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We investigate the computation of mappings from a set Sn to itself with in situ programs, that is using no extra
variables than the input, and performing modifications of one component at a time, hence using no extra memory.
In this paper, we survey this problem introduced in previous papers by the authors, we detail its close relation with
rearrangeable multicast networks, and we provide new results for both viewpoints.

A bijective mapping can be computed by 2n− 1 component modifications, that is by a program of length 2n− 1, a
result equivalent to the rearrangeability of the concatenation of two reversed butterfly networks. For a general arbitrary
mapping, we give two methods to build a program with maximal length 4n−3. Equivalently, this yields rearrangeable
multicast routing methods for the network formed by four successive butterflies with alternating reversions. The first
method is available for any set S and practically equivalent to a known method in network theory. The second method,
a refinement of the first, described when |S| is a power of 2, is new and allows more flexibility than the known method.

For a linear mapping, when S is any field, or a quotient of an Euclidean domain (e.g. Z/sZ for any integer s), we
build a program with maximal length 2n−1. In this case the assignments are also linear, thereby particularly efficient
from the algorithmic viewpoint, and giving moreover directly a program for the inverse when it exists. This yields
also a new result on matrix decompositions, and a new result on the multicast properties of two successive reversed
butterflies. Results of this flavour were known only for the boolean field Z/2Z.

Keywords: mapping computation, memory optimization, multistage interconnection network, multicast rearrange-
ability, butterfly, bijective mapping, boolean mapping, combinatorial logic, linear mapping, modular arithmetic, ma-
trix decomposition

1 Introduction
The mathematical definition of a mapping E : Sn → Sn can be thought of as the parallel computation
of n assignment mappings Sn → S performing the mapping E, either by modifying at the same time the
n component variables, or mapping the n input component variables onto n separate output component
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variables. If one wants to compute sequentially the mapping E by modifying the components one by one
and using no other memory than the input variables whose modified values overwrite the initial values,
one necessarily needs to transform the nmappings Sn → S in a suitable way. We call in situ computation
this way of computing a mapping, and it turns out that it is always possible with a number of assignments
linear with respect to n and a small factor depending on the mapping type.

The idea of developing in situ computation came from a natural computation viewpoint: transforma-
tion of an entity or structure is made inside this entity or structure, meaning with no extra space. As a
preliminary example, consider the mapping E : S2 → S2 defined by E(x1, x2) = (x2, x1) consisting
in the exchange of two variables for a group S. A basic program computing E is: x′ := x1; x1 := x2;
x2 := x′. An in situ program for E avoids the use of the extra variable x′, with the successive assign-
ments x1 := x1 + x2; x2 := x1 − x2; x1 := x1 − x2. In situ computation can be seen as a far reaching
generalization of this classical computational trick. See Section 2 for a formal definition.

The problem of building in situ programs has already been introduced and considered under equivalent
terms in [4, 5, 6, 7, 8, 9]. In the first papers, it had been proved that in situ computations are always
possible [4], that three types of assignments are sufficient to perform this kind of computations [5], that
the length of in situ computations of mappings on {0, 1}n is bounded by n2 [6], and that any linear map-
ping on {0, 1}n is computed with 2n − 1 linear assignments [7]. It turned out that, though this had not
been noticed in those papers, this problem has close relations with the problem of finding rearrangeable
(non-blocking) multicast routing methods for multistage interconnection networks obtained by concate-
nations of butterfly networks (see Section 3 for a formal definition). Also, several existence results on in
situ programs can be deduced from results in the network field. This relation has been partially presented
in [9], which proposed also improved bounds for mappings of various types on more general sets than
the boolean set, and which can be considered as a preliminary conference version of the present paper
(with weaker results, fewer detailed constructions, fewer references and fewer illustrations). Let us also
mention [8] which presented the subject to an electronics oriented audience for the sake of possible ap-
plications, [12] which presented the subject to non-specialists and general public, and [13] which gives
some results in the continuation of ours.

In the present paper, we survey the relation between in situ computations and multicast rearrangeable
networks, through precise results and historical references. Also, we recall that a bijective mapping can
be computed by a program of length 2n − 1; we give, for a general arbitrary mapping, two methods to
build a program with maximal length 4n − 3, one of which is equivalent to a known method in network
theory (Section 4), one of which available on the boolean set is new and more flexible (Section 5); and
we build, for a linear mapping of a rather general kind, a program with maximal length 2n − 1 (Sec-
tion 6). Moreover, we end each main section with an open problem. Our techniques use combinatorics
and modular arithmetic. Finally, our aim is to give a precise and illustrated survey on this subject, for
both viewpoints (computations and networks), so as to sum up old and new available results in a unified
appropriate framework.

Let us first detail some links with references from the network viewpoint. Multistage interconnection
networks have been an active research area over the past forty years. We refer the reader to [14][16] for
background on this field. Here, an assignment, which is a mapping Sn → S, is regarded as a set of edges
in a bipartite graph between Sn (input) and Sn (output) where an edge corresponds to the modification
of the concerned component. See Section 3 for details. All the results of the paper can be translated in
this context. More precisely, making successive modifications of all consecutive components of X ∈ Sn
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is equivalent to routing a butterfly network (i.e. a suitably ordered hypercube, sometimes called indirect
binary cube) when S = {0, 1}, or an s-ary butterfly network for an arbitrary finite set S with |S| = s.
Butterfly networks are a classical tool in network theory, and we mention that butterfly-type structures
also appear naturally in recursive computation, for example in the implementation of the well-known FFT
algorithm [11], see [16].

In the boolean case, the existence of an in situ program with 2n−1 assignments for a bijective mapping
is equivalent to the well known [2] rearrangeability of the Beneš network (i.e. of the concatenation of two
reversed butterflies), that is: routing a Beneš network can perform any permutation of the input vertices to
the output vertices. Such a rearrangeability result can be extended to an arbitrary finite set S and an s-ary
Beneš network by means of the rearrangeability properties of the Clos network [14].

The problem of routing a general arbitrary mapping instead of a permutation, where several inputs may
have the same output, is equivalent, up to reversing the direction of the network, to the rearrangeable
multicast routing problem: one input may have several outputs, each output must be reachable from the
associated input, and the different trees joining inputs to their outputs must be edge-disjoint. This general
problem is a classical one in network theory, where sometimes rearrangeable is called rearrangeable
non-blocking, and a huge number of routing methods have been developed for various networks, whose
aims are to minimize the number of connections and to maximize the flexibility of the routings. As
an instance of network derived from the butterfly network, an efficient construction consists in stacking
butterfly networks [15]. Other examples and further references can be found for instance in [14].

In this paper, we are interested in networks obtained by concatenation of butterfly networks (a construc-
tion sometimes called cascading). A rearrangeable multicast routing method for such (boolean) networks
was proposed in [18], involving five copies of the butterfly network, with possible reversions. It was
noticed in [20] that one can remove one of these copies preserving the same rearrangeability property,
yielding four copies only. In [17], a similar construction has been given, based on (boolean) baseline
networks instead of butterfly networks (yielding an equivalent result since those two log2N networks are
known to be topologically equivalent, see [3] for instance).

