Model-Driven Generation of Context-Specific Feature Models

Thibaut Possompès * , Christophe Dony * , Marianne Huchard * , Chouki Tibermacine * * LIRMM, CNRS and Montpellier 2 University Montpellier, France {possompes, dony, huchard, tibermacin}@lirmm.fr Abstract-Software Product Lines (SPL) aim at deriving software architectures or systems from a software artifact base. Configuring the SPL to derive a new product is now usually done by selecting appropriate software features in a kind of models, called feature models. In some situations, a feature represents a software artifact associated to an element e of a context the software product will manage. Such a feature and its associated software artifact may be cloned according to the number of occurrences of e in the context and constraints have to be respected. Hence, the feature model proposed to users for configuration has to be adapted in a new dedicated phase according to the context elements. We propose a model-driven engineering approach for transforming a generic feature model according to a context model that a derived software product will manage. More precisely this paper describes an original model transformation able to generate context specific feature models including duplicated features, and removing inappropriate features. Our transformation is validated on a smart building optimization software case study.

I. INTRODUCTION

Configuration options of a software product line (SPL) to generate a new product are nowadays commonly represented with a feature model [START_REF] Kang | Feature-oriented product line engineering[END_REF]. A feature represents a component of a product derived from a product line or a functionality that this product provides. A feature model indicates which choices (features) are mandatory or optional in some conditions, and how one choice can impact another one (feature interdependencies and constraints). Software products (applications) are built from an SPL by selecting features from such a feature model. A set of selected features is commonly called a product configuration.

In various situations, some features are semantically associated to elements of a context generic model, describing concepts, that can be present in the context in which (or for which) the application will be deployed. For example in the case of a smart building energyoptimization software, the feature "solar optimization" is semantically associated to the context generic model concept Solar-panel and should only be proposed in a configuration feature model if the building to be optimized (described by a model, instance of the context generic model) has some solar panels (instances of Solar-panel). As a corollary, such a software could be configured to manage differently each occurrence of a given electronic appliance or physical infrastructure [START_REF] Czarnecki | Generative programming for embedded software: An industrial experience report[END_REF].

Hence, a product configuration depends, on the one hand, on the product features, and on the other hand, on the number of occurrences of the context concept instances. In a feature model, cloning features and identifying inappropriate ones is a long and error prone task because each context-specific feature must be checked regarding each context concept instance.

Various approaches have been proposed to configure a feature model according to a context [START_REF] Fernandes | An approach for feature modeling of context-aware software product line[END_REF], [START_REF] Jaroucheh | Mapping features to context information: Supporting context variability for context-aware pervasive applications[END_REF]. In this paper we propose an original solution to automatically generate an optimized feature model (called a context-specific feature model), that conforms to a given deployment context. A context-specific feature model only includes features that make sense in the context. The features are appropriately cloned depending on the number of context elements. We propose a model transformation algorithm which uses as inputs a generic feature model (representative of a SPL global set of functionalities), a model of context concepts and an instance of the model of the context.

We validate our proposal in the context of the development of a smart building management system software product line (RIDER1 project [START_REF] Possompès | Towards software product lines application in the context of a smart building project[END_REF]). The project aims at creating a global intelligent system to perform energy optimization.

Section II presents a motivating example from the RIDER project. Section III presents a global view of our approach. Section IV details the algorithms used for performing the adaptation of feature models. Section V discusses the related work, and Section VI concludes this paper and gives several perspectives for this work.

II. MOTIVATING EXAMPLE -A SMART BUILDING CASE STUDY

A RIDER software product purpose is to enhance lighting, heating, ventilation and air conditioning usages to save energy in buildings. A RIDER product is made of interfaces with building management systems (BMS), of several optional modules to add further functions (physical simulation, optimization algorithms, visualization tools, etc.), and a component allowing to orchestrate input and output data. The data orchestration component purpose is to decide how to manage incoming data and energy optimization computation results. For example, the physical simulation module requires data related to spaces that are instrumented with temperature and humidity sensors. A RIDER software product uses a representation of the building it will drive. This representation is also called building information model (BIM). It is able to represent static (e.g., blueprints) as well as dynamic (e.g., sensor measures) information.

