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Abstract

Given a directed graph G with weights on its arcs, the Maximum Asymmetric Travelling Salesman Problem (Max-

ATSP) asks for a Hamiltonian path of maximum weight covering G. Max-ATSP, a central problem in computer

science, is known to NP-hard and hard to approximate. In the general case, when the Triangle Inequality is not

satisfied, the best approximation ratio known to date equals 2/3. Now consider the Overlap Graph for a set of finite

words P := {s1, . . . ,sp}: the directed graph in which an arc links two words with a weight equals to the length of their

maximal overlap. When Max-ATSP is applied to the Overlap Graph, it solves the Maximal Compression or Shortest

Superstring problem, where one searches for a string of minimal length having each input word as a substring. Again

these problems are hard to approximate. Both for Max-ATSP and for Maximal Compression, good approximation

algorithms use a cover of the graph by a set of cycles or of the words by a set of cyclic strings. These questions

are known as Maximal Directed Cyclic Cover (MDCC) and as Shortest Cyclic Cover of Strings (SCCS), and can

be solved in polynomial time. However, among these four problems, the approximation ratio achieved by a simple

greedy algorithm is known only for Maximal Compression. In a seminal but complex proof, Tarhio and Ukkonen

showed that it achieves 1/2 compression ratio. Taking advantage of the power of subset systems, we investigate the

approximation of associated greedy algorithms for these four problems, and show they reach a ratio of 1/3 for Max-

ATSP, 1/2 for Maximal Compression and for Maximal Cyclic Cover, and gives an exact solution for the Shortest

Cyclic Cover of Strings. The proof for Maximal Compression is simpler than known ones. For these problems,

greedy algorithms are easier to implement and often faster than existing approximation algorithms, an important fact

since these problems have practical applications, for instance in data compression and computational biology.

1 Introduction

Given a set of words P = {s1, . . . ,sp} over a finite alphabet, the Shortest Superstring (SS) or Maximal Compression

(MC) problems ask for a shortest string u that contains each of the given words as a substring. It is a key problem

in data compression and in bioinformatics, where it models the question of sequence assembly. Indeed, sequencing

machines yield only short reads that need to be aggregated according to their overlaps to obtain the whole sequence

of the target molecule [6]. Two measures can be optimised for SS: either the length of the superstring is minimised,

or the compression is maximised (i.e., ‖S‖− |u| := ∑si∈S |si| − |u|). Unfortunately, even for a binary alphabet, SS is

NP-hard [5] and MAX-SNP-hard relative to both measures [3]. Among many approximation algorithms, the best

known fixed ratios are 2 11
23

for the superstring [9] and 2
3

for the compression [7, 10]. A famous conjecture states

that a simple, greedy agglomeration algorithm achieves a ratio 2 for the superstring measure, while it is known to

approximate the maximum compression with ratio 1/2, but the later proofs are quite complex involving many cases of

overlaps [12, 13]. The best approximation algorithms use the Shortest Cyclic Cover of Strings (SCCS) as a procedure,
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which asks for a set of cyclic strings of total minimum length that collectively contain the input words as substrings.

The SCCS problem can be solved in polynomial time in ‖S‖ [11, 3].

These problems on strings can be viewed as problems on the Overlap Graph, where the input words are the nodes,

and an arc represents the asymmetric maximum overlap between two words. Figure 2 on p.12 displays an example

of overlap graph. Covering the Overlap Graph with either a maximum weight Hamiltonian path or a maximum

weight cyclic cover gives a solution for the problems of Maximal Compression or of Shortest Cyclic Cover of Strings,

respectively. This expresses the relation between the Maximum Asymmetric Travelling Salesman Problem (Max-

ATSP) and Maximal Compression on one hand, as well as between Maximum Directed Cyclic Cover (Max-DCC)

and Shortest Cyclic Cover of Strings on the other. Both Max-ATSP and Max-DCC have been extensively studied as

essential computer science problems.

Hereditary systems were introduced recently to investigate the approximation performances of greedy algorithms

in a unified framework [8]. With their help, we investigate the approximation achieved by greedy algorithms on these

four problems and provide the results mentioned in the abstract. After introducing the required notation and concepts,

we study the case of the Max-ATSP and Max-DCC problems in Section 2, then we focus on the Maximal Compression

problem in Section 3, and state the results regarding Shortest Cyclic Cover of Strings in Section 3.2, before concluding.

1.1 Sets, strings, and overlaps.

We denote by #(Λ) the cardinality of any finite set Λ.