In Section 4, we investigate this problem under the setting of in situ programs, and we provide similar
results than those cited above, with slight variants and complementary results (arbitrary finite sets, inver-
sion of bijections...). Also, this provides a practical framework that unifies those network results from the
literature. This connection is not always clear from the way those references were written, and we feel
that this survey work is interesting on its own. And this framework will serve again for the next section.
This yields finally an in situ program of length 4n− 3 for a general mapping. The common general idea
of those constructions involving four butterfly copies is the following: first group the vectors having same
image, using two copies that provide a (unicast) rearrangeable network; then use one copy to give all
those vectors a common image; and lastly use one copy to bring those images to the final required output.
The efficiency of the two last steps relies on the capability of the butterfly network to map arbitrary inputs
onto consecutive outputs in same order (a sorting property called infra-concentrator property in [14], or
packing problem property in [16]). So, the limitation of this type of multicast routing strategy is that the
groups formed at the middle stage have to be exactly in the same order than the final images, thus this
middle stage is (almost) totally determined, yielding a poor flexibility.

In Section 5, we provide a new and more sophisticated construction, relying on the same framework.
It involves arithmetical properties because of which we assume that |S| is a power of 2. We mention
that those propeties, and so the whole construction, can be extended to arbitrary |S| as noticed in [13]. It
yields new results on butterfly routing properties refining its classical sorting property (Proposition 23),
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and a more flexible multicast routing method for general mappings, with the same number of stages (four
copies of the butterfly network), i.e. same in situ program length (Theorem 25). The improvement is to
allow a huge number of possible orderings of the groups at the middle stage (see Remark 19 for details).

Let us now give some details from the algorithmic viewpoint. Building assignments whose number
is linear in n to perform a mapping of Sn to itself is satisfying in the following sense. If the input
data is an arbitrary mapping E : Sn → Sn with |S| = s, given as a table of n × sn values, then the
output data is a linear number of mappings Sn → S whose total size is a constant times the size of
the input data. This means that the in situ program of E has the same size as the definition of E by its
components, up to a multiplicative constant. This complexity bound is essentially of theoretical interest,
since in terms of effective technological applications, it may be difficult to deal with tables of n × sn

values for large n. Alternatively, assignments can be defined with algebraic expressions, for instance
mappings {0, 1}n → {0, 1} are exactly multivariate polynomials of degree at most n on n variables on
the binary field {0, 1}. Hence, it is interesting to deal with an input data given by algebraic expressions
of restricted size, like polynomials of bounded degree for instance, and compare the complexity of the
assignments in the output data with the input one, for instance using polynomial assignments of a related
bounded degree. This general question (also related to the number of gates in a chip design) can motivate
further research (examples are given in [8], see also Open problems 3 at the end of the paper).

Here, in Section 6, we prove that, in the linear case, i.e. if the input is given by polynomials with
degree at most 1, with respect to any suitable algebraic structure for S (e.g. any field, or Z/sZ), then the
assignments are in number 2n−1 and overall are also linear. Hence, we still obtain a program whose size is
proportional to the restricted size of the input mapping. We mention that this decomposition method takes
O(n3) steps to build the program, and that if the mapping is invertible, then we get naturally a program for
the inverse. This result generalizes to a large extent the result in [7] obtained for linear mappings on the
binary field. In terms of multistage interconnection networks, a similar result is given in [19], also for the
binary field only. Here, we get rearrangeable non-blocking multicast routing methods for the s-ary Beněs
network as soon as the input/outputs are related through a linear mapping on any suitable more general
algebraic structure. Let us insist on the fact that this result is way more general than its restriction to the
boolean field. First, there is a generalization from the boolean field Z/2Z to any field, such as Z/pZ for
p prime. Secondly, there is a generalization to general rings such as Z/nZ for any integer n (which are
not necessarily fields, i.e. elements are not necessarily invertible). Linear mappings on such general rings
are fundamental and much used in mathematics and computer science (e.g. in cryptography). Those two
generalizations should be considered as non-trivial theoretical jumps. Also, from the algebraic viewpoint,
this provides a new result on matrix decompositions.

Finally, let us mention that some of the original motivation for this research was in terms of technolog-
ical applications. A permanent challenge in computer science consists in increasing the performances of
computations and the speed of processors. A computer decomposes a computation in elementary opera-
tions on elementary objects. For instance, a 64 bits processor can only perform operations on 64 bits, and
any transformation of a data structure must be decomposed in successive operations on 64 bits. Then, as
shown in the above example on the exchange of the contents of two registers x1 and x2, the usual solution
to ensure the completeness of the computation is to make copies from the initial data. But this solution can
generate some memory errors when the structures are too large, or at least decrease the performances of
the computations. Indeed, such operations involving several registers in a micro-processor, through either
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a compiler or an electronic circuit, will have either to make copies of some registers in the cache memory
or in RAM, with a loss of speed, or to duplicate signals in the chip design itself, with an extra power
consumption. On the contrary, the theoretical solution provided by in situ computation would possibly
avoid the technological problems alluded to, and hence increase the performance.

2 In situ programs
For the ease of the exposition, we fix for the whole paper a finite set S of cardinality s = |S|, a strictly
positive integer n and a mapping E : Sn → Sn. This paper strongly relies on the following definition.

Definition 1 An in situ program Π of a mapping E : Sn → Sn is a finite sequence

(ψ1, i1), (ψ2, i2), ..., (ψm, im)

of assignments such that:
- for k = 1, 2, ...,m, we have ψk : Sn → S and ik ∈ {1, ..., n};
- every transformation X = (x1, ..., xn) 7→ E(X) is computed through the sequence

X = X0, X1, . . . , Xm−1, Xm = E(X)

where, for k = 1, 2, ...,m, the vector Xk has the same components as Xk−1 except component xik which
is equal to ψk(Xk−1).

In other words, ψk modifies only the ik-th component of the current vector, that is: every assignment
(ψk, ik) of an in situ program performs the elementary operation

xik := ψk(x1, ..., xn).

The length of Π is the number m. The signature of Π is the sequence

i1, i2, ..., im.

All in situ programs considered throughout this paper operate on consecutive components, traversing
the list of all indices, possibly several times in forward or backward order. Thus program signatures will
all be of type:

1, 2, ..., n− 1, n, n− 1, ..., 2, 1, 2, ...n− 1, n, ...

For ease of exposition, the mappings Sn → S in the corresponding sequence of assignments will be
simply distinguished by different letters, e.g. fi denotes the mapping affecting the variable xi on the first
traversal, gi the one affecting xi on the second traversal, and so on, providing a sequence of assignment
mappings denoted

f1, f2, ..., fn−1, fn, gn−1, ..., g2, g1, ...
where each index gives the index of the component modified by the mapping. For instance, a program
f1, f2, g1 on S2 represents the sequence of operations: x1 := f1(x1, x2); x2 := f2(x1, x2); x1 :=
g1(x1, x2).

