
HAL Id: lirmm-00950983
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00950983v1

Submitted on 25 Feb 2014 (v1), last revised 5 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Indexing Data Structures to de Bruijn Graphs
Bastien Cazaux, Thierry Lecroq, Eric Rivals

To cite this version:
Bastien Cazaux, Thierry Lecroq, Eric Rivals. From Indexing Data Structures to de Bruijn Graphs.
RR-14004, 2014, pp.14. �lirmm-00950983v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00950983v1
https://hal.archives-ouvertes.fr

From Indexing Data Structures to de Bruijn Graphs∗

Bastien Cazaux†, Thierry Lecroq‡, Eric Rivals†

† L.I.R.M.M. & Institut Biologie Computationnelle

Université de Montpellier II, CNRS U.M.R. 5506

Montpellier, France
‡ LITIS EA 4108 & UFR des Sciences et des Techniques,

Université de Rouen, France

cazaux@lirmm.fr, thierry.lecroq@univ-rouen.fr, rivals@lirmm.fr

20th January 2014

Abstract

New technologies have tremendously increased sequencing throughput compared to traditional techniques, thereby

complicating DNA assembly. Hence, assembly programs resort to de Bruijn graphs (dBG) of k-mers of short reads

to compute a set of long contigs, each being a putative segment of the sequenced molecule. Other types of DNA

sequence analysis, as well as preprocessing of the reads for assembly, use classical data structures to index all sub-

strings of the reads. It is thus interesting to exhibit algorithms that directly build a de Bruijn graph of order k from

a pre-existing index, and especially a contracted version of the de Bruijn graph, where non branching paths are con-

densed into single nodes. Here, we formalise the relationship between suffix trees/arrays and dBGs, and exhibit linear

time algorithms for constructing the full or contracted de Bruijn graphs. Finally, we provide hints explaining why this

bridge between indexes and dBGs enables to dynamically update the order k of the graph.

1 Introduction

The de Bruijn graph (dBG) of order k on an alphabet Σ with σ symbols has σk vertices corresponding to all the

possible distinct strings of length k on the alphabet Σ and there is a directed edge from vertex u to vertex v if the

suffix of u of length k− 1 equals the prefix of v of length k− 1. De Bruijn graphs have various properties and are

more commonly defined on all the k-mers of the strings of a finite set rather than on all the possible strings of length

k on the alphabet. When a vertex u has only one outgoing edge to vertex v and when v has only one ingoing edge

from vertex u then the two vertices can be merged. By applying this rule whenever possible, one gets a contracted

dBG. dBGs occur in different contexts. In bioinformatics they are largely used in de novo assembly due to a result

of Pevzner et al [13]. Indeed recent sequencing technologies allow to obtain hundreds of million of short sequencing

reads (about 100 nucleotides long) from one DNA sample. Next step is to reconstruct the genome sequence using

assembly algorithms. However, the volume of read data to process has forced the shift from the classical overlap

graph approach, which requires too much memory, towards a de Bruijn Graph where vertices are k-mers of the reads.

In this context, there exist compact exact data structures for storing dBGs [6, 3, 14, 4] and probabilistic data structures

such as Bloom filters [11, 5].

∗This work is supported by ANR Colib’read and Defi MASTODONS SePhHaDe from CNRS.
†

‡

1

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

Suffix trees are well-known indexing data structures that enable us to store and retrieve all the factors of a given

string. They can be adapted to a finite set of strings and are then called generalised suffix trees. They can be built in

linear time and space. They have been widely studied and used in a large number of applications (see [1] and [8]). In

practice, they consume too much space and are often replaced by the more economical suffix arrays [9], which have

the same properties.

Read analysis and assembly include preliminary steps like filtering and error correction. To speed up such steps,

some algorithms index the substrings, or the k-mers of the reads. Hence, before the assembly starts, the read set has

already been indexed and mined. For instance, the error correction software hybrid-shrec builds a generalised suffix

tree of all reads [15]. It can thus be efficient to enable the construction of the dBG for the subsequent assembly, directly

from the index rather than from scratch. For these reasons, we set out to find algorithms that transform usual indexes

into a dBG or a contracted dBG. It is also of theoretical interest to build bridges between well studied indexes and

this graph on words. Despite recent results [14], formal methods for constructing dBG from suffix trees are an open

question.

In this article, given a finite collection S of strings and an integer k we formalise the relationship between gener-

alised suffix trees and dBGs and show how to linearly build the dBG of order k for S. Next we show how to directly

build the contracted dBG of order k for S in linear time and space, without building the dBG. We also show how to per-

form the same task using suffix arrays. Finally, we give some hints on how to dynamically adapt our dBG construction

from order k to k−1 or from k to k+1.

2 Preliminaries

Here we introduce a notation and basic definitions.

