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Abstract

Controlling the interaction between robots and living soft tissues has become an important issue as the number of
robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons
during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback.
In order to increase the performance of such controllers, this work presents a novel force control scheme using Active
Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical
analysis and its performance was evaluated by in-vitro experiments. In order to evaluate how the force control scheme
behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances
are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The
viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion.

Keywords: Force control, soft tissue modeling, robotically-assisted surgery, physiological motion compensation,
beating heart surgery.

1. Introduction

Medical robotics has become a very active research
topic in the last decades. The number of robotic sys-
tems inside the operating room is increasing and the ben-
e�ts of performing robotically-assisted surgery are numer-
ous. Robotized surgery presents many advantages over
conventional surgery, such as reduced patient trauma, ad-
ditional degrees of freedom, physiological motion compen-
sation and tele-operation [5].

In most robotically-assisted medical procedures, the
robot or the tool guided by the robot needs to get in con-
tact with several types of soft tissues. Due to the delicacy
of those tissues, safety is a major concern. The recent ad-
vances in force sensing technologies tend to increase the
use of force information in surgical robots. Force control
algorithms can be a powerful tool to increase safety and
can be used to cope with many important issues, such as
physiological motion compensation, control tissue defor-
mation and haptic feedback during tele-operation.

Using force control is possible to assure the correct in-
teraction between the robotic tool and the tissue [7]. Re-
cently, force controllers have been used in tele-operateded
systems to control the slave robot [21]. Those systemss
have in common a trade-o� between stability and trans-
parency, which is greatly a�ected by the force control de-
sign. Some classical force controllers consider the envi-
ronment as an elastic material. However, soft tissues are
usually viscoelastic, nonlinear and inhomogeneous [39]. In
addition, breathing and beating heart motions may in-

duce disturbances, which make the interaction between the
robotic tool and the human tissues a complex task to be
controlled. In this intricate scenario, stability, robustness
and bandwidth are important aspects of force control for
surrgical robots.

This work aims to present a model based force con-
troller for tool-tissue interaction. First, the work presents
a soft tissue modeling, comparing di�erent soft tissue mod-
els and selecting the most appropriated one. The force
control scheme is designed based on a viscoelastic tissue
model and its stability and robustness are theoretcaly an-
alyzed. Experiments with static and moving environments
are performed to evaluate the controller performance.

2. Previous work

This section presents some of the most relevant works
in the two main topics of this paper. Many researches
have been done in soft tissue modeling and force control
for medical applications. A state of the art of each topic
is presented next.

2.1. Soft tissue models

Several soft tissue models have been already proposed.
In [34], soft tissue models are arranged in groups accord-
ing to the �nal target application. Those groups can be
classi�ed according to two major constraints for almost all
models, which are deformation accuracy and computation
time. Fig. 1 summarizes the di�erent types of applications
according to these constraints. In scienti�c analysis �eld,
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Figure 1: Relation between deformation accuracy and computation
time for soft tissue models

the soft tissue model is used to validate physical hypothe-
sis, to design new procedures or to diagnose a disease. In
this case, the deformation accuracy is much more impor-
tant than the computation time. In the surgery planning
�eld, the computation time starts to become more relevant
due to the need of several trials that must be performed.
In the case of surgery simulation and training a smaller
computation time is required to provide a smooth user
interface. Finally, robotic assisted surgery requires real-
time application, where deterministic computation time is
of primary importance.

The models can also be divided in two main groups:
analytical models and models based on Finite Element
Method (FEM). FEM is a very widespread technique and
is mostly used for tissue simulation. In FEM models, a
tissue specimen is divided into a number of discrete el-
ements forming a mesh [19]. The complete system may
be complex and irregularly shaped, but the individual ele-
ments are easy to analyze. Despite its good accuracy, the
applicability of FEM in real-time is still a challenge due
the time necessary to compute the deformation of all in-
dividual element. Another issue of FEM based model is
the in�uence of boundary conditions, which are very dif-
�cult to be de�ned in-vivo [18]. Analytical models can
be developed to represent the interaction between robotic
tools and soft tissues. These models can be broadly classi-
�ed as linear elastic models, nonlinear elastic models and
viscoelastic models [1].

Until today one of the most complete studies about the
mechanical properties of soft tissue has been presented in
[39]. In his book, Fung proposes a quasi-linear viscoelastic
function to represent the stress-strain relationship. Un-
fortunately, Fung's model is very complex and has many
parameters that must be estimated. In addition, as con-
cluded by [28], small errors in the estimated parameters
a�ect the simulation results. Another interesting model
uses a combination of logarithmic functions and the Ogden
model to describe the stress-strain relationship [26, 27].
However, the tests used to estimate the parameters are de-
signed only for in-vitro tissues, which creates a drawback
for its applicability on an intra-operative in-vivo situation.
A model based on fractional derivatives is presented in [40].

Despite its good accuracy, the lack of recursiveness of frac-
tional derivatives creates a drawback for using this model
in real-time applications, limiting the use of this model to
short real-time experiments.

The Hunt-Crossley is a popular model used to describe
the impact of humanoid robots with soft environment [31].
This model has been used to represent soft tissues, such as
presented by [25] and [29]. The model was �rst proposed
by [30] in 1975 as a nonlinear model with viscous force
proportional to the deformation depth.

In [33] a polynomial function of second order is pro-
posed to model the interaction between the needle and
the tissue during pre-puncture (e.g. surface contact). Af-
ter the puncture the force is modeled by a sum of the
cutting and friction forces. Other polynomial models can
be de�ned, but higher order models have a large number
of parameters to be estimated, which may compromise its
applicability. In [29], palpation experiments on phantom
tissues with polynomial models until 4th order are pre-
sented. The results indicate that the accuracy between
2nd, 3th and 4th order models are very close. The draw-
back of those polynomial models is the fact that they are
adressed only to low frequency deformations.

