose
DMAX = 8000 and KI = 40, but other value combinations that respect the
above ratio are also valid (as will be seen in Experiment 3). The parameters for
DenseSlide were chosen: εS = 0.1 and NS = 10.

Table 3. RARE on three samples for each of the varying NR = {5, 10, 20, 50, 100, 500}

NR N |XRARE | TP FP P R NRS

0 151,388 64 5 59 7.8% 100% 5
5 646,149 42 4 38 9.5% 100% 4
10 780,988 54 13 39 24% 92.8% 14
20 757,234 70 17 53 24.2% 100% 17
50 752,987 65 30 35 46.1% 96.7% 31
100 760,842 132 80 52 60.6% 97.5% 82
500 718,743 415 358 57 86.2% 99.7% 359

0 696,465 102 14 88 13.7% 100% 14
5 731,576 98 9 89 9.1% 75% 12
10 720,945 114 14 100 12.2% 100% 14
20 484,285 129 25 104 19.3% 96.1% 26
50 630,341 40 35 5 87.5% 97.2% 36
100 676,745 142 69 77 48.5% 98.5% 70
500 516,981 541 366 175 67.6% 98.6% 371

0 671,582 94 8 86 8.5% 100% 8
5 707,535 100 7 93 7% 100% 7
10 714,081 135 13 122 9.6% 100% 13
20 621,155 155 11 144 7% 100% 11
50 599,851 144 26 118 18% 100% 26
100 711,801 204 84 120 41.1% 100% 84
500 993,671 552 312 240 56.5% 100% 312

The results in Table 3 show an excellent performance for RARE which finds
almost all positive examples, i.e. true positives TP (column 3), among the posi-
tive examplesNRS found with the signature provided by domain experts (column
5). The size of the false positives FP returned by RARE (column 4) depends
mainly on the size and structure of the original dataset, i.e. FP remains rela-
tively constant with increasing TP . We also observe that the recall is relatively
high and the precision increases with the size of the rare event.
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Experiment 3. Comparison with DBSCAN and LOF. A comparison of
the parameters required by the three methods is presented in Table 4. While
LOF requires only one parameter – MinPts – in the construction phase, DB-
SCAN and RARE both require two parameters, thus adding more flexibil-
ity but also more complexity to the model. Both RARE and LOF require a
stopping criteria while DBSCAN considers all points left unclustered as noise.
Rare events will often fall in the noise category with DBSCAN (as shown in
the next experiment). RARE uses two parameters – εS and NS , the growing
rate of the sliding region and the minimal density (εS is generally fixed to ei-
ther 10−1 or 10−2) – to define the stopping criteria. Their influence is equiva-
lent to the cutting threshold in LOF, but it is the approach that is different:
LOF has a top-down approach while RARE has a bottom-up approach. The
bottom-up approach is preferred in scenarios where avoiding false negatives is the
priority.

Table 4. Parameters in RARE, DBSCAN and LOF

Method Model parameters Stopping criteria Approach

RARE (DMAX ,KI) (εS, NS) Bottom-up (backward)

DBSCAN (ε,MinPts) – Bottom-up

LOF MinPts Threshold or top-k Top-down (forward)

In Table 5 we analysed a data sample chosen at random from the second
experiment with a medium rare event (752987 samples and 31 positive examples)
using various parameter values for the three methods. We compute the number
of true positives (TP) and false positives (FP) retrieved by the algorithms. Both
RARE and DBSCAN have a high recall (generally 100%) while RARE has a
significantly higher precision than DBSCAN. In DBSCAN for most parameter
values the rare event is left unclustered and belongs to the subset classified
as noise2 – except in the two cases where a fraction of the rare event clusters
separately in a small cluster (14 and 25 points). While DBSCAN requires the
MinPts parameter to be lower than the size of the rare event for a relatively
good performance, LOF on the contrary requires the MinPts parameter higher
than the size of the rare event, i.e. this is necessary for the detection of micro-
clusters in LOF. While DBSCAN requires no stopping criteria, in LOF we need
to choose either the cutting threshold value or the number of outliers. We use
here two cutting threshold values for each value ofMinPts in LOF and indicate
the number of false positives in each case. The two values were chosen so that
the vast majority of the rare event has an LOF outlierness score in the range
bounded by the two values.

2 Here TP + FP equals the size of the noise subset in DBSCAN.
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Table 5. Comparison between RARE, DBSCAN and LOF. The parameter values in
the second column correspond to the respective parameters of each method from the
first column.

Method Parameters TP FP P R

RARE(DMAX ,KI , εS , NS)

(6000, 80, 0.1, 10) 31 193 13.8% 100%
(6000, 100, 0.1, 10) 31 48 39.2% 100%
(7000, 40, 0.1, 10) 31 43 41.8% 100%
(7000, 60, 0.1, 10) 31 60 34% 100%
(7000, 80, 0.1, 10) 31 57 35.2% 100%
(7000, 100, 0.1, 10) 30 40 42.8% 96.7%
(8000, 20, 0.1, 10) 31 184 14.4% 100%
(8000, 40, 0.1, 10) 31 60 34% 100%
(8000, 60, 0.1, 10) 31 22 58.4% 100%
(9000, 10, 0.1, 10) 31 284 9.8% 100%
(9000, 30, 0.1, 10) 31 48 39.2% 100%
(9000, 50, 0.1, 10) 31 35 46.9% 100%
(10000, 10, 0.1, 10) 31 51 37.8% 100%
(10000, 30, 0.1, 10) 31 35 46.9% 100%

DBSCAN(ε,MinPts)

(5000, 10) 31 1286 2.3% 100%
(5000, 20) 31 1998 1.5% 100%
(5000, 30) 31 2703 1.1% 100%
(6000, 10) 31 457(14) 6.1% 100%
(6000, 20) 31 699 4.2% 100%
(6000, 30) 31 934 3.2% 100%
(7000, 10) 31 197(25) 12.2% 100%
(7000, 20) 31 331 8.5% 100%
(7000, 30) 31 396 7.2% 100%

LOF(MinPts, Threshold)

(30, 1) 31 589039 5 × 10−3% 100%
(30, 1.1) 3 132890 2 × 10−3% 9.6%
(50, 1.5) 31 2133 1.4% 100%
(50, 1.6) 8 945 8 × 10−3% 25%
(100, 2) 31 230 11.8% 100%
(100, 2.5) 3 54 5.2% 9.6%
(150, 2.1) 31 206 13% 100%
(150, 2.7) 3 43 6.5% 9.6%

5 Discussion and Conclusion

We proposed in this paper a two-stage framework to isolate rare events in large
datasets. The size of these events makes their detection difficult by both cluster-
ing and outlier detection algorithms as both tend to missclasify true positives as
false negatives. We have shown that RARE has a good performance and also the
advantage of the linear complexity, largely dominated by the complexity of k-
means and low memory requirements O(NKI). The new variant of k-means was
proposed to handle the scalability and density issues in this type of problems and
the sliding region was designed in a backward/bottom-up approach to avoid false
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negatives. Overall, the RARE framework targets applications where recall pre-
vails over precision. We did not approach here complexity improvements. Both
DBSCAN and LOF have a O(N2) memory requirement and runtime complex-
ity – that can be improved to O(N logN) using indexing structures such as k-d
trees for low-dimensional data. In its current stage RARE has a O(N) complex-
ity and DenseKMeans is easily parallelizable – it is the most time consuming
in RARE. We consider these complexity improvements as a next step for future
work.
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