An alphabet Σ is a finite set of letters. A finite sequence of elements of Σ is called a word or a string. The set of

all words over Σ is denoted by Σ⋆, and ε denotes the empty word. For a word x, |x| denotes the length of x. Given two

words x and y, we denote by xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the i-th letter of

x, and x[i .. j] denotes the substring or factor x[i]x[i+ 1] . . .x[j]. Let k be a positive integer. If |x| ≥ k, f irstk(x) is the

prefix of length k of x and lastk(x) is the suffix of length k of x. Then a substring of length k of x is called a k-mer of

x. For i such that 1 ≤ i ≤ |x|− k+1, (x)k,i is the k-mer of x starting in position i, i.e. (x)k,i = x[i .. i+ k−1]. Thus we

have f irstk(x) = (x)k,1 and lastk(x) = (x)k,|x|−k+1. We denote by ♯(Λ) the cardinality of any finite set Λ.

Let S = {s1, . . . ,sn} be a finite set of words. Let us denote the sum of the lengths of the input strings by ‖S‖ :=

∑si∈S |si|. We denote by FS the set of factors of words of S, i.e. FS = {w ∈ Σ⋆ | ∃u,v ∈ Σ⋆,1 ≤ i ≤ n,si = uwv}. For a

word w of FS,

• SupportS(w) is the set of pairs (i, j), where w is the substring (si)|w|, j. SupportS(w) is called the support of w in

S.

• RCS(w) (resp. LCS(w)) is the set of right context (resp. left context) of the word w in S, i.e. the set of words w′

such that ww′ ∈ FS (resp. w′w ∈ FS).

• ⌈w⌉S is the word ww′ where w′ is the longest word of RCS(w) such that SupportS(w) = SupportS(ww′). In other

words, such that w and ww′ have exactly the same support in S.

• ⌊w⌋S is the word w′ where w′ is the longest prefix of w such that SupportS(w
′) 6= SupportS(w).

• dS(w) := |⌈w⌉S|− |w|.

In other words, ⌈w⌉S is the longest extension of w having the same support than w in S, while ⌊w⌋S is the shortest

reduction of w with a support different from that of w in S. These definitions are illustrated in a running example

presented in Figure 1.

We give the definition of a de Bruijn graph for assembly (dBG for short), which differs from the original definition

of a complete graph over all possible words of length k stated by de Bruijn [7].

20th Jan. 2014 2 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

1 2 3 4 5 6 7

s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

Figure 1: S := {bacbab,cbabcaa,bcaacb,cbaac,bbacbaa} is a set of words. Therefore, we have SupportS(ba) =
{(1,1),(1,4),(2,2),(4,2),(5,2),(5,5)}, RCS(ba) = {ε,c,cb,cba,cbab,b,bc,bca,bcaa,a,ac,cbaa}, LCS(ba) =
{ε,c,ac,bac,b,bbac} and dS(ba) = 0. One has RCS(ba)∩Σ = {a,b,c}. Thus, the word ba is not right extensible

in S (see Def. 2.2).

Definition 2.1. Let k be a positive integer and S := {s1, . . . ,sn} be a set of n words. The de Bruijn graph of order k for

S, denoted by DBG+
k , is a directed graph, DBG+

k := (V+,E+), whose vertices are the k-mers of words of S and where

an arc links u to v if and only if u and v are two successive k-mers of a word of S, i.e.:

V+ := FS ∩Σk

E+ := {(u,v) ∈V+2
| lastk−1(u) = f irstk−1(v) and v[k] ∈ RCS(u)}. (1)

An equivalent definition of E+ can be stated using the left instead of right context:

E+ := {(u,v) ∈V+2
| lastk−1(u) = f irstk−1(v) and u[1] ∈ LCS(v)}. (2)

(a)

1 2 3 4 5 6 7

s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

(b)

ba ab

aa

ac

(c)

1 2 3 4 5 6 7

s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

(d)

ba

cb

bb

Figure 2: Examples of arcs from DBG+
k . (a) shows letters in the right context of ba, and (b) the successors of node

ba in DBG+
2 ; one for each letter in RCS(w)∩Σ. (c) shows letters in the left context of ba, and (d) the predecessors of

node ba in DBG+
2 .

Examples of arcs are displayed on Figure 2. Note that another, simpler definition of the arcs in the de Bruijn graph

coexists with that of Definition 2.1. There, an arc links u to v if and only if u overlaps v by k−1 symbols. This graph

is denoted by DBG−
k = (V−,E−), where:

V− := FS ∩Σk

E− := {(u,v) ∈V−2
| lastk−1(u) = f irstk−1(v)}.

Both definitions are illustrated on Figure 3.

Let us introduce now the notions of extensibility for a substring of S and that of a Contracted dBG (CdBG for

short).

20th Jan. 2014 3 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

(a)

bb cb

ba ac

aa ca

ab bc

(b)

bba

bac acb cba bab

aac baa abc

caa bca

Figure 3: With solid arcs only, the graphs correspond to DBG+
2 and DBG+

3 for our running example. With both solid

and dotted arcs, they represent DBG−
2 and DBG−

3 .

Definition 2.2 (Extensibility). Let w be a word of FS.

• w is right extensible in S if and only if ♯(RCS(w)∩Σ) = 1.

• w is left extensible in S if and only if ♯(LCS(w)∩Σ) = 1.