A traditional way to represent viscoelastic materials
is the combination between springs and dampers. These
classical spring and damper models can also be used to
represent soft tissue behavior [32]. They have the advan-
tage of low computational cost and a physical meaning of
each model parameter can be settled (i.e. springs repre-
sents the elasticity and dampers the viscosity). One of the
goals of this work is to extend the analysis presented in
[14] evaluating a comprehensive group of models and se-
lecting the most suitable one for modeling the tool-tissue
interaction during real-time applciations.

2.2. Force control in the medical robotics

One of the �rst works applying force control to med-
ical robots is presented in [22], where the force feedback
was used to provide safety, tactile capabilities and improve
the man/machine interface. In this work, only rigid tis-
sues were considered, since the main target was orthope-
dic surgeries. More recently, force control has been imple-
mented on tool-tissue interaction, tele-operated systems
with haptic feedback and also to reject disturbance forces
caused by physiological motions.

In [6] a so called external force control is implemented
in the Hippocrate Robot to control an ultrasound probe
in contact with a human body. Latter, in [7], an external
hybrid control is implemented in a skin harvesting robot.
It consists of two embedded control loops combining po-
sition and force control. This architecture was developed
to provide constant exerted force during the harvesting
procedure. External force control schemes are well suited
when simplicity, safety and implementation e�ciency are
of concern [6]. However, in the presence of physiological
motion disturbances, bandwidth limitations can be an is-
sue for such kind of controllers.
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In [8], an impedance control is implemented in a hand
held device to compensate disturbance motions. The pre-
sented results have shown that disturbance rejection was
only possible with disturbances in a small range of low fre-
quencies. In [3], a damping force control is implemented
in a laparoscopic surgical robot without distal force sens-
ing. Damping control is a particular implementation of
impedance control [2], where the desired robot velocities
are calculated based on the exerted force. However, in this
work, the control performance is analyzed without consid-
ering physiological disturbances. Latter, in [37], a control
loop based on Iterative Learning Control (ILC) is imple-
mented in the same robot in addition to the conventional
damping control loop. The ILC is used to compensate
only for the breathing motions, based on the hypothesis
that the disturbance is periodic.

In [38] a feedback force control based on Model Refer-
ence Adaptive Control is presented to compensate for beat-
ing heart motions. The control scheme uses the measures
of the contact e�orts applied by the robot on the heart sur-
face and no a priori information about the beating heart
motion is needed. The e�ectiveness and robustness of the
proposed control are analyzed only through simulation re-
sults. However, the simulations presented do not consider
noise in the force measures and as mentioned by [13], the
noisy characteristic of force measurement is one of the ma-
jor problems when performing force feedback control. A
predictive force control based on a process model to predict
future behavior using current and past forces is presented
in [35]. A simulation study is introduced in [35] and ex-
perimental results using the proposed force controller are
presented under beating heart disturbance motion in [36].
Despite the good results in simulation, the exhibited ex-
perimental results present a peak-to-peak force error of
2N , wich means 20% of the applied force.

Clearly, the use of force control in the presence of com-
plex physiological motions, especially when high frequen-
cies are involved, is still a challenge. The force controllers
previously proposed in the literature have in common the
lack of a realistic soft tissue model. However, the in�uence
of a more accurate tissue model in force controllers perfor-
mance has been already proved [9, 14]. In order to safely
perform robust and e�cient force control under physiologi-
cal motion disturbance, controllers with larger bandwidth
and better stability parameters are needed. This work
aims to the development of a force control based on soft
tissue model to be used not only on static environments,
but also in the presence of complex disturbance motions.

3. Soft tissue modeling

Understanding the interaction between medical tools
and living tissues has become a very important aspect as
the use of robot in medical application increases. Biome-
chanical characteristics of tissues are, in general, nonlinear,
inhomogeneous and anisotropic [39]. These characteristics
give the tissue a complex behavior when in contact with

Model Equation

Elastic f(t) = k · x(t)

K. Voigt f(t) = k · x(t) + b · x(t)dt

K. Boltzmann f(t) = βx(t) + αx(t)
dt − γ

f(t)
dt

Maxwell f(t) = k · x(t) + α · f(t)dt

Hunt-Crossley f(t) = k · xn(t) + λ · xn(t) · x(t)dt

Fractional f(t) = Gdrx(t)
dtk

Table 1: Soft tissue candidate models

any kind of surgical instruments. Since the human body is
mainly a complex combination of soft tissue, understand-
ing and modeling these tissues are vital for the advance-
ment of robotically-assisted surgery.

After a rigorous revision of the state of the art, it is
necessary to de�ne the most suitable model to be imple-
mented in a real-time force controller. Therefore, a group
of candidate models has been selected and evaluated under
experiments, as it is described hereafter.