An instance of the building model is used as a cornerstone to leverage information from building managers and energy optimization experts [START_REF] Grilo | Challenging electronic procurement in the AEC sector: A BIMbased integrated perspective[END_REF], [START_REF] Kullmann | Using rules in high-level communication for the control of power systems[END_REF]. It can gather into a single model information such as: 1) 3D geometric data for visualization, 2) electric, 3) Heating Ventilation and Air Conditioning (HVAC), 4) blueprints, 5) various building components along with their size and physical properties for simulation purposes, 6) cost and project management-related information.

Each additional module function is modeled in the RIDER feature model. Some of them are related to the elements of the BIM. For example, 3D information is required to provide 3D visualization features. If it is missing then 3D visualization features are not available. If the information is available on some parts of the building, the visualization features are available only on those parts. When configuring a new product, it is important to know which parts of the building will be properly optimized, and to know which new equipments must be added to allow these features to properly work. More generally, each feature requires to consider if it can be duplicated, which context elements determine how many times it can be duplicated, and which constraints must be satisfied by the context element to make the feature available.

Next section introduces our approach and describes the four models involved in this approach.

III. APPROACH OVERVIEW

Let us introduce in this section our terminology and give a general overview of our approach. A generic feature model (FM) of a software product line application represents the features globally available in the application (called generic features). Each generic feature can have a semantic relation (depends on) with one or several context model concepts. A context-specific feature model (CSFM) represents features relevant to a given context model instance (called context-specific features). Each context-specific feature (CSF) of such a model relates to a generic feature of the FM and, if this generic feature depends on a context concept, to one context concept instance. Our purpose is to automatically generate a CSFM, made of all possible CSFs, by analyzing associations between features of a generic feature model with concepts of a context model (e.g., a building model) and their instances (elements of a concrete building).

The obtained CSFM allows stakeholders to choose CSFs for creating a product configuration adapted to the environment.

Our approach integrates the four models shown in Figure 1. The context model (CM) describes the context information that a software product manages. It can be presented by creating a domain specific language (DSL) or a UML model. CM is a set of connected concepts. In our case study, this model is the building infrastructure model which contains concepts such as, Building, Storey, Zone, Space, Sensor. It is created with the help of context domain specialists. Some concepts are hierarchically related with a specific relation. For example, we have the hierarchical relation Building → Storey → Space → Sensor. The generic feature model (FM) is, for a given CM , a multiplicity-based feature model which is based upon Czarnecki et al. [START_REF] Czarnecki | Formalizing cardinality-based feature models and their staged configuration[END_REF] definition. We extended it to make it possible to associate a feature to a CM concept. This association has a multiplicity. It is composed of features (denoted by f) organized in a tree. The root of this tree is denoted by r f . A feature associated with context concepts can be duplicated according to the instances of those concepts and their multiplicity. In our case study, it is used to describe all the possible features of an energy optimization software. In our approach, this model is not directly used to configure a new product. This model must be first adapted to a specific context, A feature can be associated to none, one or several concepts of the CM . It means that the feature can be duplicated for each instance of an associated concept. A constraint, associated to a feature, can be used to determine which properties must have an instance to duplicate a feature. For example, when CM is written in UML, constraints are in OCL. A given feature f can have a group g gathering its sub-features. A group is used to specify how many grouped features can be selected.

The context model instance (CMI) is an instance of the context model. It describes instances of the concepts of CM . If the CM is similar to a UML class diagram, the CM I is similar to a UML instance diagram. The elements of the CM I model are called instances. There is also a hierarchical relation between the instances of concepts hierarchically related. The CM I describes the specific context that will be managed by a software product. In our case study, it consists in modeling a specific building that will be managed by a new energy optimization software product, instance of the software product line. It is created with the help of building owners and managers.

