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Abstract—Software Product Lines (SPL) aim at deriving
software architectures or systems from a software artifact
base. Configuring the SPL to derive a new product is now
usually done by selecting appropriate software features in
a kind of models, called feature models. In some situations,
a feature represents a software artifact associated to an
element e of a context the software product will manage.
Such a feature and its associated software artifact may
be cloned according to the number of occurrences of e in
the context and constraints have to be respected. Hence,
the feature model proposed to users for configuration
has to be adapted in a new dedicated phase according
to the context elements. We propose a model-driven
engineering approach for transforming a generic feature
model according to a context model that a derived software
product will manage. More precisely this paper describes
an original model transformation able to generate context
specific feature models including duplicated features, and
removing inappropriate features. Our transformation is
validated on a smart building optimization software case
study.

I. INTRODUCTION

Configuration options of a software product line

(SPL) to generate a new product are nowadays com-

monly represented with a feature model [9]. A feature

represents a component of a product derived from a

product line or a functionality that this product provides.

A feature model indicates which choices (features)

are mandatory or optional in some conditions, and

how one choice can impact another one (feature inter-

dependencies and constraints). Software products (ap-

plications) are built from an SPL by selecting features

from such a feature model. A set of selected features is

commonly called a product configuration.

In various situations, some features are semantically

associated to elements of a context generic model,

describing concepts, that can be present in the context in

which (or for which) the application will be deployed.

For example in the case of a smart building energy-

optimization software, the feature “solar optimization”

is semantically associated to the context generic model

concept Solar-panel and should only be proposed

in a configuration feature model if the building to be

optimized (described by a model, instance of the context

generic model) has some solar panels (instances of

Solar-panel). As a corollary, such a software could

be configured to manage differently each occurrence

of a given electronic appliance or physical infrastruc-

ture [3].

Hence, a product configuration depends, on the one

hand, on the product features, and on the other hand,

on the number of occurrences of the context concept

instances. In a feature model, cloning features and iden-

tifying inappropriate ones is a long and error prone task

because each context-specific feature must be checked

regarding each context concept instance.

Various approaches have been proposed to configure

a feature model according to a context [7], [8]. In

this paper we propose an original solution to automat-

ically generate an optimized feature model (called a

context-specific feature model), that conforms to a given

deployment context. A context-specific feature model

only includes features that make sense in the context.

The features are appropriately cloned depending on

the number of context elements. We propose a model

transformation algorithm which uses as inputs a generic

feature model (representative of a SPL global set of

functionalities), a model of context concepts and an

instance of the model of the context.

We validate our proposal in the context of the devel-

opment of a smart building management system soft-

ware product line (RIDER1 project [10]). The project

aims at creating a global intelligent system to perform

energy optimization.

Section II presents a motivating example from the

RIDER project. Section III presents a global view of

our approach. Section IV details the algorithms used for

performing the adaptation of feature models. Section V

discusses the related work, and Section VI concludes

this paper and gives several perspectives for this work.

1The RIDER project (“Research for IT as a Driver of EneRgy
efficiency”) – http://rider-project.com/ – is led by a consortium of
several companies and R&D laboratories, including IBM and the
LIRMM, interested in improving building energy efficiency.

http://rider-project.com/


II. MOTIVATING EXAMPLE – A SMART BUILDING

CASE STUDY

A RIDER software product purpose is to enhance

lighting, heating, ventilation and air conditioning usages

to save energy in buildings. A RIDER product is made

of interfaces with building management systems (BMS),

of several optional modules to add further functions

(physical simulation, optimization algorithms, visualiza-

tion tools, etc.), and a component allowing to orchestrate

input and output data. The data orchestration component

purpose is to decide how to manage incoming data and

energy optimization computation results. For example,

the physical simulation module requires data related

to spaces that are instrumented with temperature and

humidity sensors. A RIDER software product uses a

representation of the building it will drive. This rep-

resentation is also called building information model

(BIM). It is able to represent static (e.g., blueprints) as

well as dynamic (e.g., sensor measures) information.

An instance of the building model is used as a

cornerstone to leverage information from building man-

agers and energy optimization experts [2], [6]. It can

gather into a single model information such as: 1) 3D

geometric data for visualization, 2) electric, 3) Heating

Ventilation and Air Conditioning (HVAC), 4) blueprints,

5) various building components along with their size and

physical properties for simulation purposes, 6) cost and

project management-related information.

Each additional module function is modeled in the

RIDER feature model. Some of them are related to the

elements of the BIM. For example, 3D information is

required to provide 3D visualization features. If it is

missing then 3D visualization features are not available.

If the information is available on some parts of the

building, the visualization features are available only

on those parts. When configuring a new product, it is

important to know which parts of the building will be

properly optimized, and to know which new equipments

must be added to allow these features to properly work.