An alphabet Σ is a finite set of letters. A linear word or string over Σ is a finite sequence of elements of Σ. The set

of all finite words over Σ is denoted by Σ⋆, and ε denotes the empty word. For a word x, |x| denotes the length of x.

Given two words x and y, we denote by xy the concatenation of x and y. For every 1≤ i≤ j ≤ |x|, x[i] denotes the i-th

letter of x, and x[i ; j] denotes the substring x[i]x[i+1] . . .x[ j].
A cyclic string or necklace is a finite string in which the last symbol precedes the first one. It can be viewed as a

linear string written on a torus with both ends joined.

Overlaps and agglomeration Let s, t,u be three strings of Σ⋆. We denote by ov(s, t) the maximum overlap from s

over t; let r be prefix of s such that s = r .ov(s, t), then we denote the agglomeration of s over t by s ⊕ t := rt. Note

that neither the overlap nor the agglomeration are symmetrical. Clearly, one has (s ⊕ t) ⊕ (t ⊕ u) = (s ⊕ t) ⊕ u.

Example: Let be three words abbaa, baabb and aabba. ov(abbaa,baabb) = baa and abbaa ⊕ baabb = abbaabb.

Considering possible agglomerations of these words, we get w1 = abbaa ⊕ baabb ⊕ aabba = abbaabb ⊕ aabba =
abbaabba, w2 = aabba ⊕ abbaa ⊕ baabb = aabbaa ⊕ baabb = aabbaabb and w3 = baabb ⊕ abbaa ⊕ aabba =
baabbaa ⊕ aabba = baabbaabba. Thus, |w1| = |pr(abbaa,baabb)|+ |pr(baabb,aabba)|+ |aabba| = |ab|+ |b|+
|aabba| = 2+ 1+ 5 = 8, ‖S‖− |w1| = 15− 8 = 7 and |ov(abbaa,baabb)|+ |ov(baabb,aabba)| = |baa|+ |aabb| =
3+4 = 7

1.2 Notation on graphs

We consider directed graphs with weighted arcs. A directed graph G is a pair (VG,EG) comprising a set of nodes VG,

and a set EG of directed edges called arcs. An arc is an ordered pair of nodes.

Let w be a mapping from EG onto the set of non negative integers (denoted N). The weighted directed graph

G := (VG,EG,w) is a directed graph with the weights on its arcs given by w.

A route of G is an oriented path of G, that a subset of VG forming a chain between two nodes at its extremities. A

cycle of G is a route of G where the same node is at both extremities. The weight of a route r equals the sum of the

weights of its arcs. For simplicity, we extend the mapping w and let w(r) denote the weight of r.

We investigate the performances of greedy algorithms for different types of covers of a graph, either by a route or

by a set of cycles. Let X be a subset of arcs of VG. X covers G if and only if each vertex v of G is the extremity of an

arc of X .
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1.3 Subset systems, extension, and greedy algorithms

A greedy algorithm builds a solution set by adding selected elements from a finite universe to maximise a given

measure. In other words, the solution is iteratively extended. Subset systems, which are also called hereditary systems

in French, are useful concepts to investigate how greedy algorithms can iteratively extend a current solution to a

problem. A subset system is a pair (E,L) comprising a finite set of elements E, and L a family of subsets of E

satisfying two conditions:

(HS1) L 6= /0,

(HS2) If A′ ⊆ A and A ∈ L , then A′ ∈ L . i.e., L is close by taking a subset.

Let A,B ∈ LP . One says that B is an extension of A if A ⊆ B and B ∈ LP . A subset system (E,L) is said to be

k-extendible if for all C ∈ L and x /∈ C such that C∪{x} ∈ L , and for any extension D of C, there exists a subset

Y ⊆ D\C with #(Y )≤ k satisfying D\Y ∪{x} ∈ L .

The greedy algorithm associated with (E,L) and a weight function w is presented in Algorithm 1. Checking

whether F ∪{ei} ∈ L consists in verifying the system’s conditions. In the sequel of this paper, we will simply use "the

greedy algorithm" to mean the greedy algorithm associated to a subset system, if the system is clear from the context.

A theorem from Mestre links k-extendibility and the approximation ratio of the associated greedy algorithm.

Theorem 1 (Mestre [8]). Let (E,L) be a k-extendible subset system. The associated greedy algorithm defined for the

problem (E,L) with weights w gives a 1
k

approximation factor.

Input : (E,L)
The elements ei of E sorted by increasing weight: w(e1)≤ w(e2)≤ . . .≤ w(en)
F ← /0
for i = 1 to n do

if F ∪{ei} ∈ L then F ← F ∪{ei};

return F

Algorithm 1: The greedy algorithm associated with the subset system (E,L) and weight function w.

