D. T. Fong and Y. Y. Chan, The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review, Sensors, vol.10, issue.12, pp.1556-1565, 2010.
DOI : 10.3390/s101211556

C. Azevedo-coste, A Wearable sensor network for gait analysis: A six-day experiment of running through the desert, IEEE/ASME Trans. Mechatron, vol.16, pp.878-883, 2011.

M. Haid and J. Breitenbach, Low cost inertial orientation tracking with Kalman filter, Applied Mathematics and Computation, vol.153, issue.2, pp.567-575, 2004.
DOI : 10.1016/S0096-3003(03)00656-8

U. X. Tan, K. C. Veluvolu, W. T. Latt, C. Y. Shee, C. N. Riviere et al., Estimating displacement of periodic motion with inertial sensors, IEEE Sens. J, vol.8, pp.1385-1388, 2008.

C. Mazzà, M. Donati, J. Mccamley, P. Picerno, and A. Cappozzo, An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking, Gait & Posture, vol.35, issue.1, pp.138-142, 2011.
DOI : 10.1016/j.gaitpost.2011.08.024

V. Bonnet, C. Mazzà, J. Mccamley, and A. Cappozzo, Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data, Journal of NeuroEngineering and Rehabilitation, vol.10, issue.1, p.29, 2013.
DOI : 10.1186/1743-0003-3-28

N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, pp.903-995, 1998.
DOI : 10.1098/rspa.1998.0193

P. Flandrin, P. Goncalvès, and G. Rilling, Detrending and Denoising with Empirical Mode Decomposition, Proceedings of the 12th European Signal Processing Conference, pp.6-10, 2004.

G. Rilling, P. Flandrin, and P. Goncalvès, On Empirical Mode Decomposition and Its Algorithms, Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, pp.8-11, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00570628

L. Qian, G. Xu, W. Tian, and J. Wang, A novel hybrid EMD-based drift denoising method for a dynamically tuned gyroscope (DTG), Measurement, vol.42, issue.6, pp.927-932, 2009.
DOI : 10.1016/j.measurement.2009.01.017

Y. Zhang, S. Wang, and D. Xia, EMD-Based Denoising Methods in the MEMS Gyroscope De-Drift, Proceedings of the IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp.20-23, 2010.

M. Iosa, C. Mazzà, F. Pecoraro, I. Aprile, E. Ricci et al., Control of the upper body movements during level walking in patients with facioscapulohumeral dystrophy, Gait & Posture, vol.31, issue.1, pp.68-72, 2010.
DOI : 10.1016/j.gaitpost.2009.08.247

F. Pecoraro, C. Mazzà, A. Cappozzo, E. E. Thomas, and A. Macaluso, Reliability of the intrinsic and extrinsic patterns of level walking in older women, Gait & Posture, vol.26, issue.3, pp.386-392, 2007.
DOI : 10.1016/j.gaitpost.2006.10.001

A. L. Adkin, B. R. Bloem, and J. H. Allum, Trunk sway measurements during stance and gait tasks in Parkinson's disease, Gait & Posture, vol.22, issue.3, pp.240-249, 2005.
DOI : 10.1016/j.gaitpost.2004.09.009

C. Mizuike, S. Ohgi, and S. Morita, Analysis of stroke patient walking dynamics using a tri-axial accelerometer, Gait & Posture, vol.30, issue.1, pp.60-64, 2009.
DOI : 10.1016/j.gaitpost.2009.02.017

E. Grimpampi, V. Bonnet, A. Taviani, and C. Mazzà, Estimate of lower trunk angles in pathological gaits using gyroscope data, Gait & Posture, vol.38, issue.3, pp.523-527, 2013.
DOI : 10.1016/j.gaitpost.2013.01.031

H. Luinge, Inertial Sensing of Human Movement, 2002.

G. Rilling and P. Flandrin, on the Influence of Sampling on the Empirical Mode Decomposition, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp.14-19, 2006.
DOI : 10.1109/ICASSP.2006.1660686

A. Moseley, S. Lanzarone, J. Bosman, and B. Caplan, Ecological Validity of Walking Speed Assessment After Traumatic Brain Injury, Journal of Head Trauma Rehabilitation, vol.19, issue.4, pp.341-348, 2004.
DOI : 10.1097/00001199-200407000-00008

N. Riviere, R. S. Rader, and N. Thakor, Adaptive cancelling of physiological tremor for improved precision in microsurgery, IEEE Transactions on Biomedical Engineering, vol.45, issue.7, pp.839-846, 1998.
DOI : 10.1109/10.686791

P. Trnka and M. Hofreiter, The Empirical Mode Decomposition in Real-Time, Proceedings of the 18th International Conference on Process Control, pp.14-17, 2011.

S. A. Guzmán, M. Fischer, U. Heute, and G. Schmidt, Real-Time Empirical Mode Decomposition for EEG Signal Enhancement, Proceedings of the 2013 European Signal Processing Conference, pp.9-13, 2013.