As an example, it is easy to see that a mapping consisting in a cyclic permutation of k variables in
a group S can be computed in k + 1 steps using the k variables only. This is an extension of the case
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of the exchange of two variables. Precisely (x1, . . . , xk) 7→ (x2, . . . , xk, x1) is computed by the in situ
program: x1 := x1 + x2 + · · · + xk; xk := x1 − x2 − · · · − xk; . . .; x2 := x1 − x2 − · · · − xk. This
length turns out to be a minimal bound for this type of mapping, as shown in the next proposition, which
we state as an example of an in situ computation property whose proof is not so trivial. Let us mention
that this proposition has been suggested by [12], and that [13] provides a similar but slightly more general
result authorizing overwriting of variables.

Proposition 2 If S is a finite set, and the mapping E : Sn → Sn consists in a permutation of the n
variables, then an in situ program for E has a length greater than n − f + c, where c is the number of
cycles of E non-reduced to one element, and f is the number of invariant elements of E.

Proof: In what follows, we assume that f = 0, then the proof can be extended directly to the case where
f > 0 by applying it to the restriction of E to Sn−f . Assume there exists an in situ program Π for E of
length strictly smaller than n+ c.

Then there exists a cycle (non-reduced to a single variable) whose variables are modified once and
only once each in the program (since each non-invariant variable is modified at least once). Assume the
sequence of assignments modifying the variables of that cycle transforms the variables x1, . . . , xk into
x2, . . . , xk, x1 respectively. Let us consider the first variable modified by the program amongst those
variables, say it is x1. Then it is necessarily modified by the assignment x1 := x2.

Let us consider the program Π′ formed by all assignments of the program Π from the first one to the
assignment x1 := x2, included. The variables which are modified by those assignments are x1 and some
variables y1, . . . yi. Let us consider every other variable from Π as a constant for Π′.

The vector (y1, ..., yi, x1) can have at the beginning every possible value in Si+1. Since the permutation
of variables is a bijection, this program Π′ has to compute a bijection from Si+1 into Si+1. But this is
impossible since the image of the mapping computed by Π′ has a size bounded by |S|i, because the
assignment x1 := x2 ends the program Π′ where x2 is a constant. Note that we use that S is finite. 2

3 Multistage interconnection networks
Among formalism and terminology variants in the network theory field, we will remain close to that
of [14] and [16]. Also, we prefer to define a network as a directed graph, whose routing consists in
choosing edges to define directed paths, rather than considering vertices as switches with several routing
positions to choose. Those two formal options are obviously equivalent.

A multistage interconnection network, or MIN for short, is a directed graph whose set of vertices is
a finite number of copies Sn

1 , S
n
2 , . . . , S

n
k of Sn, called stages, and whose edges join elements of Sn

i

towards some elements of Sn
i+1 for 1 ≤ i < k. Then routing a MIN is specifying one outgoing edge

from each vertex of Sn
i for 1 ≤ i < k. A mapping E of Sn is performed by a routing of a MIN if for

each element X ∈ Sn
1 there is a directed path using specified edges from X to E(X) ∈ Sn

k . The fact
that a MIN performs a mapping E can be seen as the reverse of a multicast communication pattern where
one input may lead to several outputs. So, a MIN is called rearrangeable non-blocking multicast if every
mapping of Sn can be performed by this MIN. The concatenation of two MINs M,M ′ is the MIN M |M ′
obtained by identifying the last stage of M and the first stage of M ′.

The assignment networkAi is the MIN with two stages whose edges join (x1, . . . , xn) to (x1, . . . , xi−1,
e, xi+1, . . . , xn) for an arbitrary e ∈ S. Hence each vertex has degree s = |S|. With notations of
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Definition 1, given an assignment (ψk, ik) in an in situ program, we naturally define a routing of Aik by
specifying the edge between X = (x1, . . . , xn) and (x1, ..., xik−1, ψk(X), xik+1, ..., xn).

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x3 x2 x1 x :=f (x)1 1 x :=f (x)2 2 x :=f (x)3 3 x :=g (x)2 2 x :=g (x)1 1

reverse butterfly
butterfly

Benes network

assignment network

Fig. 1: Beneš network formed by concatenation of a reverse 2-butterfly and a 2-butterfly, where the two successive
assignment networks on x3 have been replaced by a single one.

The s-ary butterfly network, or simply butterfly, denoted Bs,n, or B for short, is the MIN An| . . .
|A2|A1. Then B−1 is the MIN A1|A2| . . . |An. The usual 2-ary butterfly, also called indirect binary
cube, stands here as B2,n. The Beneš network is the network obtained from B−1|B by replacing the two
consecutive assignment networks An by a single one. Note that this last reduction is not part of the usual
definition, however it is more convenient here since two successive assignments on a same component can
always be replaced with a single one. Note also that the historical definition of a Beneš network [2] is not
in terms of butterflies, but that ours is topologically equivalent thanks to classical results (see [1] and [3]
for instance) implying that they are equivalent in terms of mappings performed.

The point is that the signature of an in situ program defines a MIN, and the set of assignments that
realize a given mapping define the routing of the MIN by specifying some routing edges between stages.
From the above definitions, an in situ program of signature n, . . . , 1, or 1, . . . , n, or 1, . . . , n . . . , 1 corre-
sponds to a routing in B, or B−1, or the Beneš network, respectively. Figure 1 gives an example for the
Beneš network, with corresponding in situ program f1, f2, f3, g2, g1 (where indices show the modified
components). As explained above, routing this network is exactly specifying these mappings.

4 A formalization and survey of results for both viewpoints
In this section, we provide reformulations, variations, complements, or extensions for known network
theory results, in terms of in situ programs. We point out that deriving these constructions from existing
literature is not straightforward and is interesting on its own, notably because of various approaches and
formalisms used. Useful references are recalled. The formalism and preliminary constructions introduced
here will also serve as a base for the next section.

The classical property of the Beneš network is that it is rearrangeable (see [2][14]), that is: for any
permutation of Sn, there exists a routing performing the permutation (note that a routing performs a
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permutation when it defines edge-disjoint directed paths). Theorem 3 below reformulates this result. A
short proof in terms of in situ programs and using graph colouration is given in [9], yielding a construction
of the in situ program inDTIME(t.log(t)), where t = n.2n is the size of the table defining the mapping.

Theorem 3 Let E be a bijective mapping on Sn. There exists an in situ program for E of length 2n− 1
and signature 1 . . . n . . . 1. Equivalently, B−1|B has a routing performing E.

From a routing for a bijection E, one immediately gets a routing for E−1 by reversing the network.
Hence, the mappings corresponding to the reversed arcs in the reserved network define an in situ program
of E−1. In the boolean case, we even obtain more: one just has to use exactly the same assignments but
in the reserved way, as stated in Corollary 4.

Corollary 4 If Π is an in situ program of a bijection E on {0, 1}n, then the reversed sequence of assign-
ments is an in situ program of the inverse bijection E−1.

Proof: First, we show that operations in the program Π are necessarily of the form

xi := xi + h(x1, .., xi−1, xi+1, ..., xn).

One can assume without loss of generality that i = 1. Let x1 := f(x1, ..., xn) be an operation of Π.
Denote

h(x2, . . . , xn) = f(0, x2, . . . , xn).

