
HAL Id: lirmm-00936487
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00936487

Submitted on 21 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ALASKA for Ontology Based Data Access
Jean-François Baget, Madalina Croitoru, Bruno Paiva Lima da Silva

To cite this version:
Jean-François Baget, Madalina Croitoru, Bruno Paiva Lima da Silva. ALASKA for Ontology Based
Data Access. ESWC: European Semantic Web Conference, May 2013, Montpellier, France. pp.157-
161, �10.1007/978-3-642-41242-4_16�. �lirmm-00936487�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00936487
https://hal.archives-ouvertes.fr


ALASKA for Ontology Based Data Access

Jean-François Baget, Madalina Croitoru, and Bruno Paiva Lima da Silva

LIRMM (University of Montpellier II & CNRS), INRIA Sophia-Antipolis, France

Abstract. Choosing the tools for the management of large and semi-structured
knowledge bases has always been considered as a quite crafty task. This is due to
the emergence of different solutions in a short period of time, and also to the lack
of benchmarking available solutions. In this paper, we use ALASKA, a logical
framework, that enables the comparison of different storage solutions at the same
logical level. ALASKA translates different data representation languages such
as relational databases, graph structures or RDF triples into logics. We use the
platform to load semi-structured knowledge bases, store, and perform conjunctive
queries over relational and non-relational storage systems.

1 Motivation and Impact

The ONTOLOGY-BASED DATA ACCESS (ODBA) problem [4] takes a set of facts, an
ontology and a conjunctive query and aims to find if there is an answer / all the an-
swers to the query in the facts (eventually enriched by the ontology). Several languages
have been proposed in the literature where the language expressiveness / tractabil-
ity trade-off is justified by the needs of given applications. In description logics,
the need to answer conjunctive queries has led to the definition and study of less
expressive languages, such as the EL ([1]) and DL-Lite families [2]. Properties of
these languages were used to define profiles of the Semantic Web OWL 2 language
(www.w3.org/TR/owl-overview).

When the above languages are used by real world application, they are encoded
in different data structures (e.g. relational databases, Triple Stores, graph structures).
Justification for data structure choice include (1) storage speed (important for enrich-
ing the facts with the ontology) and (2) query efficiency. Therefore, deciding on what
data structure is best for one’s application is a tedious task. While storing RDF(S) has
been investigated from a database inspired structure [3], other logical languages did not
have the same privilege. Even RDF(S), often seen as a graph, has not been thoroughly
investigated from a ODBA perspective wrt graph structures and emergence of graph
databases in the NoSQL world.

This demo will allow to answer the following research question: “How to design an
unifying logic-based architecture for ontology-based data access?”.

2 ALASKA

We thus demonstrate the ALASKA (acronym stands for Abstract and Logic-based
Architecture for Storage systems and Knowledge bases Analysis) platform. ALASKA’s
goal is to enable and perform ODBA in a logical, generic manner, over existing, het-
erogenous storage systems. The platform architecture is multi-layered.

P. Cimiano et al. (Eds.): ESWC 2013, LNCS 7955, pp. 157–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.w3.org/TR/owl-overview


158 J.-F. Baget, M. Croitoru, and B.P.L. da Silva

KRR
operations

IFact

< interface >

IAtom

< interface >

ITerm

< interface >

GDB
Connectors

RDB
Connectors

TS
Connectors

Predicate TermAtom

GDB RDB TS

Application
layer (1)

Abstract
layer (2)

Translation
layer (3)

Data
layer (4)

RDF File Input Manager RDF Parser

IFact Manager

IFact to GDB
Translation

IFact to RDB
Translation

Graph DBRelational DBTriple Store

Layer (1)

Layer (2)

Layer (3)

Layer (4)

Fig. 1. ALASKA class diagram, and workflow of storage protocol

The first layer is (1) the application layer. Programs in this layer use data structures
and call methods defined in the (2) abstract layer. Under the abstract layer, the (3)
translation layer contains functions by which logical expressions are translated into the
languages of several storage systems. Those systems, when connected to the rest of the
architecture, compose the (4) data layer. Performing higher level reasoning operations
within this architecture consists of writing programs and functions that use exclusively
the formalism defined in the abstract layer. Once this is done, every program becomes
compatible to any storage system connected to architecture.