3.1. Soft tissue models for real-time application

It is almost a general consensus that no mathemati-
cal model can perfectly describe the complex behavior of
soft tissues. But, it is possible to de�ne a suitable model
to be used in a control application as accurate as possi-
ble. Complex models such as the model based on the Og-
den strain energy and the Quasi-linear model are excluded
from our work due to their complexity and great number
of parameters that must be estimated. Therefore, analyz-
ing complexity and feasibility in real-time applications, six
di�erent models are chosen as candidate model:

1. Elastic model

2. Kelvin-Voigt model

3. Maxwell model

4. Kelvin-Boltzmann model

5. Hunt-Crossley model

6. Fractional model

Although the fractional model presents a lack of recursive-
ness in its calculation, we decided to include this model in
the following o�-line analysis due to its good results in re-
cent publications [28]. A summary of the selected models
can be seen on Table 1, where f(t) is the exerted force
and x(t) is the tissue deformation. The elastic model is
commonly used in robotic force control and is used in this
work only as a reference for the comparison, since its lim-
itation in representing the complex behavior of tool-tissue
interaction is clear.
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3.2. Experimental plan and setup

Several types of experiments can be performed in order
to analyze the tissue behavior. Those experiments can be
coarsely classi�ed in two categories depending on the ex-
perimental conditions: experiments performed on a sample
of tissue previously collected, called in-vitro, or performed
directly on a living tissue, called in-vivo. It is clear that
in-vitro specimens have limitations. Indeed, the biome-
chanical characteristics of an in-vitro specimen di�er from
the characteristics of living soft tissues. This fact can be
explained mainly by the absence of vascularisation. On
the other hand, performing a series of in-vivo experiments
is quite complex and usually depends on the approval of
one or more committees of ethics in clinical research. Nev-
ertheless, the use of in-vitro specimen is very common and
can provide results close to the one obtained with living
tissues [39]. In the following subsections experiments with
in-vitro conditions are presented to analyze and compare
the soft tissue candidate models.

3.2.1. Experimental plan

The two most common experiments to analyze soft tis-
sue behavior are relaxation and creep tests [39]. The re-
laxation test consists in performing a position step input
(deformation) on the soft tissue surface and measuring the
exerted force. The creep test is the opposite, a constant
force is applied on the soft tissue and the deformation is
measured. Other tests, such as a slow tissue compression
presented in [24] can also be used to analyze the tissue be-
havior, but it catches the behavior of the tissue only at low
frequencies. In [28] a special setup is presented to perform
experiments to estimate the fractional model parameters.
The experiments combine tissue compression and torsion,
but the protocol was designed to be applied on in-vitro

tissues only.
In this work, to identify the most suitable model, in-

vitro relaxation tests are performed. Although the tests
are performed in-vitro, it is important to notice that the
proposed experimental protocol can be easily implemented
and reproduced in an in-vivo clinical situation. The robot
end-e�ector is positioned on the specimen surface, the
robot moves in order to compress the tissue specimen with
a position step. The robot motion and the exerted force
are recorded and used in the evaluation process.

To evaluate each model, we divided the analysis in two
subsections. In the �rst one, we estimate the unknown
parameters and the exerted force using the same set of
data. Two in-vitro spicimens are used and four relaxatin
tests are perfored on each spicimen. The results are cm-
pared by a graphic inspectin to evaluate the symilarity of
the dynamic behaviour of each model with the experimen-
tal results. The mean force estimatin error is also used to
evaluate the accuracy of each model. After, the models are
also compared in a cross-validation. The cross-validation
is performed using the models de�ned by the average of the
estimated parameters on four previous trials. The exerted

forces are estimated using these average models under in-
put data collected in a di�erent trial.

Although one can argue about the excitation condi-
tions to estimate the models parameters, the relaxation
test is considered as a good way to estimate and analyze
viscoelastic materials, as stated by [17]. In addition, all ex-
periments presented in the following satisfy the condition
for the estimation convergence.

3.2.2. Experimental setup

All tests are performed using the D2M2 robot. This
robot has �ve degrees of freedom with direct drive tech-
nology providing potentially fast dynamics and low friction
[4]. The �rst joint is prismatic and the other fours are revo-
lute joints. The tool-tissue interaction forces are measured
by a force sensor ATI Mini40 (ATI Industrial Automation,
Apex, USA) rigidly attached to the end e�ector. The tool
in contact with the soft tissue is represented by a metallic
cylinder with a diameter of 6mm (see Fig. 2b).

3.3. Estimation Technique

In order to estimate the model parameters, the linear
least square method is used in the following subsections.
The data (i.e. exerteded force and displacement) is col-
lected in a series of relaxation tests and post-processed.
The model parameters and the exerted force are o�ine
estimated and compared. One can notice that the Hunt-
Crossley model is a nonlinear model and for this reason,
a di�erent estimation technique should be used for this
case. However, the results presented in [25] show that
for a viscoelastic material the parameter n in the Hunt-
Crossley model does not present a signi�cant variation and
is usually close to 1.3. In addition, using a large database
of experiments and a nonlinear estimation technique, we
could conclude that the parameter n has values around
1.26. To standardize the estimation, we consider in all
cases n = 1.26, allowing the use of same estimation tech-
nique for all models (i.e. linear least square estimation).
For the Fractional models, the derivative order is the same
as presented by [15] (r = 0.125).

The general model equation is given by:

f = θ1ϕ1(x) + θ2ϕ2(x) + · · ·+ θnϕn(x)

where, ϕ1, ϕ2, · · · , ϕn are known functions, θ1, θ2, · · · ,
θn are unknown parameters and f is the measured force,
which has the property of being linear with respect to the
parameters to be estimated. Therefore, the least square
solution for this problem is given by [16]:

θ̂ = (ΦtΦ)−1Φtf (1)

where,

Φ =

 ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
...

...
...

...
ϕ1(xn) ϕ2(xn) · · · ϕn(xn)


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We can guarantee that the least square problem has a
solution given by (1) if ΦtΦ is non-singular. The matrix
ΦtΦ will be non-singular if conditions are imposed on the
input signal (su�cient richness or persistent). In the gen-
eral least square problem, the estimation convergence is
guaranteed if:

rank(Φ) = dim(θ) (2)

In all tests that are presented in this paper, the con-
vergence condition is guaranteed.