We necessarily have f(1, x2, . . . , xn) = 1 + h(x2, . . . , xn). Otherwise two different vectors would map
to the same image. This yields f(x1, . . . , xn) = x1 + h(x2, . . . , xn). As a straightforward consequence,
performing the operations in reverse order will compute the inverse bijection E−1. 2

Now, in order to build a program for a general mapping E on Sn, for which different vectors may have
same images, we will use a special kind of mappings on Sn, that can be computed with n assignments.

Definition 5 It is assumed that S = {0, 1, . . . , s−1}. Denote [sn] the interval of integers [0, . . . , sn−1].
The index of a vector (x1, x2, . . . , xn) is the integer x1 +s.x2 + · · ·+sn−1.xn of [sn]. For every i ∈ [sn],
denote byXi the vector of index i. The distance of two vectorsXa, Xb is the integer ∆(Xa, Xb) = |b−a|.

A mapping I on Sn is distance-compatible if for every x, y ∈ Sn, we have ∆(I(x), I(y)) ≤ ∆(x, y),
which is equivalent to ∆(I(Xa), I(Xa+1)) ≤ 1 for every a with 0 ≤ a < sn − 1.

Proposition 6 and Corollary 7 below provide an extension of a well-known property of the butterfly
network in terms of in situ programs: it can be used to map the first k consecutive inputs onto any set of k
outputs in the same order. In [18], this property is used in a similar way than ours, as recalled in [14] (see
notably Theorem 4.3.7, where this network is shown to be a multicast infra-concentrator, and see also
[16], Section 3.4.3., where this property is used to solve the packing routing problem, with a proof similar
to ours).

Proposition 6 Every distance-compatible mapping I on Sn is computed by an in situ program with sig-
nature 1, . . . , n. This program p1, p2, . . . , pn satisfies, for I(x1, . . . , xn) = (y1, . . . , yn) and for each
i = 1, 2, . . . , n:

pi(y1, . . . , yi−1, xi, . . . , xn) = yi.
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Proof: Since each component is modified exactly one time in a program with signature 1, . . . , n, neces-
sarily each function pi must give its correct final value to each component xi. It remains to prove that
this unique possible method is correct, that is the mappings pi are well defined by the above formula, that
is, for each pi, a same vector cannot have two different images according to the definition. Note that the
given definition is partial, but sufficient for computing the image of any x.

Assume that p1, ..., pi are well defined. Assume that, after step i, two different vectors x, x′ are given
the same image by the process whereas their final expected images I(x) and I(x′) were different. The
components xj , j > i, of x and x′ have not been modified yet. Hence, they are equal and we deduce
∆(x, x′) < si. On the other hand, the components yj , j ≤ i, of I(x) and I(x′) are equal but I(x) 6= I(x′).
Hence ∆(I(x), I(x′)) ≥ si: a contradiction. So pi+1 is also well defined by the given formula. 2

Corollary 7 Let I be a mapping on Sn preserving the strict ordering of a set of consecutive vectors
Xi, . . . , Xj , for 0 ≤ i < j < sn − 1. Then the restriction of I to the set of vectors {Xi, . . . , Xj} can be
computed by an in situ program with signature n, . . . , 1.

Proof: By assumption, the restriction of I to {Xi, . . . , Xj} is injective. Let I−1 be a mapping of
Sn whose restriction to I({Xi, . . . , Xj}) is the inverse of I , and completed so that I−1 is distance-
compatible. Applying Proposition 6 to I−1 provides a sequence of assignments performing I−1 with
signature 1, . . . , n. Since I is injective on {Xi, . . . , Xj}, those assignments can be reversed to provide a
sequence of assignments computing the restriction of I to this set of vectors. Observe that this result can
be seen more simply in terms of networks: the in situ program of the mapping I−1 corresponds to a rout-
ing of the reversed butterfly, reversing this routing provides directly a routing of the butterfly performing
the required restriction of I . 2

Example 8 For S = {0, 1} and n = 3, consider the mapping I defined by I(X0) = I(X1) = X0,
I(X2) = X1, I(X3) = I(X4) = I(X5) = X2 and I(X6) = I(X7) = X3, as shown on the following
left tables. The mapping I is computed by the in situ program p1, p2, p3 as defined in Proposition 6 and
as illustrated in the following right tables. For consistency with Figure 1, and for better readability of the
index of a vector, the vector (x1, ..., xn) is written in reversed order in columns of the tables: from x3 to
x1.

x3 x2 x1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

I
→

y3 y2 y1

0 0 0
0 0 0
0 0 1
0 1 0
0 1 0
0 1 0
0 1 1
0 1 1

x3 x2 x1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p1

→

x3 x2 y1

0 0 0
0 0 0
0 1 1
0 1 0
1 0 0
1 0 0
1 1 1
1 1 1

p2

→

x3 y2 y1

0 0 0
0 0 0
0 0 1
0 1 0
1 1 0
1 1 0
1 1 1
1 1 1

p3

→

y3 y2 y1

0 0 0
0 0 0
0 0 1
0 1 0
0 1 0
0 1 0
0 1 1
0 1 1

Definition 9 We call partition-sequence of Sn a sequence

P = (P0, P1, . . . , Pk)

of subsets of Sn, for some integer k ≥ 0, such that the non-empty subsets in the sequence form a partition
of Sn. Then, we denote by IP the mapping on Sn which maps X0, . . . , Xsn−1 respectively to
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|P0|︷ ︸︸ ︷
X0, . . . , X0,

|P1|︷ ︸︸ ︷
X1, . . . , X1, . . . ,

|Pk|︷ ︸︸ ︷
Xk, . . . , Xk .

Observe that IP is well defined since the sum of sizes of the subsets equals sn, and that IP depends
only on the sizes of the subsets and their ordering. Observe also that if no subset is empty, then IP is
distance-compatible since, by construction, ∆(I(Xa), I(Xa+1)) ≤ 1 for every a.

Example 10 The mapping I from Example 8 equals IP̃ for the partition-sequence P̃ = (P̃0, P̃1, P̃2, P̃3)

of {0, 1}3 such that [|P̃0|, |P̃1|, |P̃2|, |P̃3|] = [2, 1, 3, 2].

Definition 11 LetE be a mapping on Sn, and P = (P0, P1, . . . , Pk) be a partition-sequence of Sn whose
underlying partition of Sn is given by the inverse images of E, that is precisely: for every 0 ≤ i ≤ k, if
Pi 6= ∅ then there exists (a unique) yi ∈ Sn such that Pi = E−1(yi). Then, we call P -factorisation of E
a triple of mappings (F, I,G) on Sn such that:

• I is the mapping IP ;

• G is bijective and maps the set Pi onto the set I−1(Xi), for every 0 ≤ i ≤ k
(it is arbitrary within each set Pi);

• F is bijective and maps Xi to yi, for every 0 ≤ i ≤ k such that Pi 6= ∅
(it is arbitrary for other values Xi).

By construction, we have
E = F ◦ I ◦G.

Using this construction with no empty subset in the sequence P , we obtain Theorem 12 below, which
significantly improves the result of [6] where boolean mappings on {0, 1}n are computed in n2 steps.
This result is similar, in terms of in situ programs, to the result of [18] for boolean mappings, as presented
in [14].