1.4 Definitions of problems and related work.

1.4.1 Graph covers

Let G := (VG,EG,w) be a weighted directed graph.

The well known Hamiltonian path problem on G requires that the cover is a single path, while the Cyclic Cover

problem searches for a cover made of cycles. We consider the weighted versions of these two problems, where the

solution must maximise the weight of the path or the sum of the weights of the cycles, respectively. In a general case,

the graph is not symmetrical, and the weigh function does not satisfy the Triangle inequality. When a Hamiltonian

path is searched for, the problem is known as the Maximum Asymmetric Travelling Salesman Problem or Max-ATSP

for short.

Definition 1.1 (Max-ATSP). Max-ATSP is the problem where one searches for a maximum weight Hamiltonian path

on G.

Max-ATSP is an important and well studied problem. It is known to be NP-hard and hard to approximate (pre-

cisely, Max-SNP hard). The best known approximation ratio of 2/3 is achieved by using a rounding technique on a

Linear Programming relaxation of the problem [7]. However, the approximation ratio obtained by a simple greedy
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algorithm remains an interesting open question, especially, since other approximation algorithms are usually less effi-

cient than a greedy one. As later explained, Max-ATSP is strongly related to the Shortest Superstring and the Maximal

Compression problems on strings.

If a set of cycles is needed as a cover the graph, the problem is called Maximum Directed Cyclic Cover. In the

general setup, cycles made of singletons are allowed in a solution.

Definition 1.2 (Max Directed Cyclic Cover). Maximum Directed Cyclic Cover is the problem where one searches for

a set of cycles of maximum weight that collectively cover G.

To our knowledge, the performance of a greedy algorithm for Maximum Directed Cyclic Cover (Max-DCC) has

not yet been established, although variants of Max-DCC with binary weights or with cycles of predefined lengths have

been studied [1, 2].

1.4.2 Superstring and Maximal Compression

Definition 1.3 (Superstring). Let P = {s1,s2, . . . ,sp} be a set of p strings of Σ⋆. A superstring of P is a string s′ such

that si is a substring of s′ for any i in [1, p].

Let us denote the sum of the lengths of the input strings by ‖S‖ := ∑si∈S |si|. For any superstring s′, there exists a

set {i1, . . . , ip}= {1, . . . ,n} such that s′ = si1 ⊕ si2 ⊕ . . . ⊕ sip , and then ‖S‖− |s′|= ∑
p−1
j=1 |ov(si j

,si j+1
)|.

Definition 1.4 (Shortest Superstring Problem (SS)). Input: Let p be a positive integer and P := {s1,s2, . . . ,sp} be a

set of p strings over Σ.

Question: Find s′ a superstring of P of minimal length.

Two approximation measures can be optimised:

• the length of the obtained superstring, that |s′|, or

• the compression of the input strings achieved by the superstring: ‖S‖− |s′|.

The corresponding approximation problems are termed Shortest Superstring in the first case, or Maximal Compres-

sion in the second. These two problems have applications in data compression and in computational biology. Indeed,

finding a superstring of a large set of short input sequences gives a solution to the DNA shotgun sequencing problem,

which is encountered when one wishes to determine the complete nucleotidic sequence of a long gene, a chromosome,

or a whole genome. The question of DNA assembly has attracted a lot of attention since the launch of Next Gener-

ation Sequencing technologies, which have revolutionised the process of DNA acquisition. These technologies have

permitted an exponential increase in throughput, making acute the need for simple and efficient assembly algorithms.

Both the Maximal Compression and Shortest Superstring problems are NP-hard [5] and Max-SNP hard [3]. Nu-

merous, complex algorithms have been designed for them, or their variants. Many are quite similar and use a procedure

to find a Maximum Directed Cyclic Cover of the input strings . The best known approximation ratio for the Shortest

Superstring was obtained in 2012 and equals 2 11
13

[9], although an optimal ratio of 2 has been conjectured in the 80’s

[12, 3].