3.4. Experimental Results

Several relaxation tests are performed on two di�erent
soft tissue specimens. The �rst specimen is a pig's heart
(Figure 2a) and the second one is a piece of beef (Figure
2b). The force estimation resuls and the cross-validatin
results are presented next.

3.4.1. Parameters and force estimation

In this �rst group of experiments, the parameters for
each model are estimated o�-line and the estimated forces
are compared to the measured force. Figure 3a shows the
estimated and measured forces of one relaxation test per-
formed on the pig's heart with a step input of 10mm, Fig-
ure 3b shows the results of one relaxation test performed
on the piece of beef with a step input of 8mm. The average
mean force estimation error for each model is presented in
Table2. Analyzing the results presented in Table2, we can
clearly see that the Kelvin Boltzmann, the Hunt Cross-
ley and the Fractional models gave, among all models, the
lowest estimation errors. Despite the slight poor accuracy
of the Fractional model in the transient period observed
by the graphic inspection, its relaxation accuracy had in-
�uenced the mean estimatin error.

As expected, looking at Figure 3a, we can see that
the elastic model reaches approximately the �nal value,
but it does not follow the tissue dynamics. The Kelvin-
Boltzmann model and the Hunt-Crossley model have the
most realistic response, reaching approximately the �nal
value and following the tissue dynamic. The Kelvin-Voigt
model also presents a behavior similar to the tissue dy-
namic, but less accurate if compared with the previous

(a) (b)

Figure 2: In-vitro specimens used in relaxation tests: (a) Pig's heart;
(b) Beef
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Figure 3: Measured and estimated forces relaxation tests: (a) per-
formed on the pig's heart (b) performed on the beef

two models. The Fractional model presents a good force
estimation only after the transient period.

The same conclusion can be reached analyzing Figure
3b. While the Kelvin Boltzmann and the Hunt-Crossley
model gave the best transient estimation, the Fractional
model presents a good estimation after the transient (i.e.
relaxation period). As concluded in [12], the Fractional
model can be a very accurate model under slow or static
deformations. On the other hand, when fast deformations
are applied, the Fractional model may not represent the
tissue behavior as accurate as the Kelvin Boltzmann or
the Hunt-Crossley models.

3.4.2. Cross validation

The cross-validation is important to mathematically
approximate tissue dynamic behavior, since we aim to
model real tissues, which are inhomogeneous [24]. Analyz-
ing the models under the cross-validation, we can evaluate
how a previously identi�ed model predicts the force using
a new set of data.

For the cross-validation, each model is de�ned using
the average of the parameters estimated in four relaxation
tests. Two cross-validation are presented, one using the
database collected in experiments performed on the pig's
heart and the other using the database collected on exper-
iments performed on the beef.
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Model Mean force estimation error (N)

Elastic 0.124± 0.038

K. Voigt 0.449± 0.229

K. Boltzmann 0.115± 0.038

Maxwell 0.092± 0.031

Hunt-Crossley 0.091± 0.030

Fractional 0.065± 0.019

Table 2: Average of mean force estimatin error and standard devia-
tion

The estimated forces in the cross-validation using the
heart database (step input of 10mm) can be seen in Figure
4a. The results using the beef database are presented in
Figure 4b (step input of 8mm).

3.5. Analysis

Among the six candidate models, the Kelvin-Boltzmann,
the Hunt-Crossley and the Fractional models have shown
the best results. The Kelvin Boltzmann and the Hunt-
Crossley stood out specially in the transient response, while
the Fractional model showed a good estimation during the
relaxation period.

Although the Fractional model gave a good force esti-
mation during the relaxation time, its poor accuracy in the
transient period and the lack of recursiveness to calculate
the fractional derivatives are major drawbacks to use this
model within a model based force control scheme.

By graphic inspection, it is clear that the Kelvin Boltz-
mann and the Hunt-Crossley models gave the best re-
sults in terms of both transient performance and accuracy.
However, the Hunt-Crossley and the Kelvin Boltzmann
models have signi�cant di�erences. While the Kelvin Boltz-
mann model is a linear model, the Hunt-Crossley is non-
linear. The Kelvin Boltzmann linearity is an advantage
of using it within a model based force controller, mainly
because of the possibility to use standard techniques to
analyze linear systems. In addition, in the Kelvin Boltz-
mann model the elastic force is given by the term βx(t).
Thus, we can de�ne the parameter β as the purely elastic
parameter (i.e. sti�ness). This sti�ness parameter de�-
nition is important to analyze the static error presented
in the cross-validation. During the relaxation period, ẋ(t)
is zero and ḟ(t) has very low values, for this reason, this
static error can be imputed to a mismatch on the sti�ness
parameter. This mismatch is explained due to the tissue
inhomogeneity, which gives a di�erent sti�ness depending
on the contact point where the experiment is performed.
One solution for this problem is to implement an on-line es-
timation of the sti�ness parameter. Moreover, this on-line
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Figure 4: Cross validation in relaxation tests: (a) using pig's heart
database (b) using beef database

estimation allows the proposed model based force control
to be directly applicable on in-vivo tissues, dealing with
tissue inhomogeneities.

In conclusion, because of its good accuracy and tran-
sient performance, its physical meaning, and linear prop-
erties, the Kelvin Boltzmann is de�ned as the best model
to be inserted within the model based force control.

4. Model based force control

In this section the force control architecture based on
the chosen soft tissue model is presented. The proposed
control scheme is a state space feedback using Active Ob-
server (AOB). The AOB is a stochastic observer used to
estimate the system states and an extra state, which is
added to compensate for modeling errors and system dis-
turbances [41]. In this section the system design and its
stability and robustness analysis are presented.