As S is clear from the context, we simply omit the “in S”. Let w be a word of Σ⋆. The word w is said to be a

unique k′-mer of S if and only if k′ ≥ k and for all i ∈ [1..k′−k+1], (w)k,i ∈ FS and for all j ∈ [1..k′−k], (w)k, j is right

extensible and (w)k, j+1 is left extensible.

Definition 2.3. A contracted de Bruijn graph of order k, denoted by CDBG+
k = (V+

c ,E+
c), is a directed graph where:

V+
c = {w ∈ Σ⋆ | w is a k′-mer unique maximal by substring and k′ ≥ k}

E+
c = {(u,v) ∈V+

c
2
| lastk−1(u) = f irstk−1(v) and v[k] ∈ RCS(lastk(u))}.

Note that in the previous definition, an element w in V+
c does not necessarily belong to FS, since w may only exist

as the substring of the agglomeration of two words of S. Thus, let w be a k′-mer unique maximal by substring with

k′ ≥ k:

• lastk(w) is not right extensible

or RCS(lastk(w))∩Σ = {a} and lastk−1(w) ·a is not left extensible,

• f irstk(w) is not left extensible

or LCS(f irstk(w))∩Σ = {a} and a · f irstk−1(w) is not right extensible.

With this argument, we have both following propositions.

Proposition 1. Let (u,v) ∈ E+
c ; (lastk(u), f irstk(v)) ∈ E+ and there exists w ∈ V+ such that (w, f irstk(v)) ∈ E+ \

{(lastk(u), f irstk(v))} or (lastk(u),w) ∈ E+ \{(lastk(u), f irstk(v))}.

Proposition 2. Let (u,v) ∈ E+. If u is right extensible and v is left extensible, then there exists w ∈V+
c such that uv[k]

is a substring of w. Otherwise, there exists (u′,v′) ∈ E+
c such that u = lastk(u

′) and v = f irstk(v
′).

According to propositions 1 and 2, CDBG+
k is the graph DBG+

k where the arcs (u,v) are contracted if and only if

u is right extensible and v is left extensible.

20th Jan. 2014 4 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

3 Definition of de Bruijn Graphs with words

Let k be a positive integer. We define the following three subsets of FS.

• InitExactS,k = {w ∈ FS | |w|= k and dS(w) = 0}

• InitS,k = {w ∈ FS | |w| ≥ k and dS(f irstk(w)) = |w|− k}

• SubInitS,k = InitExactS,k−1

A word of InitExactS,k is either only the suffix of some si or has at least two right extensions, while the first k-mer of

a word in InitS,k \ InitExactS,k has only one right extension.

Proposition 3. InitExactS,k = InitS,k ∩{w ∈ FS | |w|= k}.

Proof Let w ∈ InitExactS,k. In this case, we get f irstk(w) = w and |w|− k = 0. This means that dS(f irstk(w)) =
|w|− k and therefore w ∈ InitS,k. ⊓⊔

For w an element of InitS,k, f irstk(w) is a k-mer of S. Given two words w1 et w2 of InitS,k, f irstk(w1) and f irstk(w2)
are distinct k-mers of S. Furthermore for each k-mer w′ of S, there exists a word w of InitS,k such that f irstk(w) = w′.

From this, we get the following proposition.

Proposition 4. There exists a bijection between InitS,k and the set of the k-mers of S.

According to Definition 2.1 and Proposition 4, each vertex of DBG+
k can be assimilated to a unique element of

InitS,k. As the vertices of DBG−
k are identical to those of DBG+

k , there exists also a bijection between InitS,k and the

set of vertices of DBG−
k . To define the arcs between the words of InitS,k, which correspond to arcs of DBG+

k , we need

the following proposition, which states that each single letter that is a right extension of w gives rise to a single arc.

Proposition 5. For w ∈ InitExactS,k and a ∈ Σ∩RCS(w), there exists a unique w′ ∈ InitS,k such that lastk−1(w)a is a

prefix of w′.

Proof Let w be a word of InitExactS,k and a a letter of RCS(w). By definition of right context, lastk−1(w)a ∈ FS.

As |lastk−1(w)a|= k, there exists w′ such that lastk−1(w)a is a prefix of w′ and |lastk−1(w)a|+dS(lastk−1(w)a) = |w′|.
By definition of InitS,k, w′ ∈ InitS,k. ⊓⊔

The set InitS,k represents the nodes of DBG+
k . Let us now build the set of arcs that is isomorphic to E+. Let w be a

word of InitS,k and Succ(w) denote the set of successors of f irstk(w): Succ(w) := {x ∈ InitS,k | (f irstk(w), f irstk(x)) ∈
E+}. We know that for each letter a in RCS(w), there exists an arc from f irstk(w) to f irstk(last|w|−1(w)a) in DBG+

k .

We consider two cases depending on the length of w:

Case 1 : |w|= k,

According to Proposition 3, w ∈ InitExactS,k and hence lastk−1(w) ∈ SubInitS,k. Therefore, the outgoing arcs

of w in DBG+
k are the arcs from w to w′ satisfying the condition of Proposition 5. Then,

Succ(w) =
⋃

a∈Σ∩RCS(w)

⌈lastk−1(w)a⌉S.