Theorem 12 For every finite set S, every mapping E on Sn can be computed by an in situ program of
signature 1 . . . n . . . 1 . . . n . . . 1 . . . n and length 5n− 4 the following way:

• Consider any P -factorisation (F, I,G) of E with no empty subset in the sequence P

• Use Theorem 3 to compute G (resp. F ) by a program of signature 1 . . . n . . . 1 (resp. n . . . 1 . . . n).

• Use Proposition 6, to compute I by a program of signature 1 . . . n.

• Reduce into one assignment the consecutive assignments operating on the same component.

In terms of MIN, we get a routing of B−1|B|B−1|B|B−1 performing E, and a multicast routing of
B|B−1|B|B−1|B performing E−1.
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Proof: Consider any P -factorisation (F, I,G) of E with no empty subset in the sequence P . Then the
mapping I is distance compatible, as already observed. By Theorem 3, G (resp. F ) can be computed by
a program of signature 1 . . . n . . . 1 (resp. n . . . 1 . . . n). By Proposition 6, I is computed by a program
of signature 1 . . . n. By composition and by reducing two successive assignments of the same variable in
one, E is computed by a sequence of 5n− 4 assignments of signature 1 . . . n . . . 1 . . . n . . . 1 . . . n. 2

Now we can refine Theorem 12 to get Theorem 13 below. This modification is similar to that noticed
in [20] about [18], and is similar to the construction of [17] in terms of boolean baseline networks, yielding
equivalent results. Observe that this refinement is an improvement in terms of number of assignments
(number of routing edges in the MIN setting), but not in terms of flexibility, since the ordering of subsets
in the sequence P of the P -factorisation of E has now to be the same than the ordering of the outputs
of E.

Theorem 13 For every finite set S, every mapping E on Sn can be computed by an in situ program of
signature 1 . . . n . . . 1 . . . n . . . 1 and length 4n− 3 the following way:

• Consider a P -factorisation (F, I,G) of E with no empty subset in the sequence P = (P0, ..., Pk)
and such that Pi = E−1(yi) where y0, ..., yk are the images of E in increasing ordering

• Use Theorem 3 to compute G by a program of signature 1 . . . n . . . 1.

• Use Proposition 6, to compute I by a program of signature 1 . . . n.

• Use Corollary 7, to compute the restriction of F to the image of I ◦ G by a program of signature
n . . . 1.

• Reduce into one assignment the consecutive assignments operating on the same component.

In terms of MIN, we get a routing ofB−1|B|B−1|B performingE, and a multicast routing ofB|B−1|B|B−1
performing E−1.

Proof: The proof is similar to that of Theorem 12 except for the bijection F . Here, by the choice of P ,
the restriction of F to the image of I ◦ G maps consecutive vectors onto a set of vectors preserving the
ordering. Hence it satisfies the hypothesis of Corollary 7. 2

Example 14 Figure 2 gives an example for the construction of Theorem 13. The elements of {0, 1}3 are
grouped by the bijection G at stage 6, in the same ordering than the images of E. Then, at stage 9 all
elements with same final image have been given a same image by I , again in the same ordering than the
images of E. Hence, at last, the restriction of bijection F can finalize the mapping E in 3 stages only.

Remark 15 To end this section, let us notice that, due to the fact that successive assignments operate on
consecutive components, successive assignments of type Smn → S can be grouped in assignments of
fewer variables on a larger base set Sm defining successive mappings Smn → Sm:

fnm, . . . , fn.(m−1)+1︸ ︷︷ ︸
f̃n

, . . . , fm, . . . f2, f1, g2, . . . , gm︸ ︷︷ ︸
f̃1

, . . . , gn.(m−1)+1, . . . , gnm︸ ︷︷ ︸
g̃n

.
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Fig. 2: The different shades of grey correspond to the different sets of vectors having same final image. Solid line
edges indicate the routing of the network performing this mapping. It illustrates Theorem 13, see Example 14.

Hence, for instance, the case S = {0, 1}m can be reduced to the case S = {0, 1}. This is a particular case
of the register integrability property described in [8]: the signatures of type 1, . . . , n, . . . , 1, . . . allow to
adapt in situ programs to memory registers with non-constant sizes.

Open problem 1 Up to our knowledge, no better bound than 4n − 3 is known for the case of arbitrary
mappings. It would be interesting to improve this bound, and to find the best possible general bound.
Experiments on a computer make us think that the factor 4 could be replaced with a factor 3. Note that
the in situ program may not have a signature with consecutive indices, or, in other words, that other
combinations of assignment networks than the butterfly network may be used.

5 A more flexible new method
The more involved method given here is a refinement of the method given by Theorem 12. It is completely
new with respect to network literature, and had been presented in the preliminary conference paper [9]. It
provides the same number of assignments than Theorem 13 and a better flexibility.

We still use a P -factorisation (F, I,G) but the sequence P will possibly contain empty sets, and will
be suitably ordered with respect to the sizes of its elements, in order to satisfy some boolean arithmetic
properties. So doing, the intermediate mapping I = IP will have a so-called suffix-compatibility property.
We show that the composition of a mapping having this property with any in situ program with signature
1, . . . , n can be also computed in n steps. Hence the composition of I with the first n steps of the in
situ program of the bijection F can also be computed with n assignments, performing the computation of
F ◦ I in 2n− 1 steps instead of 3n− 2.

Each intermediate result in this section provides a new result on in situ programs with signature
1, . . . , n, or equivalently on routing properties of the butterfly network. In terms of multicast routing
strategy, the flexibility of this method comes from the freedom one has in building a suitable ordering for
the sequence P , as detailed in Remark 19.

In the whole section, we will fix S = {0, 1}. The method is given here when S = {0, 1}, hence it is
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directly available, by extension, when S = {0, 1}m (cf. Remark 15). However it can be extended to a
set S of aribtrary size. While this paper was under publication process, it has been noticed in [13] that
Definition 16 and Lemma 17 below could be formulated using any integer q =| S | instead of 2, by means
of an arithmetical property. Then the rest of the construction can be adapted directly.

Definition 16 A block-sequence [v0, v1, . . . , v2n−1] is a sequence of 2n non-negative integers such that,
for every i = 0 . . . n, the sum of values in each of the consecutive blocks of size 2i is a multiple of 2i, that
is, for all 0 ≤ j < 2n−i: ∑

j2i ≤ l < (j+1)2i

vl = 0 mod 2i.

Lemma 17 Every sequence of 2n non-negative integers whose sum equals 2n can be reordered in a
block-sequence.