More generally, each feature requires to consider if it

can be duplicated, which context elements determine

how many times it can be duplicated, and which con-

straints must be satisfied by the context element to make

the feature available.

Next section introduces our approach and describes

the four models involved in this approach.

III. APPROACH OVERVIEW

Let us introduce in this section our terminology and

give a general overview of our approach. A generic

feature model (FM) of a software product line appli-

cation represents the features globally available in the

application (called generic features). Each generic fea-

ture can have a semantic relation (depends on) with one

or several context model concepts. A context-specific

feature model (CSFM) represents features relevant to

a given context model instance (called context-specific

features). Each context-specific feature (CSF) of such

a model relates to a generic feature of the FM and,

if this generic feature depends on a context concept,

to one context concept instance. Our purpose is to

automatically generate a CSFM, made of all possible

CSFs, by analyzing associations between features of a

generic feature model with concepts of a context model

(e.g., a building model) and their instances (elements of

a concrete building).

The obtained CSFM allows stakeholders to choose

CSFs for creating a product configuration adapted to

the environment.

Our approach integrates the four models shown in

Figure 1. The context model (CM) describes the context

information that a software product manages. It can

be presented by creating a domain specific language

(DSL) or a UML model. CM is a set of connected

concepts. In our case study, this model is the building

infrastructure model which contains concepts such as,

Building, Storey, Zone, Space, Sensor. It is created with

the help of context domain specialists. Some concepts

are hierarchically related with a specific relation. For

example, we have the hierarchical relation Building →

Storey → Space → Sensor.

Figure 1. Approach overview

The generic feature model (FM) is, for a given CM ,

a multiplicity-based feature model which is based upon

Czarnecki et al. [4] definition. We extended it to make

it possible to associate a feature to a CM concept. This

association has a multiplicity. It is composed of features

(denoted by f ) organized in a tree. The root of this

tree is denoted by rf . A feature associated with context

concepts can be duplicated according to the instances

of those concepts and their multiplicity. In our case

study, it is used to describe all the possible features of

an energy optimization software. In our approach, this

model is not directly used to configure a new product.

This model must be first adapted to a specific context,
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Figure 2. CSFM generation example

which is described by the context model instance.

A feature can be associated to none, one or several

concepts of the CM . It means that the feature can be

duplicated for each instance of an associated concept.

A constraint, associated to a feature, can be used to

determine which properties must have an instance to

duplicate a feature. For example, when CM is written

in UML, constraints are in OCL. A given feature f

can have a group g gathering its sub-features. A group

is used to specify how many grouped features can be

selected.

The context model instance (CMI) is an instance of

the context model. It describes instances of the concepts

of CM . If the CM is similar to a UML class diagram,

the CMI is similar to a UML instance diagram. The

elements of the CMI model are called instances. There

is also a hierarchical relation between the instances of

concepts hierarchically related. The CMI describes the

specific context that will be managed by a software

product. In our case study, it consists in modeling a

specific building that will be managed by a new energy

optimization software product, instance of the software

product line. It is created with the help of building

owners and managers.

The CSFM is a kind of feature model resulting from

the adaptation of FM to a given context CMI . It is

the set of context-specific features (CSF) that can be

chosen to build a new product to be used in a given

context. A CSF associates a feature f , to an instance i.

i must be an instance of one of the concepts associated

to f . If f is not associated to a concept then i = ∅.

The CSFs are organized as a tree whose root is denoted

by rϕ. A CSF ϕ can have a group gϕ gathering its sub-

features. gϕ must be related to an existing group g of

the feature f , f being associated to ϕ. In our case study,

a realistic CMI , of a building b, can have hundreds of

instances that have to be considered to create the CSFM

to configure the product for b. Our approach proposes

an algorithm to generate this model automatically.

The models CM, FM, and CMI are provided as

input of our adaptation process. The output of the

process is a CSFM to be filled to create a new product

configuration. Groups and multiplicities are also adapted

in the CSFM. The constraints associated to concepts are

checked after having generated the CSFM. We do not

detail constraints checking here due to space limitation.

Figure 2 depicts excerpts of a CM , CMI , FM , and

a CSFM . The features TempOptim, ScheduleOptim

and PresenceOptim are associated to the concept Space

(only one link is shown to simplify the diagram). The

CSFM generation algorithm duplicated the feature

sub-tree whose root is TempOptim two times. The

duplicated CSF sub-trees are associated respectively to

the instances s1 and s2.

The next section presents the algorithm generating

CSFMs.

IV. CONTEXT-SPECIFIC FEATURE MODEL

GENERATION ALGORITHM

The CSFM generation algorithm traverses the feature

model in depth-first order. We consider that the models

FM,CMI,CM, and CSFM (which is empty at the

beginning) are global data common to all following

algorithms.