For the Maximal Compression problem, two algorithms give a ratio of 2
3

[7, 10]. A seminal work gave a proof of

an approximation ratio of 1/2 by an algorithm that iteratively updates the input set by agglomerating two maximally

overlapping strings until one string is left [12]. This algorithm was termed greedy but does not correspond to a greedy

algorithm for it modifies the original input set. We demonstrate in Appendix that this algorithm yields the same result

than a greedy algorithm defined for an appropriate subset system. Another proof of this ratio was given in [13]. Both

proofs are quite intricate and include many subcases [12]. Thanks to subset systems, we provide a much simpler proof

of this approximation ratio for Maximal Compression by a greedy algorithm, as well as an optimal and polynomial

greedy algorithm for the problem of Max Cyclic Covers on Strings.
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Definition 1.5 (Shortest Cyclic Cover of Strings (SCCS)). Input: Let p ∈ N and P := {s1,s2, . . . ,sp} be a set of p

linear strings over Σ.

Question: Find a set of cyclic strings of minimal cumulated length such that any input si with 1≤ i≤ p, is a substring

of at least one cyclic string.

Several approximation algorithms for the Shortest Superstring problem uses a procedure to solve SCCS on the

instance, which is based on a modification of a polynomial time algorithm for the assignment problem [11, 3, 6]. This

further indicates the importance of SCCS.

Both the Maximal Compression and the Shortest Cyclic Cover of Strings problems can be expressed as a cover

of the Overlap Graph. In the Overlap Graph, the vertices represent the input strings, and an arc links si to s j with

weight
∣

∣si⊙ s j

∣

∣. Hence, the overlap graph is a complete graph with null or positive weights. An Hamiltonian path

of this graph provides a permutation of the input strings; by agglomerating these strings in the order given by the

permutation one obtains a superstring of P. Hence, the maximum weight Hamiltonian path induces a superstring that

accumulates an optimal set of maximal overlaps, in other words a superstring that achieves maximal compression

on P. Thus, a ρ approximation for Max-ATSP gives the same ratio for Maximal Compression. The same relation

exists between the Shortest Cyclic Cover of Strings and Maximum Directed Cyclic Cover on graphs. Indeed, SCCS

optimises ‖P‖−∑ j |c j|, where c j is a cyclic string in the solution, and Max-DCC optimises the cumulated weight of

the cycles of G. With the Overlap Graph, a minimal cyclic string is associated to each graph cycle by agglomerating

the input strings in this cycle. Thus, the cumulated weight of a set of graph cycles corresponds to compression achieved

by the set of induced cyclic strings. In other words, Shortest Cyclic Cover of Strings could also be called the Maximal

Compression Cyclic Cover of Strings problem (and seen as a maximisation problem). Here again, the performance of

a greedy algorithm for the Shortest Cyclic Cover of Strings problem remains open [14].

2 Maximum Asymmetric Travelling Salesman and Directed Cyclic Cover

Problems

Let w be a mapping from EG onto the set of non negative integers and let G := (VG,EG,w) be a directed graph with the

weights on its arcs given by w. We first define a subset system for Max-ATSP and its accompanying greedy algorithm.

Definition 2.1. We define the pair (EG,LS) where EG is the arc set of G and LS the set of subsets, F, of EG satisfying:

(L1) ∀x,y and z ∈VG, (x,z) and (y,z) ∈ F implies x = y,

(L2) ∀x,y and z ∈VG, (z,x) and (z,y) ∈ F implies x = y,

(L3) for any r∈N⋆, there does not exist any cycle ((x1,x2), . . . ,(xr−1,xr),(xr,x1)) in F, where ∀k∈{1, . . . ,r},xk ∈VG.

Remark: .

• In other words, for a subset F of EG, Condition (L1) (resp. (L2)) allows only one ingoing (resp. outgoing) arc

for each vertex of G.

• For all F ∈ LS and for any v ∈VG, the arc (v,v) cannot belong to F , by Condition (L3) for r = 1.

• If in condition (L3), one changes the set of forbidden values for r, the subset system addresses a different

problem. As the proofs in this section do not depend of r, all results remain valid for these problems as well. For

instance, with r ∈ {1}, only cycles of length one are forbidden; the solution is either a maximal path or cyclic

cover with cycles of length larger than one. The 1/3 approximation ratio obtained in Theorem 4 remains valid.

We will consider later the case where all cycles are allowed (i.e., r ∈ /0).

Proposition 2. (EG,LS) is a subset system.

20th Oct. 2013 5 LIRMM R.R. 2013
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Proof. For (HS1), it suffices to note that /0 ∈ LS.For (HS2), we must show that each subset of an element of LS is an

element of LS. This is true since Conditions (L1), (L2), and (L3) are inherited by any subset of an element of LS.

Next proposition shows that the defined subset system is 3-extendible.

Proposition 3. (EG,LS) is 3-extendible.

Proof. Let C ∈ LS and e /∈C such that C∪{e} ∈ LS. Let D be an extension of C. One must show that there exists a

subset Y ⊆ D\C with #(Y )≤ 3 such that D\Y ∪{e} belongs to LS.