Proof: The ordering is built inductively. Begin at level i = 0 with 2n blocks of size 1 having each value
in the sequence. At level i + 1, form consecutive pairs of blocks [B,B′] that have values v, v′ of same
parity and define the value of this new block to be (v + v′)/2. Each new level doubles the size of blocks
and divides their number by 2. The construction is valid since the sum of values of blocks at level i is
2n−i. 2

Example 18 We illustrate below the process described in the proof of Lemma 17 (n = 4 and each block
has its value as an exponent):

[4]4, [1]1, [1]1, [1]1, [1]1, [1]1, [1]1, [3]3, [3]3, [0]0, [0]0, [0]0, [0]0, [0]0, [0]0, [0]0

[4, 0]2, [1, 1]1, [1, 1]1, [1, 1]1, [3, 3]3, [0, 0]0, [0, 0]0, [0, 0]0

[4, 0, 0, 0]1, [1, 1, 3, 3]2, [1, 1, 1, 1]1, [0, 0, 0, 0]0

[4, 0, 0, 0, 1, 1, 1, 1]1, [1, 1, 3, 3, 0, 0, 0, 0]1

[4, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0]1

Remark 19 Let us anticipate the sequel of the detailed construction and already explain roughly in what
respect the use of block-sequences will allow a more flexible routing strategy than the classical construc-
tion recalled in Section 4. As shown before, this construction consists in grouping and sorting pre-images
of the mapping at some middle stage of the in situ program. The ordering of these pre-images is de-
termined and thus the sequence of assignments is completely constrained at this middle stage. There is
essentially one available sorting to get the 4n− 3 length (up to a few possible shifts along the ordering).

In the more involved construction given in the present section, we will apply Lemma 17 to the sequence
of integers given by the cardinalities of the pre-images of the mapping to compute. We will prove later
that any ordering of the pre-images whose cardinalities satisfy the block-sequence property can be used
at this middle stage. The point is that, given a sequence of integers, there is a number of such possible
orderings given by block-sequences, built as in the proof of Lemma 17, and also a number of possible
associations between the pre-images and those cardinality integers.

For instance, a given a block-sequence ordering can be represented as a bracket system, forming a
binary tree, the following way, continuing Example 18:

[ 4 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 3 , 3 , 0 , 0 , 0 , 0 ]
[ 4 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ],[ 1 , 1 , 3 , 3 , 0 , 0 , 0 , 0 ]
[ 4 , 0 , 0 , 0 ],[ 1 , 1 , 1 , 1 ],[ 1 , 1 , 3 , 3 ],[ 0 , 0 , 0 , 0 ]
[ 4 , 0 ],[ 0 , 0 ],[ 1 , 1 ],[ 1 , 1 ],[ 1 , 1 ],[ 3 , 3 ],[ 0 , 0 ],[ 0 , 0 ]
[ 4 ],[ 1 ],[ 1 ],[ 1 ],[ 1 ],[ 1 ],[ 1 ],[ 3 ],[ 3 ],[ 0 ],[ 0 ],[ 0 ],[ 0 ],[ 0 ],[ 0 ],[ 0 ]
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Then, one can always permute any sons of a node in the tree and still get a block-sequence. So, from
one block-sequence, one can obtain potentially a number of available block-sequences (there are 22

n−1

permutations of the leaves obtained by this way for such a tree with 2n leaves). For instance, making such
permutations in Example 18 leads to the following possible block-sequences (brackets have been added
to identify blocks that have been permuted):

[4, 0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 0, 0, 0, 0];
[ [1, 1, 3, 3, 0, 0, 0, 0] , [4, 0, 0, 0, 1, 1, 1, 1] ];
[ [1, 1, 1, 1] , [4, 0, 0, 0] , 1, 1, 3, 3, 0, 0, 0, 0];
[ [1, 1, 1, 1] , [0, 0, [0] , [4] ] , [0, 0, 0, 0] , [1, 1, 3, 3] ];
etc.

Of course, various possible block-sequences may be obtained independently from such permutations.
Moreover, given a block-sequence, pre-images having same cardinality may be associated with any oc-
currence of the corresponding integer in the sequence, leading to a number of possibilities for building the
in situ program. For instance, if every pre-image has size 2, then the sequence of integers to consider is
[2, 2, . . . , 2, 2, 0, 0, . . . , 0, 0], which is already a block-sequence and is invariant under permutation of the
non-zero integers. In this case, any ordering of the pre-images can be used at the middle stage to provide
finally a 4n− 3 length program.

All those “any” in this new construction, compared with the “one” in the known construction, witness
how the method is more flexible.

Definition 20 For a vector (x1, . . . , xn), we call prefix of order k, resp. suffix of order k, the vector
(x1, . . . , xk), resp. (xk, . . . , xn). ¨

A mapping I of {0, 1}n is called suffix-compatible if, for every 1 ≤ k ≤ n, if two vectors X,X ′ have
same suffixes of order k, then their images I(X), I(X ′) also have same suffixes of order k.

Lemma 21 LetP = (P0, P1, . . . , P2n−1) be a partition-sequence of {0, 1}n such that [|P0|, |P1|, . . . , |P2n−1|]
is a block-sequence. Then the mapping IP on {0, 1}n is suffix-compatible.

Proof: The sketch of the proof is the following. First, define the j-th block of level i of {0, 1}n as the set
of vectors whose part has index j2i ≤ l < (j + 1)2i. Observe that the inverse image by IP of a block is
a union of consecutive blocks of same level. The result follows.

Let us now detail the proof. For 0 ≤ i ≤ n and j ∈ [2n−i], define the j-th block at level i of {0, 1}n as

Vi,j = {Xl : l ∈ [j2i, (j + 1)2i − 1]}.

(i) First, we prove that, for every i, j as above, there exists k, k′ ∈ [2n−i], such that

I−1P (Vi,j) =
⋃

k≤l≤k′

Vi,l.

Let us call interval of {0, 1}n the set of vectors Xl for l belonging to an interval of [2n]. First, notice
that the inverse image by IP of an interval of {0, 1}n is an interval of {0, 1}n. By definition of IP ,
we have

∣∣I−1P (Vi,j)
∣∣ =

∑
j2i≤l<(j+1)2i vl. Remark that I−1P (Vi,j) may be empty, when vl = 0 for all

l ∈ [j2i, (j+ 1)2i]. Since [v0, . . . , v2n−1] is a block sequence, we have
∑

j2i≤l<(j+1)2i vl = 0 mod 2i.
Hence,

∣∣I−1P (Vi,j)
∣∣ = 0 mod 2i.
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For a fixed i, we prove the result by induction on j. If j = 0 then
∣∣I−1P (Vi,0)

∣∣ = k.2i for some
k ∈ [2n−i]. If I−1P (Vi,0) is not empty, then it is an interval of {0, 1}n containing (0, ..., 0) by definition of
IP . Since this interval has a size k.2i multiple of 2i, it is of the form

⋃
0≤l≤k Vi,l.

If the property is true for all l with 0 ≤ l < j, then I−1P

(⋃
0≤l<j Vi,l) =

⋃
0≤l≤j′ Vi,l. Since∣∣I−1P (Vi,j)

∣∣ = k.2i for some k ∈ [2n−i], we must have I−1P

(⋃
0≤l≤j Vi,l) =

⋃
0≤l≤j′+k Vi,l, hence

I−1P (Vi,j) =
⋃

j′<l≤j′+k′ Vi,l.