Algorithm 1 initializes the CSFM generation algo-

rithm and returns the resulting CSFM. It creates the

root context specific feature and, for each sub-feature of

the root feature of the feature model, calls the recursive

procedure featureTreeTraversal to build the CSFM.

Algorithm 1: Main procedure of the CSFM gener-

ation algorithm
Input: The models CM, CMI, and FM

Result: A CSFM model built according to the CM,

CMI, et FM models

Initialize an empty CSFM.

rϕ is the root CSF of CSFM, it is associated to the

root feature rf of FM.

foreach sub-feature f of the FM root feature rf do
featureTreeTraversal(f, rϕ)

end

The procedure featureTreeTraversal builds the CSFM

recursively. It requires two parameters: A feature f for

which related CSFs will be created, a CSF ϕparent

which will be the parent of the created CSFs.
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Procedure featureTreeTraversal(f , ϕparent)

Input: A feature f from which the FM is

traversed. A parent CSF ϕparent, such that

f parent feature is associated to ϕparent.

Result: Updates the CSFM according to the CM,

CMI, and FM models.

if f is not associated to a concept and ϕparent is

not associated to an instance then
ϕ = addSpecificFeature(f, ϕparent,∅)

foreach sub-feature f ′ of f do

featureTreeTraversal(f ′, ϕ)

end
if the CSF parent ϕparent is not associated to an

instance and f is associated to a concept then
foreach instance i that is an instance of the

concept associated to f do
ϕ =
addSpecificFeature(f, ϕparent, i)

foreach sub-feature f ′ of f do

featureTreeTraversal(f ′, ϕ)

end

end
if the CSF ϕparent is associated to an instance

and f is associated to a concept then
foreach instance i which is either the same

instance that is associated to ϕparent and that

is an instance of the concept associated to f ,

or an instance that is hierarchically below the

instance associated to ϕparent and that is an

instance of a concept associated to f do
ϕ =
addSpecificFeature(f, ϕparent, i)

foreach sub-feature f ′ of f do

featureTreeTraversal(f ′, ϕ)

end

end

The CSFs are created differently in three cases:

1) The evaluated feature f is not associated to any

concept and the parent CSF ϕparent is not asso-

ciated to an instance. Then, one CSF is created,

and the procedure is called recursively for each

sub-feature of f .

2) The parent CSF ϕparent is not associated to an

instance and the evaluated feature f is associated

to a concept. Then, a CSF is created for each

instance whose concept is associated to f , and the

procedure is called recursively for each instance

and for each sub-feature of f .

3) The parent CSF ϕparent is associated to an in-

stance and the evaluated feature f is associated

to a concept. A CSF is added either with the

same instance as ϕparent or with each context

concept instance which is hierarchically below the

instance associated to ϕparent. The procedure is

then called recursively for each sub-feature of f

and for each instance hierarchically below ϕparent

instance.

The function addSpecificFeature creates, and returns,

a new CSF in the CSFM. It requires three parameters:

the feature f which will be referenced by the CSF, the

parent CSF ϕparent, and an instance that will be also

referenced by the CSF. As seen before, a CSF references

a feature, and either an instance or nothing. First, a new

CSF ϕ is created. Its parent CSF is ϕparent, and it is

associated to f and i. The lower bound of its multiplicity

is equal to the maximum between the lower bounds of

the multiplicity on the relationship between the concept

whose i is the instance and f , and of the multiplicity

on f . The upper bound of its multiplicity is equal to the

minimum between the upper bounds of the multiplicity

on the relationship between the concept whose i is the

instance and f , and of the multiplicity on f .

Then, the procedure addNewCSFtoGroup is called to

add the new CSF to a group if f belongs to a group in

the FM . If the new CSF is associated to an instance,

it also must belong to a group whose multiplicity is

the same as the feature associated to the new CSF.

This group does not exist in the FM . Its purpose is to

transpose in the CSFM the multiplicity of the feature f

to guarantee that the number of CSF that can be chosen

in a configuration respects f multiplicity.

The procedure addNewCSFtoGroup updates the

CSFM by creating groups considering those existing in

the FM. It takes two parameters: the new CSF ϕ, and its

parent ϕparent. If the feature f associated to ϕ belongs

to a feature group g then ϕ must also belong to a group

gϕ related to g. The group is created only when there

is at least two CSF in it. Otherwise, the CSF is either

mandatory or optional according to f multiplicity.

V. RELATED WORK

Formal semantics of feature models have been de-

fined in [13] for many different kinds of feature models.