4.1. Robot and environment modeling

Considering a robot with n degrees of freedom and joint
coordinates q, the free space motion in the joint space can
be written in the form [42]:

M(q)q̈ + V (q, q̇) +G(q) = τc, (3)
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where M(q) is the robot inertial matrix, V (q, q̇) repre-
sents the Coriolis and centrifugal forces, G(q) is the grav-
ity forces matrix and τ is the generalized forces in joint
space. Equation (3) can be rewritten using the Cartesian
space formulation

Mx(q)Ẍ + Vx(q, q̇) +Gx(q) = Fc (4)

The vector X is the Cartesian coordinates and the rela-
tionship between Cartesian and angular velocities is given
by:

Ẋ = J(q)q̇ (5)

The relationship between the generalized end-e�ector
forces Fc and the generalized joint space forces is given by:

τc = J t(q)Fc (6)

The matrix J(q) is the Jacobian matrix and J t(q) is the
transposed Jacobian matrix. The inertial, the gravity and
the Coriolis and centrifugal Cartesian matrices are given
by [10]:

Mx(q) = J−tM(q)J−1

Vx(q, q̇) = J−tV (q, q̇)−Mx(q)J̇(q)q̇

Gx(q) = J−tG(q)

In addition, when the robot is in contact with an envi-
ronment, a new force component appears in the dynamic
equation due to this contact. Thus, including the exerted
force Fe in (4) we obtain:

Mx(q)Ẍ + Vx(q, q̇) +Gx(q) = Fc − Fe, (7)

where the vector Fe is composed by the force exerted in
each Cartesian axis (fe). Considering M̂x(q), V̂x(q, q̇) and
Ĝ(q) the estimations of Mx(q), Vx(q, q̇) and G(q), we can
design a control law given by:

Fc = M̂x(q)U + V̂x(q, q̇) + Ĝ(q) + F̂e (8)

Substituting (8) in (7), it is possible to achieve a decou-
pled second order system along each Cartesian axis such
as

U = Ẍ (9)

The vector U is composed by the control signals for
each degree of freedom. This linearization allows us to
transform a complex nonlinear problem given by (7) into
a simple linear decoupled problem given by (9). The de-
coupled characteristics of the linearized system allows us
to control each degree of freedom independently (position
and orientation). In this work, since we are dealing with
a ponctual contact point, we focus on the control of the
robot Cartesian position.

To improve stability and robustness under modeling
errors, an inner velocity loop with a diagonal matrix gain

Figure 5: Open loop system considering the linearized robot and
the Kelvin Boltzmann model in frequency domain, where s is the
Laplace operator. The input is the contrl signal u and the output is
the exerted force fe.

Kv is added in the system. The di�erential equation is
then given by:

U = Ẍ +KvẊ (10)

The di�erential equation (10) relates the input U with
robot end-e�ector coordinates given by X. The system is
fully decoupled and each degree of freed, i.e., each Carte-
sian axis, can be independently writen as

u = ẍ+ kvẋ (11)

where ẋ and ẍ are ne degree f freedom velocity and ac-
celeration, and u is the control input. We can introduce
the environment model (e.g. the soft tissue model) in the
di�erential equation (10) to relate the control input to the
exerted force, as depicted in Figure 5. Since the system
is decoupled, the control design is done for one degree of
freedom and can be easily replicated to the other degrees
of freedom. Using the Kelvin Boltzmann model, the dif-
ferential equation for each Cartesian axis can be written
as

(α/γ)u̇+ (β/γ)u =
...
fe + (kv + 1/γ)f̈e + (kv/γ)ḟe (12)

where α, β and γ are the Kelvin Boltzmann parameters
and fe is the exerted force in one Cartesian axis. The
transfer function in frequency domain describing the rela-
tion between the input u and the force output fe is given
by

G(s) =
(α/γ)s+ (β/γ)

s3 + (kv + 1/γ)s2 + (kv/γ)s
(13)

where s is the Laplace operator.
The system (13) can also be represented in state space

form. There are several ways to �nd a state space rep-
resentation of a system. Aiming a state space equation
to be used in a control scheme with a state observer, the
Observable Canonical Form (OCF) realization is chosen
[23]. Then, from (13), the OCF realization is obtained in
a straightforward way
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 ẋ1
ẋ2
ẋ3

 =

 −kv − 1/γ 1 0
−kv/γ 0 1

0 0 0

 x1
x2
x3

+

 0
α/γ
β/γ

u(t)

(14)

f(t) =
[

1 0 0
]  x1

x2
x3

 = Cx (15)

Considering that the system is preceded by a zero order
hold (ZOH), the stochastic discrete state space represen-
tation is given by:{

xk = Φxk−1 + Γuk−1 + ξk

yk = Cxk + ηk
(16)

where Φ is the discrete state matrix and Γ is the discrete
input matrix. These matrix can be easily obtained from
(14) [16]. With a known state space representation, one
can, now, de�ne the pole placement control law. The con-
trol law is commonly de�ned as the feedback of a linear
combination of all states elements, such as:

u = −Lx+ r (17)

where L is the state feedback gain and r is the force
reference input. The Ackermann's formula is used to cal-
culate the feedback gain L.

4.2. Viscoelastic Active Observer

The goal of a classical observer is to estimate the sys-
tem states based on the system equations and measure-
ments. In a perfect scenario, the estimated states x̂k should
be a copy of the system states xk. However, in practical ap-
plication, one cannot guarantee that x̂k = xk. An estima-
tion error ek is always associated to the state estimation,
such as:

x̂k = xk − ek (18)

When a state feedback is performed using an observer,
the estimation error ek enters in the system as an addi-
tional undesired input. Using the AOB, an extra state is
added to estimate this error and to compensate it using
the so called active state, given by:

pk = Lek (19)

The AOB scheme is depicted in Figure 6, the active
state estimation p̂k appears in the feedback loop to cancel
the e�ect of the state estimation error.