(ii) Now, we prove the lemma. Assume a = (a1, ..., an) and b = (b1, ..., bn) have same suffix of order
i. For all l ≥ i we have al = bl. Let c ∈ Sn be defined by cn = an = bn, . . . , ci = ai = bi, ck−1 =
0, . . . , c1 = 0. Let φ(x) denote the index of vector x. We have φ(c) = 0 mod 2i−1, that is φ(c) = j.2i−1

for some j ∈ [2n−i+1]. And φ(a) and φ(b) belong to the same interval [j.2i−1, (j + 1).2i−1 − 1] whose
elements have same components for l ≥ i. That is a and b belong to Vi−1,j . By (i), the inverse images
of intervals of type Vi−1,k by IP are unions of such consecutive intervals. Hence the image of an interval
Vi−1,j by Ip is an interval contained in an interval Vi−1,k for some k ∈ [2n−i+1]. Hence IP (a) and IP (b)
have same components l ≥ i. 2

Example 22 First consider again the mapping IP̃ from Examples 8 and 10 obtained from the partition-
sequence P̃ = (P̃0, P̃1, P̃2, P̃3) of {0, 1}3 such that [|P̃0|, |P̃1|, |P̃2|, |P̃3|] = [2, 1, 3, 2], which is not a
block-sequence. Observe that this mapping is not suffix-compatible, since (x1, x2, x3) = (0, 1, 0) and
(x′1, x

′
2, x

′
3) = (1, 1, 0) have same suffix of order 2 equal to (1, 0), but I(x1, x2, x3) = (1, 0, 0) and

I(x′1, x
′
2, x
′
3) = (0, 1, 0) have not same suffix of order 2.

Now consider the mapping IP shown on the next tables, obtained from the partition-sequence P =
(P0, P1, P2, P3) such that [|P0|, |P1|, |P2|, |P3|] = [1, 3, 2, 2], which is a block-sequence. Then one can
check that IP is suffix-compatible, as claimed by Lemma 21.

x3 x2 x1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

IP
→

i3 i2 i1
0 0 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1

Proposition 23 Let I be a suffix-compatible mapping on {0, 1}n and let B be a mapping on {0, 1}n
computed by an in situ program b1, . . . , bn. The mapping B ◦ I is computed by an in situ program with
signature 1, . . . , n, namely p1, p2, . . . , pn, with, for B ◦ I(x1, . . . , xn) = (y1, . . . , yn):

pi(y1, . . . , yi−1, xi, . . . , xn) = yi.

Observe that Proposition 23 provides a new property of the butterfly network, which refines the classical
sorting property of this network recalled in Proposition 6. We mention also that Proposition 23 is stated
and proved for a general mapping B, but we will use it in what follows only when B is bijective.

Proof: Just as for Proposition 6, assume that p1, ..., pi are well defined by the necessary above formula,
and that, after step i, two different vectors x, x′ are given the same image by the process whereas their final
expected images y = B ◦ I(x) and y′ = B ◦ I(x′) were different (hence I(x) 6= I(x′)). By construction,
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y, y′ have a same prefix P of order i and x, x′ have a same suffix Q of order i + 1. Moreover, since
I is suffix-compatible, the vectors I(x), I(x′) also have a same suffix R of order i + 1. Hence one has
some relation F (I(x)) = F (uR) = y = Pv and F (I(x′)) = F (u′R) = y′ = Pv′, where u, u′ are
some prefix, and v, v′ are some suffix. Let Fi be the mapping defined by the first i assignments defining
F , that is dealing with components 1, . . . , i. Since F (uR) = Pv, we have Fi(uR) = PR. And since
F (u′R) = Pv′ we have Fi(u

′R) = PR. Hence Fi(uR) = Fi(u
′R). Since F is computed by computing

Fi first, we get that F (uR) = F (u′R), that is y = y′, a contradiction with our assumption. 2

Example 24 Consider the bijective mappingB computed by the program b1, b2, b3 shown on the next left
tables (each step modifies one column). And consider the suffix-compatible mapping IP from Example 22
above. Then, by Proposition 23, the composition B ◦ IP is computed by the program p1, p2, p3 as shown
on the next right tables. One can check that, at each step, two vectors which have same image through
1 ≤ k ≤ 3 assignments will have eventually same images.

i3 i2 i1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

B
→

b3 b2 b1
0 0 0
1 0 1
0 1 1
1 1 0
0 1 0
0 0 1
1 0 0
1 1 1

x3 x2 x1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p1

→

x3 x2 y1

0 0 0
0 0 1
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0
1 1 0

p2

→

x3 y2 y1

0 0 0
0 0 1
0 0 1
0 0 1
1 1 1
1 1 1
1 1 0
1 1 0

p3

→

y3 y2 y1

0 0 0
1 0 1
1 0 1
1 0 1
0 1 1
0 1 1
1 1 0
1 1 0

Now, given a mapping E of Sn, using a P -factorisation of E for a sequence P whose sequence of
cardinalities is a block-sequence, we can improve the result of Section 3 in terms of flexibility. Indeed,
the only constraint is now to have that the sets of vectors having a same final image are grouped after the
first bijection according to any block-sequence representing the sequence of cardinalities of those sets.
And there is a number of such possible block-sequences (cf. construction of Lemma 17).

Theorem 25 Every mapping E on {0, 1}n is computed by an in situ program of length 4n − 3 and
signature 1 . . . n . . . 1 . . . n . . . 1 the following way:

• Consider aP -factorisation (F, I,G) ofE withP = (P0, P1, . . . , P2n−1) such that [|P0|, |P1|, . . . , |P2n−1|]
is a block-sequence (built by Lemma 17)

• Use Theorem 3 to compute G and F by programs with signature 1 . . . n . . . 1.

• Call B the in situ program formed by the n first assignments of the program of F , and use Propo-
sition 23 to compute B ◦ I by a program with signature 1, . . . , n.

• Reduce into one assignment the consecutive assignments operating on the same component.

In terms of MIN, we get a routing ofB−1|B|B−1|B performingE, and a multicast routing ofB|B−1|B|B−1
performing E−1.

Proof: Let (F, I,G) be a P -factorisation of E for a sequence P = (P0, P1, . . . , P2n−1) such that
[|P0|, |P1|, . . . , |P2n−1|] is a block-sequence (it exists thanks to Lemma 17). By Theorem 3, G (resp. F )
can be computed by a program of signature 1 . . . n . . . 1 (resp. 1 . . . n . . . 1). By Lemma 21, the mapping
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I = IP on {0, 1}n is suffix-compatible. CallB the mapping computed by the n first assignments b1, ..., bn
of the program of F . By Proposition 23, B ◦ I is also computed by a program of signature 1 . . . n. Then,
by composition and by reducing two successive assignments of the same variable in one, the mapping
E = F ◦ I ◦G is computed by a sequence of 4n− 3 assignments of signature 1 . . . n . . . 1 . . . n . . . 1.

2

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

G F    I

reduced in one

B     I

Fig. 3: Another routing performing the same mapping as in Figure 2. It illustrates Theorem 25, see Example 26.

Example 26 Figure 3 gives an example for the construction of this section (on the same mapping as in
Figure 2). The elements of {0, 1}3 are grouped by the bijection G at stage 6, accordingly with the block-
sequence

[
[1, 3], [2, 2]

]
induced by E−1. Then, at stage 9 all elements with same final image have been

given a same image by B ◦ I (which is the mapping detailed in Example 24), where B is the first part of
the bijection F . At last, the second part of the bijection F allows to finalize the mapping E. Observe that
we could have chosen other block-sequences, such as

[
[3, 1], [2, 2]

]
or
[
[2, 2], [1, 3]

]
for instance, and we

would have obtained other in situ programs and routing patterns for the same mapping (see Remark 19).