Case 2 : |w|> k,

As w is longer than k, it contains the next k-mer; hence f irstk(last|w|−1(w)a) = f irstk(last|w|−1(w)), and there

exists a unique outgoing arc of w: that from w to ⌈w[2 ..k]⌉S. Indeed, by definition of InitS,k, ⌈w[2 ..k]⌉S ∈
InitS,k, and thus

Succ(w) = {⌈w[2 ..k]⌉S}.

20th Jan. 2014 5 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

Now, we can build integrally DBG+
k or more exactly a isomorphic graph of DBG+

k . Thus for simplicity, from now

on we confound the graph we build with DBG+
k . To do the same with CDBG+

k , we need to characterise the concepts

of right and left extensibility in terms of word properties. By the construction of DBG+
k , we have the following results.

Proposition 6. Let w be a word of InitS,k. f irstk(w) is right extensible if and only if |w|> k or ♯(RCS(w)∩Σ) = 1.

Proposition 7. Let w be a word of InitS,k such that f irstk(w) is right extensible. Let the letter a be the unique element

of RCS(f irstk(w))∩Σ, then lastk−1(f irstk(w))a is left extensible if and only if

♯(SupportS(f irstk(w))) = ♯(SupportS(lastk−1(f irstk(w))a)\{(i,1) | 1 ≤ i ≤ n})

Proof Let (i, j) be a pair of SupportS(f irstk(w)). We have (i, j+1) ∈ SupportS(lastk−1(f irstk(w))).
As SupportS(lastk−1(f irstk(w))) = SupportS(lastk−1(f irstk(w))a), it follows that

(i, j+1) ∈ SupportS(lastk−1(f irstk(w))a).

If there exists (i, j) ∈ SupportS(lastk−1(f irstk(w))) such that j > 0 and (i, j−1) /∈ SupportS(f irstk(w)), there exists a

letter b 6= w[1] such that (i, j−1) ∈ SupportS(b · lastk−1(f irstk(w))).
Hence (b · lastk−1(f irstk(w)), lastk−1(f irstk(w))a) also belongs to E+, and thus lastk−1(f irstk(w))a is not left exten-

sible. ⊓⊔

We present a generic algorithm to build incrementally CDBG+
k . It is explained in terms of words, and does not

depend on any indexing data structure. In following sections, we will use this generic algorithm and explain how it can

be performed efficiently using a specified indexing structure. For the sake of brevity, the algorithm and its recursive

procedures are given in Appendix (see p. 8).

In summary, this section gives a formulation of the dBG of S in terms of words. Now assume that the substrings of

the words are indexed in a data structure, e.g. a generalised suffix array. How can we build the dBG or the contracted

graph directly from this structure? To achieve this, it suffices to compute the three sets InitS,k, InitExactS,k, SubInitS,k,

as well as the sets SupportS(.) and Succ(.) for some appropriate substrings. In the following sections, we exhibit

algorithms to compute DBG+
k and CDBG+

k for two important indexing structures.

4 Transition from the suffix tree to de Bruijn graphs

Suffix Trees (ST) belong to the most studied indexing data structures. A generalised ST can index the substrings of

a set of words. Generally for this sake, all words are concatenated and separated by a special symbol not occurring

elsewhere. However, this trick is not compulsory, and an alternative is to keep the indication of a terminating node

within each node.

4.1 The Suffix Tree and its properties

The Generalised Suffix Tree of a set of words S is the suffix tree of S, where each word of S does not finish necessarily

by a letter of unique occurrence. Hence, for each node v of Generalised Suffix Tree of S, we keep in memory the set,

denoted by SuffS(v), of pairs (i, j) such that the word represented by v is the suffix of si starting at position j. Let us

denote by T the generalised suffix tree of S (from now on, we simply say the tree) and by VT its set of nodes. For

v ∈VT , Children(v) denotes its set of children and f (v) its parent.

Some nodes of T may have just one child. The size of the union of SuffS(v) for all node v of T equals the number

of leaves in the generalised suffix tree when the words end with a terminating symbol. Hence, the space to store T and

the sets SuffS(.) is linear in ‖S‖. By simplicity, for a node v of T , the word represented by v is confused with v. For

each node v of T , v ∈ FS. As all elements of FS are not necessarily represented by a node of T , we give the following

proposition.

20th Jan. 2014 6 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

7 7

6 6

3

3

b
c

a

5

3

c
a
a

b

4

4

3

a

2

b
a

b

c

a

6 6

5

2

c

a

4

2

c
a
a

b

2

a

1

b

cb
a

a

4

1

c
b

ca
a

b
5

5

2

c
b

a
a

5

4

1

c

a

3

1

c
a
a

b
a

b

c

1

b
a
c
b
a
a

Figure 4: The Generalised Suffix Tree for our running example and the constructed De Bruijn Graph for k := 2. Square

nodes represent words that occur as a suffix of some si, circle nodes are the other nodes of T . Nodes in grey are those

used to represent the nodes of the dBG. Each square node stores its positions of occurrences in S; for simplificity, we

display the starting position as a number and the word of S in which it occurs as its colour, instead of showing the list

of pairs (i, j). The solid curved arrows are the edges of the De Bruijn graph for k := 2; those colored in red correspond

to Case 1 and those in blue to Case 2 (see p. 8).