According to [41], a deterministic approach to model
the active state pk has many limitations, for this reason a
stochastic approach is used, given to the pk the following
evolution equation:

pk − pk−1 = ωk (20)

AOB

C

L

f

x
k-1

z
-1

Plant

+
r
k

u
k k

Figure 6: Active observer diagram: the active state estimation p̂k
tries to compensate pk

in which ωk is a zero-mean Gaussian random variable. It is
important to notice that ωk is seen by the Kalman equa-
tion used in the AOB algorithm as a white noise. Al-
though, it describes the evolution of pk [20].

Introducing the active state in the system equation
(16), we have:



[
xk

pk

]
=

[
Φ Γ

0 1

][
xk−1

pk−1

]
+

[
Γ

0

]
u′k−1 +

[
ξxk

ωk

]

yk = Ca

[
xk

pk

]
+ ηk

(21)
with

u′k−1 = rk−1 −
[
L 1

] [ xk−1
p̂k−1

]
and

Ca = [ C 0 ]

The desired closed loop system appears when p̂k = pk:

[
xk
pk

]
=

[
Φ− ΓL 0

0 1

] [
xk−1
pk−1

]
+

[
Γ
0

]
rk−1+

[
ξxk

ωk

]
(22)

The state estimation is based on (22) and it is given
by:

[
x̂k
p̂k

]
=

[
Φ− ΓL 0

0 1

] [
x̂k−1
p̂k−1

]
+

[
Γ
0

]
rk−1+

+Kk(yk − ŷk)
(23)

where,

ŷk = Ca

([
Φ− ΓL 0

0 1

] [
x̂k−1
p̂k−1

]
+

[
Γ
0

]
rk−1

)
(24)

The matrix Kk is the Kalman gain and is related to the
uncertainty of each state. The Kalman gain is calculated
by:

Kk = P1kC
T
a (CaP1kC

T
a +Rk)−1

8



Figure 7: Schematic diagram for the loop transfer function (LTF)

P1k = ΦaPk−1ΦT
a +Qk

Pk = P1k −KkCaP1k

The matrix Φa is called the augmented open loop ma-
trix and has the form:

Φa =

[
Φr Lr

0 1

]
The matrix Qk is the system covariance noise and Rk

is a scalar value related to the measurement covariance
noise. Qk has the form:

Qk =

[
Qx 0
0 Qp

]
The estimation strategy depends on the relation between
Qk and Rk values. If the model accuracy is higher than the
measurement accuracy (Qk << Rk), a model-based ap-
proach (MBA) is considered with low Kalman gain values.
On the other hand, if the measurement is more accurate
(Qk >> Rk), a sensor based approach (SBA) is followed
with high Kalman gain values. Another important aspect
in the AOB tuning is the relation between Qx and Qp,
the higher the value of Qp is with respect to Qx, the more
active the extra state will be.

4.2.1. System stability

Phase and gain margins are the most common indi-
cators to analyze relative stability. In the case of systems
with observers, this analysis can be made through the loop
transfer function (LTF). Figure 7 presents the schematic
representation of LTF for a system with observer, where
r is the system input and y the system output. The LTF
is then the relation between the control input u and the
LTF output Y .

The corresponding LTF for proposed force controller is
given by:

Rise time [s] Phase Margin Gain Margin
0.980 87.53◦ 7.66
0.600 84.29◦ 5.92
0.225 57.40◦ 4.13
0.090 30.73◦ 3.42

Table 3: Phase and gain margins with di�erent desired rise times
(Qx = 10−7, Qp = 10−4, Rk = 10−3 )



[
x̂k

ek

]
=

[
Φ − (I −KkC)ΓL KkCΦ

(I −KkC)ΓL (I −KkC)Φ

]
·
[

x̂k−1

ek−1

]
+

+

[
KkCΓ

(I −KkC)Γ

]
uk−1

Y =
[

L 0
]
·
[

x̂k

ek

]
(25)

For the following analysis, the Kelvin Boltzmann tissue
model identi�ed in the last section is used, The model is
given by the equation:

f(t) = 190x(t) + 27
dx(t)

dt
+ 0.0345

df(t)

dt
(26)

The AOB is conservatively tuned to have a model based
behaviour with the values:

Qx = 10−7, Qp = 10−4, Rk = 10−3

Four di�erent desired closed loop behaviors are selected
to have its relative stability analyzed. The closed loop
behavior is given by the desired rise time and it is set
to have no overshoot. The desired rise times are chosen
between a very slow time response (0.980 seconds) and a
fast time response (0.090 seconds). Table 3 presents the
phase and the gain margins for four di�erent desired closed
loop behavior. One can conclude that a trade-o� between
rise time and stability appears in the control design.

The AOB tuning is also determinant to the system sta-
bility.The tuning is done by selecting the values of Qx, Qp

and Rk. The relation between Qx and Qp gives how adap-
tive is the AOB, and the relation between Qx and Rk de-
termines if the system has a model based approach (MBA)
or a sensor based approach (SBA). Three AOB tunings
are selected to analyze their phase and gain margins: in
the �rst two cases the AOB is set as model based (i.e.
Qx < Rk). In the third case Qx = Rk, which means the
AOB is set with a sensor based approach (SBA). The rise
time chosen for all cases is an intermediate value among
the values listed in Table 3: 0.600s.