As e ∈ EG, there exists x and y such that e = (x,y). Let Y be the set of elements of D\C of the form (x,z), (z,y),
and (z,x) for any z ∈ VG where (z,x) belongs to a cycle in D∪{x}. As D is an extension of C, D belongs to LS and

satisfies conditions (L1) and (L2). Hence, #(Y )≤ 3.

It remains to show that D \Y ∪{e} ∈ LS. As C∪{e} ∈ LS, C∪{e} satisfies conditions (L1) and (L2), we know

that for each z ∈VG \{x,y}, the arcs (x,z) and (z,y) are not in C.

By the definition of Y , for each z ∈ VG, we have that (x,z) and (z,y) /∈ D\C. Therefore, for all z ∈ VG, (x,z) and

(z,y) /∈ D\Y . Hence, D\Y ∪{e} satisfies conditions (L1) and (L2).

Now assume that D \Y ∪{e} violates Condition (L3). As D ∈ LS, D satisfies condition (L3) and D \Y too. The

only element who can generate a cycle is e. As C∪{e} ∈ LS, e does not generate a cycle in C∪{e}, which implies

that it generates a cycle in D\ (C∪Y ). Hence, there exists z ∈VG such that (z,x) ∈ D\ (C∪Y ), which contradicts the

definition of Y .

Now we derive the approximation ratio of the greedy algorithm for Max-ATSP.

Theorem 4. The greedy algorithm of (EG,LS) yields a 1
3

approximation ratio for Max-ATSP.

Proof. By Proposition 3, (EG,LS) is 3-extendible. A direct application of Mestre’s theorem (Theorem 1) yields the 1
3

approximation ratio for Max-ATSP.

Case of the Maximum Directed Cyclic Cover problem. If in condition (L3) we ask that r ∈ /0, (L3) is not a

constraint anymore and all cycles are allowed. This defines a new subset system, denote by (EG,LC ). As in the proof

of Proposition 3, it suffices now to set Y := {(x,z),(z,y)} (one does not need to remove an element of a cycle), and

thus #(Y ) ≤ 2. It follows that (EG,LC ) is 2-extendible and that the greedy algorithm achieves a 1/2 approximation

ratio for the Maximum Directed Cyclic Cover problem.

3 Maximal Compression and Shortest Cyclic Cover of Strings

Blum and colleagues [3] have designed an algorithm called greedy that iteratively constructs a superstring for both

the Shortest Superstring and Maximal Compression problems. As mentioned in introduction, this algorithm is not a

greedy algorithm per se. Below, we define a subset system corresponding to that of Max ATSP for the Overlap Graph,

and study the approximation of the associated greedy algorithm. Before being able to conclude on the approximation

ratio of the greedy algorithm of [3], we need to prove that greedy computes exactly the same superstring as the

greedy algorithm of the subset system of Definition 3.1. This proof is given in Appendix. Knowing that these two

algorithms are equivalent in terms of output, the approximation ratio of Theorem 7 is valid for both of them.

From now on, let P := {s1,s2, . . . ,sp} be a set of p strings of Σ⋆.

The subset system for Maximal Compression is similar to that of Max-ATSP. For any two strings s, t, s⊙ t rep-

resents the maximum overlap of s over t1. We set EP = {si⊙ s j | si and s j ∈ P}. Hence, EP is the set of maximum

overlaps between any two words of S.

Definition 3.1 (Subset system for Maximal Compression). Let LP as the set of F ⊆ EP such that:

1s⊙ t differs ov(s, t), which is a word. s⊙ t is the fact that s can be aggregated with t according to their maximal overlap.

20th Oct. 2013 6 LIRMM R.R. 2013
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(L1) ∀si, s j and sk ∈ S, si⊙ sk and s j⊙ sk ∈ F ⇒ i = j, i.e. for each string, there is only one overlap to the left

(L2) ∀si, s j and sk ∈ S, sk⊙ si and sk⊙ si ∈ F ⇒ i = j, and only one overlap to the right

(L3) for any r ∈ N⋆, there exists no cycle (si1 ⊙ si2 , . . . , sir−1
⊙ sir , sir ⊙ si1) in F, such that ∀k ∈ {1, . . . ,r},sik ∈ S.

For each set F := {si1 ⊙ si2 , . . . ,sip−1
⊙ sip} that is a maximal element of LP for inclusion, we denote by l(F) the

superstring of S obtained by agglomerating the input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ . . . ⊕ sip .