20th Jan. 2014 7 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

Proposition 8. The set of nodes of T is exactly the set of words w of FS such that dS(w) = 0.

We recall the notion of a suffix link (SL) for any node v of T (leaves included). Let sl(v) denote the node targeted

by the suffix link of v, i.e. sl(v) = v[2 .. |v|]. By definition of a suffix tree, for all w ∈ FS, there exists a node v of T such

that w is a prefix of v. Let v′ the node of minimal length of T such that w is a prefix of v, then |v′|= |w|+dS(w), and

therefore ⌈w⌉S = v′.

Proposition 9. Let w ∈ FS. Then |⌈w⌉S| ≥ |w|> | f (⌈w⌉S)|, where f (⌈w⌉S) is the parent of ⌈w⌉S in T .

Proof As f (⌈w⌉S) = ⌊w⌋S, the result is obvious. ⊓⊔

4.2 Construction of DBG+
k

Let [x1..xm] be the set of k-mers of S. According to the definition of InitS,k and to Proposition 4, InitS,k = [⌈x1⌉S..⌈xm⌉S].
Thus, by Proposition 9, InitS,k = {v ∈VT | | f (v)|< k and |v| ≥ k}. Similarly, InitExactS,k = {v ∈VT | |v|= k}. Now,

it appears clearly that InitExactS,k is a subset of InitS,k, since for all v ∈VT , | f (v)|< |v|.
We consider the same two cases as for the construction of E+ on p. 5, but in the case of a tree. Let v ∈ InitS,k.

Case 1 : |v|= k, (Figure 5a)

As v ∈ InitExactS,k, sl(v) ∈ SubInitS,k. Therefore, each child u of sl(v) is an element of InitS,k. Thus, the

outgoing arcs of v in DBG+
k are the arcs from v to the child u of sl(v) where the first letter of the label between

sl(v) and u is an element of the right context of v. As the set of the first letters of the label between v and

children of v is exactly RCS(v)∩Σ, the number of outgoing arcs of v in DBG+
k is the number of children of v.

To build the outgoing arcs of v in DBG+
k , for each child u′ of v, we associate v with the node of InitS,k between

the root and sl(u′), i.e. ⌈ f irstk(sl(u′))⌉S.

Case 2 : |v|> k, (Figures 5b and 5c)

We have that sl(v) is a node of VT . As |v|> k, |sl(v)| ≥ k. Thus, there exists an element of InitS,k between the

root and sl(v). We associate v with this node, i.e. ⌈ f irstk(sl(v))⌉S.

(a) (b) (c)

Figure 5: The figures (a), (b) and (c) show the Case 1 and Case 2 to build the arcs of DBG+
k . The green node is the

node v and the orange node is sl(v). The dashed arc corresponds to suffix link and is coloured by specific colour (red

(a) for the Case 1 and blue (b) (c) for the Case 2) and in solid line.

We illustrate these two cases in Figure 4:

Case 1 Case where v is
6,6

, sl(v) is
7,7

, the unique child u′ of v is 3 , and sl(u′) is 4 , which is in InitS,k.

Case 2 Case where v is 1 , sl(v) is 2 , and ⌈ f irstk(sl(v))⌉S is .

20th Jan. 2014 8 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

In both cases, building the arcs of E+ requires to follow the SL of some node. The node, say u, pointed at by a SL

may not be initial. Hence, the initial node representing the associated first k-mer of u is the only ancestral initial node

of u. We equip each such node u with a pointer p(u) that points to the only initial node on its path from the root. In

other words, for any u /∈ InitS,k such that |u|> k, one has p(u) := ⌈ f irstk(u)⌉S.

The algorithm to build the DBG+
k is as follows. A first depth first traversal of T allows to collect the nodes of

InitS,k and for each such node to set the pointer p(.) of all its descendants in the tree. Finally to build E+, one scans

through InitS,k and for each node v one adds Succ(v) to E+ using the formula given above. Altogether this algorithm

takes a time linear in the size of T . Moreover, the number of arcs in E+ is linear in the total number of children of

initial nodes. This gives us the following result.

Theorem 10. For a set of words S, building the de Bruijn Graph of order k, DBG+
k takes linear time and space in |T |

or in ‖S‖.

4.3 Construction of CDBG+
k

In Section 3, we have seen an algorithm (in Appendix p. 12) that allows to compute directly CDBG+
k provided that one

can determine if a node v is right extensible and if next(v) is left extensible, where next(v) denotes the only successor

of v. Let us see how to compute the extensibility in the case of a Suffix Tree.

By applying Proposition 6 in the case of tree, for an element v of InitS,k, f irstk(v) is right extensible if and only if

|v|> k or ♯(Children(v)) = 1. Thus checking the right extensibility of a node takes constant time.

For the left extensibility of the single successor of a node, one only needs the size of support of some nodes

(Proposition 7). Let us see first how to compute ♯(SupportS(.)) on the tree, and then how to apply Proposition 7.