The results presented in Table 4 shows that increasing
Qx the AOB reduce its stability margins. As we increase
the value of Qx, the active state increases its capability of
compensating for modeling errors, but on the other hand
we decrease phase and gain margins. Although the SBA
may present a better error compensation, it can be un-
desired in a real application due to the proximity to in-
stability. At this point one can �nd a trade o� between
modeling error compensation and stability.
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Tuning Phase Gain
Margin Margin

Case 1 (MBA) Qx = 10−7 84.29◦ 5.92
Case 2 (MBA) Qx = 10−5 79.94◦ 8.92
Case 3 (SBA) Qx = 10−3 41.41◦ 20.26

Table 4: Phase and gain margins with di�erent AOB tunings and
desired rise time of 0.600s. The values of Qp and Rk in the three
cases are 10−4 and 10−3 respectivelly.

4.2.2. System Robustness

The robustness analysis is performed to understand
how parameter mismatches a�ect the system stability. The
goal of this subsection is to de�ne, in theory how much er-
rors the system can handle and which parameter is more
sensitive to errors.The robustness analysis is done through
the relative stability when parameter mismatches occur.
For a given parameter error, the AOB matrices have to be
calculated such as:

Φn = Φ−∆Φ (27)

Γn = Γ−∆Γ (28)

where, Φn and Γn are the nominal matrices used in the
AOB design and ∆Φ and ∆Γ are the errors induced by
the parameter mismatches. Then, the relative stability is
obtained by the LTF given by:



[
x̂k

ek

]
=

[
Φn − ΓnL + KkC(∆Φ + ΓnL) KkCΦ

(I −KkC)(∆Φ + ΓnL) (I −KkC)Φ

]
·

·
[

x̂k−1

ek−1

]
+

[
KkCΓ

(I −KkC)Γ

]

Y =
[

L 0
]
·
[

x̂k

ek

]
(29)

In the Kelvin Boltzmann model, the mismatch can oc-
cur on three parameters. To study the in�uence of the
mismatch in the parameters, an error has been added on
each parameter separately and also on the three parame-
ters at the same time. Four cases have been considered,
such as:

1. Case (a): αr = δ · α, βr = β and γr = γ

2. Case (b): αr = α, βr = δ · β and γr = γ

3. Case (c): αr = α, βr = β and γr = δ · γ
4. Case (d): αr = δ · α, βr = δ · β and γr = δ · γ

with {δ ∈ R‖0.8 ≤ δ ≤ 4.0}. It means that in case (a) the
error is added only on α, in case (b) the error is added
only on β, in case (c) the error is added only on γ and
in the last case the error is added on all three parameters
simultaneously.

Of course this analysis is quite simplistic, since in a real
situation it is unusual to get a linear parameter mismatch.
In fact, the de�nition of how this mismatch occurs on a
soft tissue is almost impossible due to the inhomogeneity
presents on soft tissues. However, this analysis helps to
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Figure 8: Phase and gain margins with parameter mismatches

understand how those mismatches a�ect the system sta-
bility. The soft tissue model used is the same as the one
presented in the last subsections and the AOB is tuned as
a model based with:

Qx = 10−5, Qp = 10−4, R = 10−3

Using (29), the phase and gain margins are calculated.
The curves of phase and gain margins versus the parameter
errors in percentage are shown in Figure 8.

The phase margin analysis shows that, the system has
proved to be stable with real parameter values up to 300%
(Pm = 0) higher than the nominal parameters. It is pos-
sible to observe that for all analyzed cases, the system be-
comes unstable as the mismatch becomes larger. Anyhow,
looking at the graph one can conclude that the mismatches
in α and γ change the phase and gain margins, but do not
create unstable systems. On the other hand, the sti�-
ness parameter β can be pointed as the critical parameter,
unstabilizing the system when the mismatch approaches
300%. It is also the one that mostly determines the phase
margin when errors are presented in all parameters. To
cope with this mismatch problem an on-line estimation of
the sti�ness parameter is included in the system during
the experiments.

5. Experimental Results

In this section, the experimental results are presented.
In order to evaluate the proposed force control, experi-
ments with surface contact on a static environment and
on a moving environment are performed. The static ex-
periment is performed on an in-vitro tissue and the mov-
ing environment experiments are performed on a polyvinyl
chloride (PVC) phantom. The PVC phantom was used
because it has been used in previous works to represent
human soft tissue due to its properties similar to human
tissues [43, 44, 45]. The moving environment is created
to simulate physiological motions. In addition, to increase
the system robustness an on-line estimation of the sti�ness
parameter is performed.
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5.1. On-line parameter estimation

The model parameters may vary due to the complexity
of tissues and its inhomogeneity. For that reason, an on-
line updating of parameters is desirable and can increase
the relative stability of the system. In theory, the three
parameters of the Kelvin Boltzmann model can be esti-
mated, but in practice we can only guarantee convergence
in the estimation of parameters when it is su�ciently ex-
cited. For instance when the interaction between the robot
and the tissue is smooth, the tissue viscosity may not be
excited enogth, leading to false estimated values of α and
γ. Additionally, according to the results given in section
4.2.2, the mismatch in the parameter β is the one that
most in�uences the stability of the system. Therefore, we
decided to perform an on-line estimation on the parameter
β.

The parameters α and γ are estimated o�-line as de-
scribed in Section 3 and will not be updated. However,
since the o�-line estimation protocol is adaptable to in-

vivo situations, pre-operative tests can be perform to esti-
mate these two parameters in an in-vivo clinical scenario.
Therefore, the Kelvin Boltzmann model is written as:

f(t) = −αdf(t)

dt
+ γ

dx(t)

dt
+ βkx(t)

where βk is the sti�ness parameter estimated on-line by a
Kalman Filter. The estimation of β is used to update the
AOB matrices and the feedback gain matrix.