To have a functional architecture, representative storage systems were selected. The
systems already connected to ALASKA are listed below (please note that this list is not
final and subject to constant updates):

→ Relational databases: Sqlite 3.3.61, MySQL 5.0.772

→ Graph databases: Neo4J 1.8.13, DEX 4.74, OrientDB 1.0rc65, HyperGraphDB
1.16

→ Triples Stores: Jena TDB 0.9.47

Figure 1 displays, on the left-hand side, the class diagram of the architecture. On the
right-hand side the workflow of knowledge base storing is illustrated. Let us analyse
the workflow. We consider a RDF file as input. The RDF file is passed to the Input
Manager (layer 1). According to the storage system needs the Input Manager directs
it accordingly. If the RDF file will be stored in a Triple Store than the file is directly
passed to the Triple Store of choice (layer 4). If the RDF file needs to be stored in
a graph database the file is first transformed in an IFact object (layer 2). It is then
translated (layer 3) to the language of the system of choice (graph database in this case)
before being stored onto disk (layer 4).

Querying in ALASKA follows a similar workflow as the storage. In Figure 2, on the
left hand side we show the storing workflow for storing a fact F in either a relational
database or a graph database (for simplification reasons). On the right hand side of

1 http://www.sqlite.org/
2 http://www.mysql.com/
3 http://www.neo4j.org/
4 http://www.sparsity-technologies.com/dex
5 http://www.orientechnologies.com/orient-db.htm
6 http://www.hypergraphdb.org/
7 http://jena.sourceforge.net/

http://www.sqlite.org/
http://www.mysql.com/
http://www.neo4j.org/
http://www.sparsity-technologies.com/dex
http://www.orientechnologies.com/orient-db.htm
http://www.hypergraphdb.org/
http://jena.sourceforge.net/


ALASKA for Ontology Based Data Access 159

the figure the querying workflow is depicted for graph and relational databases. Let
us consider a fact F both stored in a relational database and in a graph database. Let
us also consider a query Q. This query can either be expressed in SQL (or in a graph
language of choice) and be sent directly to the respective storage system (e.g. the SQL
Q query to the F in the relational database). Alternatively, the query can be translated
in the abstract logic language and a generic backtrack algorithm used for answering Q
in F . This generic backtrack algorithm will solely use the native language “elementary”
operations for accessing data.

F

Abstract Architecture

Relational DB Graph DB

Q

Abstract
Architecture

Q → SQL
Q →
Graph
Query

F stored in
Graph DB

F stored in
Relational DB

Fig. 2. ALASKA storage and querying workflow

3 ALASKA Demo Procedure

In a nutshell, the demo procedure of ALASKA goes as follows. Given a knowledge base
(user provided or selected amongst benchmarks provided by ALASKA) a set of storage
systems of interest are selected by the user. The knowledge base is then transformed in
the Abstract Architecture and consequently stored in the selected systems. The storage
time per system is then showed to the user (excluding the time needed for translation
into Abstract Layer). Once the storage step is finished, users are able to perform con-
junctive queries over the knowledge bases and, once again, compare the time of each
system for query answering.

Let us consider an example. The knowledge base used here has been introduced by
the SP2B project [5]. The SP2B project supplies a generator that creates knowledge
bases with a certain parametrised quantity of triples maintaining a similar structure to
the original DBLP knowledge base. The generator was used to create 5 knowledge
bases of increasing sizes (5 million triples, 20, 40, 75 and respectively 100). Each of
the knowledge bases has been stored in Jena, DEX, SQLite and Neo4J. In Figure 3 we
show the time for storing the knowledge bases and their respective sizes on disk.