The CSFM is a kind of feature model resulting from the adaptation of F M to a given context CM I. It is the set of context-specific features (CSF) that can be chosen to build a new product to be used in a given context. A CSF associates a feature f , to an instance i. i must be an instance of one of the concepts associated to f . If f is not associated to a concept then i = ∅. The CSFs are organized as a tree whose root is denoted by r ϕ . A CSF ϕ can have a group g ϕ gathering its subfeatures. g ϕ must be related to an existing group g of the feature f , f being associated to ϕ. In our case study, a realistic CM I, of a building b, can have hundreds of instances that have to be considered to create the CSFM to configure the product for b. Our approach proposes an algorithm to generate this model automatically.

The models CM, FM, and CMI are provided as input of our adaptation process. The output of the process is a CSFM to be filled to create a new product configuration. Groups and multiplicities are also adapted in the CSFM. The constraints associated to concepts are checked after having generated the CSFM. We do not detail constraints checking here due to space limitation. The next section presents the algorithm generating CSF M s.

IV. CONTEXT-SPECIFIC FEATURE MODEL

GENERATION ALGORITHM The CSFM generation algorithm traverses the feature model in depth-first order. We consider that the models F M, CM I, CM, and CSF M (which is empty at the beginning) are global data common to all following algorithms.

Algorithm 1 initializes the CSFM generation algorithm and returns the resulting CSFM. It creates the root context specific feature and, for each sub-feature of the root feature of the feature model, calls the recursive procedure featureTreeTraversal to build the CSFM.

Algorithm 1: Main procedure of the CSFM generation algorithm

Input: The models CM, CMI, and FM Result: A CSFM model built according to the CM, CMI, et FM models Initialize an empty CSFM. r ϕ is the root CSF of CSFM, it is associated to the root feature r f of FM. foreach sub-feature f of the FM root feature r f do featureTreeTraversal(f, r ϕ) end

The procedure featureTreeTraversal builds the CSFM recursively. It requires two parameters: A feature f for which related CSFs will be created, a CSF ϕ parent which will be the parent of the created CSFs.

Procedure featureTreeTraversal(f , ϕ parent)

Input: A feature f from which the FM is traversed. A parent CSF ϕ parent , such that f parent feature is associated to ϕ parent . Result: Updates the CSFM according to the CM, CMI, and FM models. if f is not associated to a concept and ϕ parent is not associated to an instance then ϕ = addSpecificFeature(f, ϕ parent , ∅)

foreach sub-feature f ′ of f do featureTreeTraversal(f ′ , ϕ) end if the CSF parent ϕ parent is not associated to an instance and f is associated to a concept then foreach instance i that is an instance of the concept associated to f do ϕ = addSpecificFeature(f, ϕ parent , i) foreach sub-feature f ′ of f do featureTreeTraversal(f ′ , ϕ) end end if the CSF ϕ parent is associated to an instance and f is associated to a concept then foreach instance i which is either the same instance that is associated to ϕ parent and that is an instance of the concept associated to f , or an instance that is hierarchically below the instance associated to ϕ parent and that is an instance of a concept associated to

f do ϕ = addSpecificFeature(f, ϕ parent , i) foreach sub-feature f ′ of f do featureTreeTraversal(f ′ , ϕ) end end
The CSFs are created differently in three cases:

1) The evaluated feature f is not associated to any concept and the parent CSF ϕ parent is not associated to an instance. Then, one CSF is created, and the procedure is called recursively for each sub-feature of f . 2) The parent CSF ϕ parent is not associated to an instance and the evaluated feature f is associated to a concept. Then, a CSF is created for each instance whose concept is associated to f , and the procedure is called recursively for each instance and for each sub-feature of f . 3) The parent CSF ϕ parent is associated to an in-stance and the evaluated feature f is associated to a concept. A CSF is added either with the same instance as ϕ parent or with each context concept instance which is hierarchically below the instance associated to ϕ parent . The procedure is then called recursively for each sub-feature of f and for each instance hierarchically below ϕ parent instance. The function addSpecificFeature creates, and returns, a new CSF in the CSFM. It requires three parameters: the feature f which will be referenced by the CSF, the parent CSF ϕ parent , and an instance that will be also referenced by the CSF. As seen before, a CSF references a feature, and either an instance or nothing. First, a new CSF ϕ is created. Its parent CSF is ϕ parent , and it is associated to f and i. The lower bound of its multiplicity is equal to the maximum between the lower bounds of the multiplicity on the relationship between the concept whose i is the instance and f , and of the multiplicity on f . The upper bound of its multiplicity is equal to the minimum between the upper bounds of the multiplicity on the relationship between the concept whose i is the instance and f , and of the multiplicity on f . Then, the procedure addNewCSFtoGroup is called to add the new CSF to a group if f belongs to a group in the F M . If the new CSF is associated to an instance, it also must belong to a group whose multiplicity is the same as the feature associated to the new CSF. This group does not exist in the F M . Its purpose is to transpose in the CSF M the multiplicity of the feature f to guarantee that the number of CSF that can be chosen in a configuration respects f multiplicity.

The procedure addNewCSFtoGroup updates the CSFM by creating groups considering those existing in the FM. It takes two parameters: the new CSF ϕ, and its parent ϕ parent . If the feature f associated to ϕ belongs to a feature group g then ϕ must also belong to a group g ϕ related to g. The group is created only when there is at least two CSF in it. Otherwise, the CSF is either mandatory or optional according to f multiplicity.

V. RELATED WORK Formal semantics of feature models have been defined in [START_REF] Schobbens | Generic semantics of feature diagrams[END_REF] for many different kinds of feature models. We chose a semantics based upon Czarnecki et al. cardinality-based feature models [START_REF] Czarnecki | Formalizing cardinality-based feature models and their staged configuration[END_REF] as described in ou previous work [START_REF] Possompès | Design of a UML profile for feature diagrams and its tooling implementation[END_REF]. They created a staged configuration process [START_REF] Czarnecki | Staged configuration using feature models[END_REF] in which they specialize the feature model to restrict the multiplicity of features. It is not applicable to our situation, because a CSFM is not a specialization of a generic feature model. Indeed, each context-specific feature adds information about the context concept Function addSpecificFeature(f , ϕ parent , i) : ϕ Input: a feature f , a CSF ϕ parent , and an instance i Output: Updates the CSFM with a new CSF, and returns the new CSF. Creates a new CSF ϕ, sub-CSF of ϕ parent , associated to the feature f and the instance i. The lower bound of its multiplicity is equal to the maximum between the lower bounds of the multiplicity on the relationship between the concept whose i is the instance and f , and of the multiplicity on f . The upper bound of its multiplicity is equal to the minimum between the upper bounds of the multiplicity on the relationship between the concept whose i is the instance and f , and of the multiplicity on f . The procedure addNewCSFtoGroup(ϕ, ϕ parent) is called to add ϕ to a group is f belongs to a group in the F M . if ϕ is associated to an instance then if there is no existing CSF group in ϕ parent in which there is other CSF associated to the same feature then Adds ϕ to the CSF group. else

Creates a CSF-group with the same multiplicity as f , and adds ϕ to this group. end end return ϕ Procedure addNewCSFtoGroup(ϕ, ϕ parent)

Input: The CSF ϕ and ϕ parent such that ϕ must be a sub-CSF of ϕ parent . Result: Updates the CSFM to make ϕ a sub-CSF of ϕ parent . Let f being the feature associated to ϕ. if f belongs to a feature group g then if there is a CSF group g ϕ in ϕ parent related to g then Adds ϕ to the group g ϕ . else

Creates a new CSF group related to the group g, and adds ϕ and ϕ ′ to this group. end end instance it is associated with. Even if our case study does not require it, we could use our work to automate a staged-configuration process. The generic feature model could be specialized into a refined generic feature model before generating the CSFM, and the CSFM could be specialized into a refined CSFM and configured through a staged configuration process.