Proposition 11. Let v be a word of FS and VT (⌈v⌉S) denotes the set of nodes of the subtree rooted in ⌈v⌉S.

SupportS(v) =
⋃

v′∈VT (⌈v⌉S)

SuffS(v
′).

Along a traversal of the tree, we can compute and store ♯(SupportS(v)) and ♯(SupportS(v)∩{(i,1) | 1 ≤ i ≤ n})
for each node v in linear time in |T |.

Let v be a word of InitS,k such that f irstk(v) is right extensible.

Case 1 If |v|= k, then f irstk(v)= v and ♯(Children(v))= 1. Let u be the only child of v. Thus, |u|> k, ♯(RCS(v)∩Σ)=
{u[k+1]}, and lastk−1(v)u[k+1] = f irstk(sl(u)). Hence,

♯(SupportS(v)) = ♯(SupportS(f irstk(sl(u)))\{(i,1) | 1 ≤ i ≤ n})

and by Proposition 7, f irstk(sl(u)) is left extensible.

Case 2 If |v|> k, then ♯(RCS(f irstk(v))∩Σ) = {v[k+1]} and

lastk−1(f irstk(v))v[k+1] = lastk(f irstk+1(v)) = f irstk(sl(v)).

By Proposition 7, f irstk(sl(v)) is left extensible if and only if

♯(SupportS(f irstk(v))) = ♯(SupportS(f irstk(sl(v)))\{(i,1) | 1 ≤ i ≤ n})

As ♯(SupportS(f irstk(v)))= ♯(SupportS(⌈ f irstk(v)⌉S)) and ♯(SupportS(v)\{(i,1) | 1≤ i≤ n})= ♯(SupportS(v))−
♯(SupportS(v)∩{(i,1) | 1 ≤ i ≤ n}), determining if next(v) is left extensible takes constant time. To conclude, as for

any initial node v, we can compute in O(1) its set of successors Succ(v), its right extensibility, and the left extensibility

of its single successor, we can readily apply Algorithm 2 to built CDBG+
k and we obtain a complexity that is linear in

the size of DBG+
k , since each successor is accessed only once. This yields Theorem 12.

Theorem 12. For a set of words S, building the Contracted de Bruijn Graph of order k, CDBG+
k takes linear time and

space in |T | or in ‖S‖.

20th Jan. 2014 9 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

5 dBG and CdBG from Suffix Array

Let SA and LCP be the generalised enhanced suffix array of S:

• ∀1 ≤ i < ‖S‖, SA[i] = (g,h), SA[i+1] = (g′,h′) then sg[h . . |sg|]< sg′ [h
′ . . |sg′ |],

• ∀2 ≤ i ≤ ‖S‖, LCP[i] is the length of the longest common prefix between suffixes stored in SA[i− 1] and in

SA[i], and LCP[1] = LCP[‖S‖+1] =−1.

Let us recall the definition of an lcp-interval.

Definition 5.1 ([10]). An interval [i, j], 1 ≤ i < j ≤ ‖S‖ is called a lcp-interval of value ℓ, also denoted by ℓ-[i, j], iff:

1. LCP[i]< ℓ,

2. LCP[g]≥ ℓ for i < g ≤ j,

3. LCP[g] = ℓ for at least one g such that i < g ≤ j,

4. LCP[j+1]< ℓ.

Let us now recall the definitions of the previous and next smaller values (PSV & NSV) arrays.

Definition 5.2 ([10]). For 2 ≤ i ≤ ‖S‖:

• PSV[i] = max{ j | 1 ≤ j < i and LCP[j]< LCP[i]},

• NSV[i] = min{ j | i < j ≤ ‖S‖+1 and LCP[j]< LCP[i]}.

Recall that if 2 ≤ i ≤ ‖S‖ then [PSV[i],NSV[i]−1] is an lcp-interval of value LCP[i]. The direct inclusion among

lcp-intervals defines a tree relationship called the lcp interval tree (see [10, Def. 4.4.3, p.87]). Given an lcp-interval

ℓ-[i, j], its parent lcp-interval ℓ′-[i′, j′] can be easily computed in constant time using the arrays LCP, PSV and NSV.

Then:

• InitS,k consists of:

– the lcp-intervals ℓ-[i, j] such that ℓ ≥ k and the parent interval ℓ′-[i′, j′] of ℓ-[i, j] is such that ℓ′ < k (the

associated string is sSA[i].g[SA[i].h . .SA[i].h+ ℓ−1]);

– the positions SA[i′] = (g,h) such that i′ is not contained in lcp-intervals ℓ-[i, j] with ℓ≥ k and h≤ |sg|−k+1

(the associated string is sg[h . . |sg]);

• InitExactS,k is composed of the lcp-intervals k-[i, j];

• SubInitS,k = InitExactS,k−1.

Actually the lcp-interval tree does not need to be explicitly build and the sets can be computed by a single scan of

the SA and LCP arrays.