The user can see that the behavior of Jena is worse than the other storage systems.
This is due to the Jena RDF parser uses central memory for buffering purposes when
loading a file. For comparison, the other systems use the custom made RDF parser of
ALASKA. Let us also note that DEX behaves much better than Neo4J and this is due
to the fact that ACID transactions are not required for DEX (while being respected
by Neo4J). Second, the size of storage is also available to the user. One can see, for
instance, that the size of the knowledge base stored in DEX and Neo4J is well under



160 J.-F. Baget, M. Croitoru, and B.P.L. da Silva

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

·104

Size (Millions of triples)

T
im

e
(s

)
Stores

Jena TDB DEX Sqlite Neo4J

Size of the stored knowledge bases
System 5M 20M 40M 75M 100M
DEX 55 Mb 214.2 Mb 421.7 Mb 785.1 Mb 1.0 Gb
Neo4J 157.4 Mb 629.5 Mb 1.2 Gb 2.3 Gb 3.1 Gb
Sqlite 767.4 Mb 2.9 Gb 6.0 Gb 11.6 Gb 15.5 Gb

Jena TDB 1.1 Gb 3.9 Gb 7.5 Gb - -
RDF File 533.2 Mb 2.1 Gb 4.2 Gb 7.8 Gb 10.4 Gb

Fig. 3. Storage time and KB sizes in different systems

the size of initial RDF file. However, the size of the file stored in Jena is bigger than the
one stored in SQLite and bigger than the initial size of the RDF file.

Once the storage step is finished, users are able to perform conjunctive queries. As
already explained, querying the newly-stored knowledge base using the native interro-
gation engine (SQL for relational databases, SPARQL for 3Stores, etc.) is still possible
with ALASKA. However, ALASKA also allows the possibility to perform conjunctive
queries that access any storage system included in the platform using the same back-
track algorithm. The queries we have used here are:

1. type(X,Article)
Returns all the elements which are of type article.

2. creator(X,PaulErdoes) . creator(X,Y)
Returns the persons and the papers that were written with Paul Erdoes.

3. type(X,Article) . journal(X,Journal1-1940) . creator(X,Y)
Returns the creators of all the elements that are articles and were published in Journal 1
(1940).

4. type(X,Article) . creator(X,PaulErdoes)
Returns all the articles created by Paul Erdoes.

In the graphs in Figure 4 and 5 we show the combination storage and querying al-
gorithm. For instance Jena(BT) stands for using Jena for elemntary access operations
and the generic backtrack for querying. SQLite(SQL) uses directly the SQL querying
engine over the data stored in SQLite. In the graph corresponding to Q1 we also study
the behavior of SQLite using the genric backtrack. For other queries we did not show it
because the behavior is much worse that the other systems. We can also observe that for
Q1, Q3 and Q4 queries SQLite and Jena behave faster than the graph bases. However,
for Q2 this is no longer the case. In this case the fastest system for the generic backtrack
is Jena followed by Neo4J and DEX, while SQLite explodes. The intuition behind this
behavior is due to the phase transition phenomenon in relational databases but these
aspects are out of the scope of this demonstration.

4 Discussion

An abstract platform (ALASKA) was created in order to perform storage operations
independently of the data location. In order to enable the comparison between different



ALASKA for Ontology Based Data Access 161

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Size (Thousand of triples)

T
im

e
(m

s)
Q1

Jena(BT) DEX(BT) Sqlite(BT)
Neo4J(BT) Sqlite(SQL)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Size (Thousand of triples)

T
im

e
(m

s)

Q2

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

Fig. 4. Querying performance using ALASKA for large knowledge bases: Q1 and Q2

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Size (Thousand of triples)

T
im

e
(m

s)

Q3

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

Size (Thousand of triples)

T
im

e
(m

s)

Q4

Jena(BT) DEX(BT)
Neo4J(BT) Sqlite(SQL)

Fig. 5. Querying performance using ALASKA for large knowledge bases: Q3 and Q4

storage paradigms, ALASKA has to translate a knowledge base from a common lan-
guage (i.e. First Order Logic) into different other representation language. Comparing
different storage and querying paradigms becomes then possible. A knowledge base
stored in a relational database can be also stored in a graph based database as well as a
Triple Store and queried with an in built SPARQL engine etc.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: Proc. of IJCAI 2005 (2005)
2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and

efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning 39(3),
385–429 (2007)

3. Haslhofer, B., Roochi, E.M., Schandl, B., Zander, S.: Europeana RDF store report. Technical
report, University of Vienna, Vienna (March 2011)

4. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002 (2002)
5. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql performance bench-

mark. CoRR, abs/0806.4627 (2008)


	ALASKA for Ontology Based Data Access
	1 Motivation and Impact
	2 ALASKA
	3 ALASKA Demo Procedure
	4 Discussion
	References