There are several solutions allowing to perform product configuration choices according to a given context. Voelter et al. [START_REF] Voelter | Product line implementation using aspect-oriented and model-driven software development[END_REF] detail an approach where negative and positive variability are used to remove or add concepts to a custom DSL which seems to correspond to our business model. However, their approach could not solve our concerns because we needed to adapt the feature model. We address the opposite concern, we adapt the feature model to an imposed business model.

Acher et al. [START_REF] Acher | Modeling context and dynamic adaptations with feature models[END_REF] work in the context of self adaptive and dynamic systems. They bind a context model, modeled with a feature model, with a feature model describing the application. They are interested by runtime adaptation while we are concerned by the design time adaptation. Changes applied in the context feature model are automatically reflected on the application configuration model thanks to ECA rules [START_REF] Romeikat | Modeling of domain-specific ECA policies[END_REF]. We propose to adapt the feature model rather than a configuration model. In our case, the context is a business model provided by some stakeholders. This model is also used by the application to describe the managed data and not specifically created for the product line specification.

Quinton et al. [START_REF] Quinton | Using multiple feature models to design applications for mobile phones[END_REF] derive software products in the context of applications for mobile phones. They consider a feature model for the application and a feature model for mobile devices. They configure and generate an application model using the application feature model, and then check if the model is consistent with a set of mobile devices represented by the mobile device feature model. We address a different problem: the business model (e.g., a building model) is imposed and we have to propose to the stakeholders a feature model adapted to the business model, in order to allow them to configure an application consistent with their environment.

VI. CONCLUSION

We presented in this paper an approach able to adapt generic feature models to a business context. It allows us to produce a CSFM according to a context model instance representing the context in which the future product will run. Our approach allows to automatically determine whether each feature related to a context concept can be cloned in a given context by checking constraints against context concept instances. Hence, each generated product configuration is specific to the instance of the context model it has been made with. Then, it enables us to generate software product architectures and implementations specific to a context. This approach automates a process that would otherwise requires to compare hundreds of features with hundreds of context concept instances.

Our methodology has been designed in a generic way to be reused in different domains. The prototype has been implemented with UML models and UML profiles, for modeling the context model and the generic feature model. We developed a tool as an Eclipse RCP platform. The Eclipse RCP platform takes as input the XML files representing the business model and the feature model. They are generated by an XSLT transformation from the XMI versions of the UML models.

We validated our approach in the RIDER project on a building meta-model used to describe smart buildings. The building meta-model has been modeled as a UML model on which classes and associations were stereotyped to represent navigable elements. The feature model was built with our UML profile for feature models [START_REF] Possompès | Design of a UML profile for feature diagrams and its tooling implementation[END_REF].

Next, we intend to create views on the CSFM to facilitate feature selection. They could show features related to a stakeholder concern, or allow choosing several features at the same time, e.g., all the clones of a feature. In future work, we want to enable the configuration of new products according to features existing in other products to facilitate their interoperability.

Figure 1 .

 1 Figure 1. Approach overview

Figure 2 .

 2 Figure 2. CSFM generation example

Figure 2

 2 depicts excerpts of a CM , CM I, F M , and a CSF M . The features TempOptim, ScheduleOptim and PresenceOptim are associated to the concept Space (only one link is shown to simplify the diagram). The CSF M generation algorithm duplicated the feature sub-tree whose root is TempOptim two times. The duplicated CSF sub-trees are associated respectively to the instances s1 and s2.

The RIDER project ("Research for IT as a Driver of EneRgy efficiency") -http://rider-project.com/ -is led by a consortium of several companies and R&D laboratories, including IBM and the LIRMM, interested in improving building energy efficiency.