For an lcp-interval ℓ-[i, j] ∈ InitS,k we have ♯(SupportS(sSA[i].g[SA[i].h . .SA[i].h+ k−1])) = j− i+1.

Theorem 13. The de Bruijn graph of order k, CDBG+
k , for a set of words S can be built in a time and space that are

linear in ‖S‖ using the generalised suffix array of S.

20th Jan. 2014 10 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

6 Dynamically updating the order of DBG+
.

Genome assembly from short reads is difficult and in practice requires to test multiple values of k for the dBG.

Indeed, the presence of genomic repeats, makes some order k appropriate to assemble non repetitive regions, and

larger orders necessary to disentangle (at least some) repeated regions. Combining the assemblies obtained from

DBG+
k for successive values of k is the key of IDBA assembler, but the dBG is rebuilt for each value [12]. Other tools

also exploit this idea [2]. It is thus interesting to dynamically change the order of the dBG. Here, we argue1 that

starting the construction from an index instead of the raw sequences ease the update. On page 7, we mention which

information are needed in general to build DBG+
k . Assume the words are indexed in a suffix tree T (as in Section 4.2).

Consider first changing k to k− 1. First, only the nodes of InitS,k whose parent represents a word of length k− 1 are

substituted by their parent in DBG+
k−1, all other nodes remain unchanged. Thus, any arc of order k either stays as such

or has some of its endpoints shifted toward the parent node in T . In any case, updating an arc depends only on the

nature of its nodes in DBG+
k−1 (whether they belong to InitS,k−1 or InitExactS,k−1), and can be computed in constant

time.

The same situation arises when changing k to k+1. First, only nodes of InitExactS,k change in DBG+
k+1: they are

substituted by their children. Updating an arc also depends on the nature of its nodes: it can create a fork towards the

children of the destination node if the latter changes, or it can be multiplied and join each children of the source to

one children of the destination if both nodes change. Then, the label of the children in T indicate which children to

connect to. It can be seen that updating from DBG+
k to DBG+

k+1 in either direction takes linear time in the size of T .

Moreover, as updating the support of nodes in T is straightforward, we can readily apply the contraction algorithm to

obtain CDBG+
k+1 (see Section 4.3).

7 Conclusion and perspectives

De Bruijn Graphs (dBG) are intricate structures and intensively exploited for assembling large genomes from short

sequences. Understanding their complexity can help improving their representations or traversal algorithms. We

investigate algorithms to transform indexing data structures of the input words into a dBG of those words and propose

linear time algorithms when starting from Suffix Trees and Suffix Arrays to build directly a contracted dBG. Although

the algorithms need slight adaptation, all results obtained are clearly valid for both definitions of the dBG: DBG+
k

and DBG−
k . Moreover, we show that this approach provides a way to update the graph when one changes its order k.

Algorithms enabling a dynamic update represent a theoretical challenge as well as an exciting avenue for improving

genome assembly methods [2, 12]. Other topics for future research include transforming compressed indexes, such as

a FM-index [10], into a dBG, implementing a practical contracted dBG representation for DNA taking into account

k-mers and their reverse complements based on these algorithms.

References

[1] A. Apostolico. The myriad virtues of suffix trees. In A. Apostolico and Z. Galil, editors, Combinatorial Al-

gorithms on Words, volume 12 of NATO Advanced Science Institutes, Series F, pages 85–96. Springer, 1985.

2

[2] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko,

S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A.

Pevzner. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of

Computational Biology, 19(5):455–477, 2012. 11

1A more formal presentation is left for a complete article.

20th Jan. 2014 11 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

[3] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct de bruijn graphs. In WABI, pages 225–235, 2012.

1

[4] R. Chikhi, A. Limasset, S. Jackman, J. Simpson, and P. Medvedev. On the representation of de Bruijn graphs.

ArXiv e-prints, Jan. 2014. 1

[5] R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algo-

rithms for Molecular Biology, 8:22, 2013. 1

[6] T. C. Conway and A. J. Bromage. Succinct data structures for assembling large genomes. Bioinformatics,

27(4):479–486, 2011. 1

[7] N. de Bruijn. On bases for the set of integers. Publ. Math. Debrecen, 1:232–242, 1950. 2

[8] D. Gusfield. Algorithms on strings, trees and sequences: computer science and computational biology. Cam-

bridge University Press, Cambridge, 1997. 2

[9] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM J. Comput., 22(5):935–

948, 1993. 2

[10] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Re-

construction. Oldenbusch Verlag, 2013. 604 p. 10, 11

[11] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. Tiedje, and C. Brown. Scaling metagenome sequence assembly

with probabilistic de Bruijn graphs. Proc. Natl Acad. Sci. USA, 109(33):13272–13277, 2012. 1

[12] Y. Peng, H. Leung, S. Yiu, and F. Chin. IDBA A Practical Iterative de Bruijn Graph De Novo Assembler. In

B. Berger, editor, Research in Computational Molecular Biology, volume 6044 of LNCS, pages 426–440. 2010.

11

[13] P. Pevzner, H. Tang, and M. Waterman. An Eulerian path approach to DNA fragment assembly. Proc. Natl Acad.