First, knowing that Maximal Compression is equivalent to Max-ATSP on the Overlap Graph (see Section 1.4.2),

we get a 1
3

approximation ratio for Maximal Compression as a corollary of Theorem 4. Another way to obtain this

ratio is to show that the subset system is 3-extendible (the proof is identical to that of Proposition 3) and then use

Theorem 1. However, the following example shows that the system (EP,LP ) is not 2-extendible.

Example 1. The subset system (EP,LP ) is not 2-extendible. Let P := {s1,s2,s3,s4,s5}, C := /0, x := s1⊙ s2. Then

clearly C∪{x} belongs to LP and the set D := {s1⊙ s3, s4⊙ s2, s5⊙ s1, s2⊙ s5} is an extension of C. However, when

searching for a set Y such that Y included in D\C = D and such that (D\Y )∪{x} ∈ LP then s1⊙ s3, s4⊙ s2 must be

removed to avoid violating (L1) or (L2), and at least one among s5⊙ s1, s2⊙ s5 must be removed to avoid violating

(L3). It follows that #(Y )≥ 3.

To prove a better approximation ratio for the greedy algorithm, we will need the Monge inequality [4] adapted to

word overlaps.

Lemma 5. Let s1, s2, s3 and s4 be four different words satisfying |ov(s1,s2)| ≥ |ov(s1,s4)| and |ov(s1,s2)| ≥ |ov(s3,s2)|.
So we have :

|ov(s1,s2)|+ |ov(s3,s4)| ≥ |ov(s1,s4)|+ |ov(s3,s2)|.

When for three sets A,B,C, we write A∪B \C, it means (A∪B) \C. Let A ∈ LP and let OPT (A) denote an

extension of A of maximum weight. Thus, OPT ( /0) is an element of LP of maximum weight. Next lemma follows

from this definition.

Lemma 6. Let be F ∈ LP and x ∈ EP, w(OPT (F ∪{x}))≤ w(OPT (F)).

Now we can prove a better approximation ratio.

Theorem 7. The approximation ratio of the greedy algorithm for the Maximal Compression problem is 1
2
.

Proof. To prove this ratio, we revisit the proof of Theorem 1 in [8].

Let x1,x2, . . . ,xl denote the elements in the order in which the greedy algorithm includes them in its solution F ,

and let F0 := /0, . . . ,Fl denote the successive values of the set F during the algorithm, in other words Fi := Fi−1∪{xi}
(see Algorithm 1 on p. 3). The structure of the proof is first to show for any element xi incorporated by the greedy

algorithm, the inequality w(OPT (Fi−1)) ≤ w(OPT (Fi)) +w(xi), and second, to reason by induction on the sets Fi

starting with F0.

One knows that OPT (Fi−1) is an extension of Fi−1. By the greedy algorithm and by the definitions of Fi−1 and xi,

one gets Fi−1∪{xi} ∈ LP . As xi ∈ EP, there exist sp and so such that xi = sp⊙ so. Like in the proof of Proposition 3,

let Yi denote the subset of elements of OPT (Fi−1)\Fi−1 of the form sp⊙ sk, sk⊙ so, or sk⊙ sp, where sk⊙ sp belongs

to a cycle in OPT (Fi−1)∪{xi}. Thus, OPT (Fi−1)\Yi∪{xi} ∈ LP , and

w(OPT (Fi−1)) = w(OPT (Fi−1)\Yi∪{xi})+w(Yi)−w(xi),

≤ w(OPT (Fi))+w(Yi)−w(xi).
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Indeed, w(OPT (Fi−1) \Yi ∪ {xi}) ≤ w(OPT (Fi)) because OPT (Fi−1) \Yi ∪ {xi} is an extension of Fi−1 ∪ {xi} and

because OPT (Fi) is an extension of maximum weight of Fi−1∪{xi}.
Now let us show by contraposition that for any element y ∈ Yi, w(y)≤ w(xi). Assume that there exists y ∈ Yi such

that w(y)> w(xi). As y /∈ Fi−1, y has already been considered by the greedy algorithm and not incorporated in the F .

Hence, there exists j ≤ i such that Fj∪{y} /∈ LP , but Fj∪{y} ⊆OPT (Fi−1) ∈ LP , which is a contradiction. Thus, we

obtain w(y)≤ w(xi) for any y ∈ Yi.

Now we know that #(Yi)≤ 3. Let us inspect two subcases.

Case 1 : #(Yi)≤ 2.

We have w(Y )≥ 2w(xi), hence w(OPT (Fi−1))≤ w(OPT (Fi))+w(xi).