We chose a semantics based upon Czarnecki et al.

cardinality-based feature models [4] as described in ou

previous work [14]. They created a staged configuration

process [5] in which they specialize the feature model to

restrict the multiplicity of features. It is not applicable

to our situation, because a CSFM is not a specialization

of a generic feature model. Indeed, each context-specific

feature adds information about the context concept
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Function addSpecificFeature(f , ϕparent, i) : ϕ

Input: a feature f , a CSF ϕparent, and an

instance i

Output: Updates the CSFM with a new CSF, and

returns the new CSF.

Creates a new CSF ϕ, sub-CSF of ϕparent,

associated to the feature f and the instance i.

The lower bound of its multiplicity is equal to the

maximum between the lower bounds of the

multiplicity on the relationship between the

concept whose i is the instance and f , and of the

multiplicity on f . The upper bound of its

multiplicity is equal to the minimum between the

upper bounds of the multiplicity on the

relationship between the concept whose i is the

instance and f , and of the multiplicity on f .

The procedure addNewCSFtoGroup(ϕ,ϕparent)
is called to add ϕ to a group is f belongs to a

group in the FM .

if ϕ is associated to an instance then
if there is no existing CSF group in ϕparent in

which there is other CSF associated to the

same feature then

Adds ϕ to the CSF group.

else
Creates a CSF-group with the same

multiplicity as f , and adds ϕ to this group.

end

end

return ϕ

Procedure addNewCSFtoGroup(ϕ, ϕparent)

Input: The CSF ϕ and ϕparent such that ϕ must

be a sub-CSF of ϕparent.

Result: Updates the CSFM to make ϕ a sub-CSF

of ϕparent.

Let f being the feature associated to ϕ.

if f belongs to a feature group g then
if there is a CSF group gϕ in ϕparent related

to g then

Adds ϕ to the group gϕ.

else
Creates a new CSF group related to the

group g, and adds ϕ and ϕ′ to this group.

end

end

instance it is associated with. Even if our case study

does not require it, we could use our work to automate a

staged-configuration process. The generic feature model

could be specialized into a refined generic feature model

before generating the CSFM, and the CSFM could be

specialized into a refined CSFM and configured through

a staged configuration process.

There are several solutions allowing to perform prod-

uct configuration choices according to a given context.

Voelter et al. [15] detail an approach where negative

and positive variability are used to remove or add

concepts to a custom DSL which seems to correspond

to our business model. However, their approach could

not solve our concerns because we needed to adapt the

feature model. We address the opposite concern, we

adapt the feature model to an imposed business model.

Acher et al. [1] work in the context of self adaptive

and dynamic systems. They bind a context model,

modeled with a feature model, with a feature model

describing the application. They are interested by run-

time adaptation while we are concerned by the design

time adaptation. Changes applied in the context feature

model are automatically reflected on the application

configuration model thanks to ECA rules [12]. We

propose to adapt the feature model rather than a con-

figuration model. In our case, the context is a business

model provided by some stakeholders. This model is

also used by the application to describe the managed

data and not specifically created for the product line

specification.

Quinton et al. [11] derive software products in the

context of applications for mobile phones. They con-

sider a feature model for the application and a feature

model for mobile devices. They configure and gener-

ate an application model using the application feature

model, and then check if the model is consistent with

a set of mobile devices represented by the mobile

device feature model. We address a different problem:

the business model (e.g., a building model) is imposed

and we have to propose to the stakeholders a feature

model adapted to the business model, in order to allow

them to configure an application consistent with their

environment.

VI. CONCLUSION

We presented in this paper an approach able to adapt

generic feature models to a business context. It allows

us to produce a CSFM according to a context model

instance representing the context in which the future

product will run. Our approach allows to automatically

determine whether each feature related to a context

concept can be cloned in a given context by checking
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constraints against context concept instances. Hence,

each generated product configuration is specific to the

instance of the context model it has been made with.

Then, it enables us to generate software product ar-

chitectures and implementations specific to a context.

This approach automates a process that would otherwise

requires to compare hundreds of features with hundreds

of context concept instances.

Our methodology has been designed in a generic way

to be reused in different domains. The prototype has

been implemented with UML models and UML profiles,

for modeling the context model and the generic feature

model. We developed a tool as an Eclipse RCP platform.

The Eclipse RCP platform takes as input the XML files

representing the business model and the feature model.

They are generated by an XSLT transformation from

the XMI versions of the UML models.

We validated our approach in the RIDER project on

a building meta-model used to describe smart build-

ings. The building meta-model has been modeled as

a UML model on which classes and associations were

stereotyped to represent navigable elements. The feature

model was built with our UML profile for feature

models [14].

Next, we intend to create views on the CSFM to

facilitate feature selection. They could show features re-

lated to a stakeholder concern, or allow choosing several

features at the same time, e.g., all the clones of a feature.

In future work, we want to enable the configuration

of new products according to features existing in other

products to facilitate their interoperability.
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