Sci. USA, 98(17):9748–9753, 2001. 1

[14] E. A. Rødland. Compact representation of k-mer de Bruijn graphs for genome read assembly. BMC Bioinfor-

matics, 14:313, 2013. 1, 2

[15] L. Salmela. Correction of sequencing errors in a mixed set of reads. Bioinformatics, 26(10):1284–1290, 2010. 2

8 Appendix: a general algorithm for building CDBG+
k

The main algorithm (Algorithm 2 explores DBG+
k to find the nodes kept in CDBG+

k and set all single arcs that represent

whole non branching paths of DBG+
k that are properly contracted. The key point is to find all starting nodes of simple

20th Jan. 2014 12 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

paths and explore these paths from them; the exploration is done by Algorithm 1.

Algorithm 1: BuildAuxCDBG(V,E,v f ,vc).

Input : The partial contracted graph CDBG+
k as (V,E), two nodes v f and vc. v f the intial starting node, and vc

the current starting node.

Output: The updated contracted graph (V ′,E ′), which now contains all paths starting from vc.

begin1

u := vc; mark u2

// search the node ending the chain that goes through vc3

while u is right extensible and next(u) is left extensible do4

if v f = next(u) then5

update (v f , i) by (vc, i) for all (v f , i) ∈ E6

return (V \{v f },E)7

u := next(u); mark u8

// now explore the path starting in the successor of u9

for w ∈ Succ(u) do10

if w ∈V then (V,E) := (V,E ∪{(vc,w)})11

else12

(V,E) := BuildAuxGdB(V ∪{w},E ∪{(vc,w)},v f ,w)13

// explore from w14

return (V,E)15

end16

Algorithm 2: BuildCDBG(S).

Input : A set of word S.

Output: CDBG+
k of S.

begin1

(V,E) = (/0, /0)2

// search for any node v of DBG+
k without predecessors3

// and build CDBG+
k from v4

for v ∈ InitS,k do5

if there exists no w such that v ∈ Succ(w) then6

(V,E) := (V,E)
⋃

BuildAuxCDBG(V ∪{v},E,v,v)7

// explore DBG+
k from any node not yet visited8

for vc an unmarked node of InitS,k do9

(V,E) := (V,E)
⋃

BuildAuxCDBG(V ∪{vc},E,vc,vc)10

return (V,E)11

end12

A more detailed explanation. First, note that to build DBG+
k it suffices to know the set Succ(.) for each node. The

algorithm below simulates a traversal of DBG+
k without building it, and stores only one node per unique maximal

k′-mer of DBG+
k . For such a k′-mer, say m, we choose to represent it by the node v such that f irstk(v) is a prefix of m.

In DBG+
k , m is represented by a simple (i.e., non branching) path and v is its first node. In the traversal algorithm, for

a current starting node vc in InitS,k, we traverse the simple path until we arrives at a node u having several successors

or such that its only successor is not left extensible (i.e., has several predecessors). In other words, until we find u

20th Jan. 2014 13 LIRMM R.R.-14004 2014

From Indexing to de Bruijn Graphs B. Cazaux, T. Lecroq, E. Rivals

such that u is not right extensible or next(u) is not left extensible. In DBG+
k , there exists a simple path between vc and

u, and this must build a single node in CDBG+
k . To contract this path, we choose to keep vc, and for any successor

w of u, we insert an arc between u and w, as this arc cannot be contracted. Noting that w necessarily starts a chain

(having at least a single node), if w is not yet in CDBG+
k , we launch a new path exploration starting from w, one gets

that f irstk(w) is the prefix of a node of CDBG+
k , and thus w can appropriately represents the path. Now, if w already

belongs to CDBG+
k , the case is trickier. If v f stores the first vc called by the procedure, it may not be the starting node

of a path, but be anywhere inside a path. Two cases arise. If v f is considered during the while loop, then it is not at the

start a simple path: hence we must update V by exchanging v f with vc and terminate the exploration. Otherwise, v f is

traversed during the for loop (as the value of w), then it is a successor of u and the beginning of a simple path: we just

add an arc linking vc to w and stop. Finally, if w already belong to V but w 6= v f , we also add an arc linking vc to w

and stop.

The process performed by Algorithm 1 augments the partial graph CDBG+
k restrained to the nodes visited when

exploring the path starting from vc. It suffices now to ensure that all arcs of DBG+
k are examined, which Algorithm 2

does. More precisely, it starts by visiting the simple paths starting at nodes having no predecessors (otherwise these

nodes would not be visited). Once this is done, one must explore all nodes not yet marked and continue until all nodes

have been visited/marked.

20th Jan. 2014 14 LIRMM R.R.-14004 2014

	1 Introduction
	2 Preliminaries
	3 Definition of de Bruijn Graphs with words
	4 Transition from the suffix tree to de Bruijn graphs
	4.1 The Suffix Tree and its properties
	4.2 Construction of DBG+k
	4.3 Construction of CDBG+k

	5 dBG and CdBG from Suffix Array
	6 Dynamically updating the order of DBG+.
	7 Conclusion and perspectives
	8 Appendix: a general algorithm for building CDBG+k