Case 2 : #(Yi) = 3.

There exists sk and sk′ such that sp⊙ sk′ and sk⊙ so are in Yi. By Lemma 5, we have w(xi)+w(sk⊙ sk′)≥ w(sp⊙ sk′)+
w(sk⊙ so). As sp⊙ sk′ and sk⊙ so belong to OPT (Fi−1), one deduces sk⊙ sk′ /∈ OPT (Fi−1).

We get OPT (Fi−1) \Yi ∪{xi,sk⊙ sk′} ∈ LP . Indeed, as Yi ⊆ OPT (Fi−1), neither a right overlap of sk, nor a left

overlap of sk′ can belong to OPT (Fi−1). Furthermore, adding sk⊙ sk′ to OPT (Fi−1) \Yi ∪{xi} cannot create a cycle,

since otherwise a cycle would have already existed in OPT (Fi−1). This situation is illustrated in Figure 1.

We have w(OPT (Fi−1)\Yi∪{xi, sk⊙sk′})≤w(OPT (Fi−1∪{xi, sk⊙sk′})), because OPT (Fi−1)\Yi∪{xi, sk⊙sk′}
is an extension of Fi−1∪{xi, sk⊙sk′} and OPT (Fi−1∪{xi, sk⊙sk′}) is a maximum weight extension of Fi−1∪{xi, sk⊙
sk′}. As w(OPT (Fi−1∪{xi, sk⊙ sk′}))≤ w(OPT (Fi−1∪{xi})), by Lemma 6 one gets:

w(OPT (Fi−1)) = w(OPT (Fi−1)\Yi∪{xi, sk⊙ sk′})+w(Yi)−w(xi)−w(sk⊙ sk′),

≤ w(OPT (Fi−1∪{xi, sk⊙ sk′}))+w(Yi)−w(xi)−w(sk⊙ sk′),

≤ w(OPT (Fi))+w(Yi)−w(xi)−w(sk⊙ sk′).

As Yi = {sp⊙ sk′ ,sk⊙ so,sk′′ ⊙ sp}, one obtains

w(OPT (Fi−1)) ≤ w(OPT (Fi))−w(sk⊙ sk′)+w(Yi)−w(xi),

≤ w(OPT (Fi))−w(sk⊙ sk′)+w(sp⊙ s′k)+w(sk⊙ so)+w(sk′′ ⊙ sp)−w(xi).

≤ w(OPT (Fi))+w(sk′′ ⊙ sp)

≤ w(OPT (Fi))+w(xi).

Remembering that OPT ( /0) is an optimum solution, by induction one gets

w(OPT (F0)) ≤ w(OPT (Fl))+
l

∑
i=1

w(xi)

≤ w(Fl)+w(Fl)

≤ 2w(Fl).

We can substitute w(OPT (Fl)) by w(Fl) since Fl has a maximal weight by definition. Let sopt be an optimal solution

for Maximal Compression, ‖P‖− |sopt | = w(OPT ( /0)). As Fl is maximum, l(Fl) is the superstring of P output by the

greedy algorithm and thus, ‖P‖− |l(Fl)|= w(Fl). Therefore,

1

2
(‖P‖− |sopt |) ≤ ‖P‖− |l(Fl)| .

Finally, we obtain the desired ratio: the greedy algorithm of the subset system achieves an approximation ratio of 1
2

for the Maximal Compression problem.
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xi
sp s0

sk′′

sk′

si1

sk

Figure 1: Impossibility to create a cycle by adding sk⊙ sk′ to OPT (Fi−1)\Yi∪{xi}, without having an already existing

cycle in OPT (Fi−1). Since we are adding xi to OPT (Fi−1), we need to remove three elements in red: sk′′ ⊙ sp,sp⊙
sk′ ,sk⊙ so.

3.1 Equivalence between the greedy algorithm and algorithm greedy

Here, we prove that the algorithm greedy defined by Tarhio and Ukkonen [12] and studied by Blum and colleagues

[3] for the Maximal Compression problem, computes exactly the same superstring as the greedy algorithm of the

subset system (EP,LP ) (see Definition 3.1 on p. 6). This is to show that these two algorithms are equivalent in terms

of output and that the approximation ratio of 1/2 of Theorem 7 is valid for both of them. Remind that the input,

P := {s1,s2, . . . ,sp}, is a set of p strings of Σ⋆.

Proposition 8. Let F be an maximal element for inclusion of LP . Thus, there exists a permutation of the input strings,

that is a set {i1, . . . , ip}= {1, . . . , p} such that

F = {si1 ⊙ si2 ,si2 ⊙ si3 , . . . ,sip−1
⊙ sip}.