5.2. Static environment

For this experiment the AOB is tuned as MBA, with
R = 0.01, Qx = 10−9 and Qp = 10−5. The o�-line esti-
mated parameters for the in-vitro specimen are:

• α = 34.3, β = 200.0 and γ = 0.024.

The desired closed loop poles are allocated together in s =
−10, given a closed loop behavior with no overshoot and
a rise time of 213ms. The initial feedback matrix is:

L =
[

0.809 −0.019 0.00076
]

The measured force as well as the desired force and
the estimated force are plotted in Figure 9. The on-line
estimation of the sti�ness parameter β, shown in Figure 10,
illustrates how the soft tissue sti�ness changes during the
experiment. The experimental result shows a satisfactory
behavior, following the desired trajectory without neither
overshoot nor static error.

5.3. Moving environment

The motion compensation experiments are performed
using two robots (Figure 11). The force control algorithm
is implemented in the D2M2 robot. The second robot is
a Viper S650, which holds a phantom made of polyvinyl
chloride (PVC) and performs the disturbance motion. The
Viper controller is running a position control with sam-
pling frequency of 1kHz and is set to perform breathing
motion or beating heart motion. It is important to notice
that the D2M2 robot has no previous information about
the disturbance motion performed by the Viper robot.
Figure 11 shows the experimental platform used in the
following experiments. The tissue used in the next ex-
periments is a PVC phantom with the following Kelvin
Boltzmann parameters:

α = 5.0, β = 290.0 and γ = 0.02.

The AOB is tuned with Qx = 10−11, Qp = 10−6,
Rk = 10−2. The desired closed loop is set to give no
overshoot and rise time of 0.080s. Ideally, higher values
of Qp should give better compensation results. However,
it was not possible to experimentally tune the AOB with
higher values of Qp without compromising the stability of
the system.

5.3.1. Breathing motion

For the breathing motion experiment, the disturbance
is given by a sinusoidal wave with 0.2Hz of frequency and
5mm of amplitude.

Figure 12 shows the force measurements during the
experiments with breathing motion disturbance with and
without force control. When the force control is o�, the
peak force error has amplitude around 0.9N ,which means
45% of the desired force. When the force control is run-
ning, the peak-to-peak force error is reduced to 0.1N ,
which means 5% of the desired force. The control input
and the active state estimation can be seen in Figure 13.
It is possible to observe that the active state has an im-
portant role in the control input. This happens because it
compensates not only for the modeling errors, but also for
the disturbance motion.
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Figure 9: Force information during experiments on pig's heart sur-
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Figure 11: Experimental platform for motion compensation: The
D2M2 robot is running the force control and the Viper Robot per-
forms the disturbance motion. The force control is used to keep the
contact force constant even in the presence of disturbances.
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line is the measured force when the proposed force control is running.
The desired exerted force is 2N
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compensation
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Figure 15: Control input and active state during beating heart mo-
tion compensation

5.3.2. Beating heart motion

For the beating heart motion experiment, the distur-
bance is given by the heart motion recorded in-vivo by a
Da Vinci System (Intuitive Surgical Inc., Sunnyvale, USA)
[11]. The motion in Z axis is chosen due its complexity,
including breathing and heart motion and also having the
larger amplitude of all axis.

Figure 14 shows the force measurements during the ex-
periments with beating heart motion disturbance. When
the force control is o�, the peak force error has amplitude
around 1.4N ,which means 70% of the desired force. When
the force control is running, the force error is reduced to
0.3N , which means 15% of the desired force. The control
input and the active state estimation can be seen in Figure
15.

5.4. Discussion

The presented experiments have shown that the pro-
posed model based force control presents a stable behavior
even in the presence of disturbance motions. On the static
environment, the controller has presented a performance
with no overshoot and no static error. In addition, the
on-line estimation of β has proved its ability to deal with
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inhomogeneities and nonlinearities present on the tissue
sti�ness.

On the moving environment, the controller was able to
compensate for complex physiological motions used as dis-
turbance. The e�ectiveness of motion compensation can
be evaluated by the compensation ratio (i.e the relation
between the peak-to-peak force error with and without
force control). For breathing disturbance motion, the sys-
tem had a compensation ratio of 87%. A compensation
ratio of 79% is achieved when the beat heart motion is
applied as disturbance. Unfortunatelly, there are just a
few works dealing with beating heart motion compensa-
tion using force control under experimental results, but
comparing our results with a previous work, a compensa-
tion ratio for beating heart motion of 72% is presented in
[36].

The theory shows that the viscoelastic AOB could achieve
an even better disturbance rejection if a more aggressive
tuning is performed. However, many characteristics of the
experimental setup in�uence the AOB tuning. One im-
portant issue is the presence of noise on the force mea-
surements. Therefore, the motion compensation can be
improved by using a force sensor with higher signal-to-
noise ratio.

6. Conclusion

This paper has presented a model based force control
for tool-tissue interaction. In this context, a soft tissue
model was selected among several candidate models. The
Kelvin Boltzmann model was chosen due to its accuracy
and feasible of implementation. This model was intro-
duced in a force control scheme. The preliminary results
presented in [14] have already shown by experiments how
a viscoelastic model can improve a force control scheme for
tool-tissue interaction. In this paper, the stability and ro-
bustness of the control scheme were also theoretically eval-
uated. The force control was also evaluated under moving
environments and its ability of compensating physiological
motions was analyzed. The results have shown that a com-
pensation ratio of 87% was achieved for breathing motion.
Regarding the beating heart motion, the compensation ra-
tio of 79% was obtained.

Further work will focus on the on-line estimation of
all soft tissue parameters and its convergence. We are
also focus on implementing this control scheme for mo-
tion compensation in tele-operated systems, which is al-
ready undergoing. Experiments on in-vivo situation are
also planned.
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