Proof. By the condition (L3), cycles are forbidden in F . Hence there exist sd1
,sx ∈ S such that sd1

⊙ sx ∈ F , and for

all sy ∈ S, sy⊙ sd1
/∈ F .

Thus, let (i j) j∈I be the sequence of elements of P such that i1 = d1, for all j ∈ I such that j+1 ∈ I, si j
⊙ si j+1

∈ F ,

and the size of I is maximum. As F has no cycle (condition L3), I is finite; then let us denote by t1 its largest element.

We have for all sy ∈ P, st1 ⊙ sy /∈ F . Hence, ∪ j∈I i j is the interval comprised between sd1
and st1 .

Assume that F \{∪ j∈I i j} 6= /0. We iterate the reasoning by taking the interval between sd2
and st2 and so on until

F is exhausted. We obtain that F is the set of intervals between sdi
and sti . By the condition (L1) and (L2), st1 (resp.

sd2
) is in the interval between sd j

and st j
⇒ j = 1 (resp. j = 2). As st1 ⊙ sd2

∈ E, and F ∪{st1 ⊙ sd2
} ∈ LP , F is not

maximum, which contradicts our hypothesis.

We obtain that F \{∪ j∈I i j}= /0, hence the result.

For each set F := {si1⊙si2 , . . . ,sip−1
⊙sip} that is a maximal element of LP for inclusion, remind that l(F) denotes

the superstring of S obtained by agglomerating the input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ . . . ⊕ sip .

The algorithm greedy takes from set P two words u and v having the largest maximum overlap, replaces u and v

with a ⊕ b in P, and iterates until P is a singleton.

Proposition 9. Let F be the output of the greedy algorithm of subset system (EP,LP ), and S the output of Algorithm

Greedy for the input P. Then S = {l(F)}.
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Proof. First, see that for any i between 1 and p, there exists s j and sk such that ei = s j⊙ sk. If F ∪{ei} ∈ LP , then by

Conditions (L1) and (L2), one forbids any other left overlap of sk or any other right overlap of s j are prohibited in the

following. As cycles are forbidden by condition (L3), one will finally obtain the same superstring by exchanging the

pair s j and sk with s j ⊕ sk in E.

The algorithm greedy from [12] can be seen as the greedy algorithm of the subset system (EP,LP ). By the

definition of the weight w, the later also answers to the Maximal Compression problem. Both algorithms are thus

equivalent.

3.2 Shortest Cyclic Cover of Strings

A solution for MC must avoid overlaps forming cycles in the constructed superstring. However, for the Shortest Cyclic

Cover of Strings problem, cycles of any positive length are allowed. As in Definition 3.1, we can define a subset system

for SCCS as the pair (EP,LC ), where LC is now the set of F ⊆ EP satisfying only condition (L1) and (L2). A solution

for this system with the weights defined as the length of maximal overlaps is a set of cyclic strings containing the

input words of P as substrings. One can see that the proof of Theorem 7 giving the 1/2 ratio for MC can be simplified

to show that the greedy algorithm associated with the subset system (EP,LC ) achieves a 1/1 approximation ratio, in

other words exactly solves SCCS.

Theorem 10. The greedy algorithm of (EP,LC ) exactly solves Shortest Cyclic Cover of Strings problem in polynomial

time.

4 Conclusion

In this work, we investigated the approximation performance of greedy algorithms on well known problems using the

power of subset systems. Greedy algorithms are algorithmically simpler, and usually easier to implement than more

complex approximation algorithms.

For instance, the upper and lower bounds of approximation are still being refined for the Shortest Superstring and

Maximal Compression problems. It is important to know how good greedy algorithms are. Here, we gave a new and

simpler proof of the 1/2 approximation ratio for Maximal Compression, and have shown that the greedy algorithm

solves the Shortest Cyclic Cover of Strings problem exactly.

For the cover of graphs with maximum weight Hamiltonian path or set of cycles, the subset system and its asso-

ciated greedy algorithm, provides an approximation ratio for a variety of problems, since distinct kinds of cycles can

be forbidden in the third condition of the subset system (see Def. 2.1 on p. 5). For the general Maximum Asymmetric

Travelling Salesman Problem problem, it achieves a 1/3 ratio, and a 1/2 ratio for the Maximum Directed Cyclic Cover

problem.
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Figure 2: Example of an Overlap Graph for the input words P := {baaba,babaa,aabab,babba}.
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