Open problem 2 A first natural question was to extend the notion of block-sequence and Lemma 17 to a
set S of arbitrary size, in such a way that the rest of the construction remains valid. An efficient answer
has been given recently in [13], as mentioned in the introduction of this Section. Another general and
probably demanding question is to study the reach of the flexibility provided by the present construction:
either to get general in situ programs of shorter length, as requested by Open problem 1; or, in terms of
networks, to get efficient (wide-sense) non-blocking routing methods, i.e. methods to update dynamically
the routing with respect to updates of the computed mapping. Finding such dynamic non-blocking routing
strategies is a main concern of the network field (see [14] for a general background).

6 Linear mappings on suitable ring powers
In this section, we assume that S is given with an algebraic structure: S is a (non-necessarily finite)
quotient of an Euclidean domain R by an ideal I . Classical examples for S are: any field (the result of



138 Serge Burckel, Emeric Gioan, Emmanuel Thomé

this section for S being a field is easier, since most technicalities can be skipped), the rings Z/sZ, or
K[x]/(P ) for some polynomial P with coefficients in a field K.

Given S and an integer n, we consider a linear mapping Sn → Sn, that is an application from Sn to
Sn which is a linear application with respect to the canonical structure of S-module of Sn. The results
of Section 3 show that O(n) assignments are sufficient to compute such a mapping. Here, we achieve a
stronger result: the number of required mappings is bounded by 2n− 1, and all intermediary assignments
are linear.

In [7], a similar result is obtained in the particular case of linear boolean mappings. The paper [19]
achieves this result with an on-the-fly self routing strategy, again restricted to the linear boolean case. We
note that the more general result we obtain here is not of this efficient nature, since the actual computation
of the decomposition we obtain has a complexity which is of the order of O(n3). We insist however on
the fact that the in situ decomposition we provide can be proven to be of length at most 2n − 1, and is
available for much more general useful algebraic structures.

Also, finding an in situ program of a linear mapping using linear assignments is equivalent to rewriting
a matrix as a product of assignment matrices (matrices equal to the identity matrix except on one row).
Theorem 29 below is proven using this alternate formalism.

We denote S∗ the set of invertible elements of S. For convenience we also define the Kronecker symbol
δji , which is defined for two integers i and j as being 1 for i = j, and 0 otherwise.

Lemma 27 Let x1, . . . , xn be coprime elements of R. Let i0 ∈ [1 . . . n]. There exists multipliers
λ1, . . . , λn such that λi0 = 1, and

∑
i λixi ∈ S∗.

Proof: By assumption, the index i0 is fixed. Without loss of generality we may safely assume that i0 = 1.
In virtue of the Chinese Remainder Theorem, it suffices to define the multipliers λ1, . . . , λn separately
modulo each prime power pv dividing I , thus it is also valid to restrict to the case where the ideal I is
generated by a prime power pv .

Now we distinguish two cases. In the first case, x1 is coprime to p, and thus coprime to I . We thus
choose λ1 = 1, and λi = 0 for all i > 1. Then λ1x1 = x1 is in (R/I)∗. In the second case, x1 is divisible
by p. Since by assumption, the xi’s are coprime, there exists an integer i1 such that xi1 is coprime to p.
Therefore xi0 + xi1 is coprime to p, hence we may set λ1 = λi1 = 1, and λi = 0 for all other indices i
(in other words, we may write λi = δ1i + δi0i ). We thus have

∑
i λixi = xi0 + xi1 , which is coprime to

p, whence in (R/I)∗ as well. 2

Corollary 28 Let x1, . . . , xn be elements of R, and g = gcd(x1, . . . , xn). Let i0 ∈ [1 . . . n]. There exists
multipliers λ1, . . . , λn such that λi0 = 1, and

∑
i λixi ∈ gS∗.

Proof: This is a trivial application of Lemma 27 to (x1/g, . . . , xn/g). 2

Theorem 29 Every linear mapping E on Sn is computed by an in situ program of length 2n − 1 and
signature 1, 2, ..., n, n− 1, ..., 1 made of linear assignments.

Furthermore, ifE is bijective, then the inverse mappingE−1 is computed by the in situ program defined
by the same sequence of assignments in reversed order together with the following transformation:[
xi := a · xi + f(x1, . . . , xi−1, xi+1, . . . , xn)

]
7→

[
xi := a−1 ·

(
xi − f(x1, . . . , xi−1, xi+1, . . . , xn)

)]
.
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Proof: The proof proceeds by induction. Let k be an integer, and let M be a matrix representing a linear
mapping E on Sn which leaves the first k − 1 variables unchanged. In other words, the first k − 1 rows
of M equal those of the identity matrix. The matrix which defines the input linear mapping E satisfies
this property with k = 1, thus our induction initiates at k = 1 with the matrix defining E. We explore the
possibility of rewriting M as a product LkM

′Rk, where the first k rows of M ′ match those of the identity
matrix.

Let g be the greatest common divisor of (arbitrary representatives in R of) the coefficients of column k
in M . A favourable situation is when mk,k is in gS∗. Should this not be the case, let us see how we can
transform the matrix to reach this situation unconditionally. Assume then for a moment that mk,k /∈ gS∗.
Lemma 27 gives multipliers λ1, . . . , λn such that

∑
` λ`m`,k ∈ gS∗, with the additional constraint that

λk = 1. Let us now denote by T the n × n matrix which differs from the identity matrix only at row k,
and whose coefficients in row number k are defined by tk,j = λj . Clearly T is an invertible assignment
matrix, and the product TM has a coefficient at position (k, k) which is in gS∗.

Now assume mk,k ∈ gS∗. Let G be the diagonal matrix having Gk,k = g as the only diagonal entry
not equal to 1. Let M ′′ = MG−1 (M ′′ has coefficients in R because g is the g.c.d. of column k).
We have m′′k,k ∈ S∗. We form an assignment matrix U which differs from the identity matrix only at
row k, and whose coefficients in row number k are exactly the coefficients of the k-th row of M ′′. The
matrix U is then an invertible assignment matrix (its determinant is m′′k,k). The k first rows of the matrix
M ′ = M ′′U−1 match the k first rows of In, and we have M = T−1×M ′× (UG). Our goal is therefore
reached with Lk = T−1 and Rk = UG.

Repeating the procedure, our input matrix is rewritten as a product

L1L2 . . . Ln−1Rn . . . R1,

where all matrices are assignment matrices. No left multiplier Ln is needed for the last step, since the
g.c.d. of one single element is equal to the element itself. Finally, the determinant of M is invertible if
and only if all the matrices Rk are invertible, hence the reversibility for bijective mappings. 2

Corollary 30 Every square matrix of size n on S (quotient of an Euclidean domain by an ideal) is the
product of 2n− 1 assignment matrices (equal to the identity matrix except on one row).

Remark 31 We digress briefly on the computational complexity of building the in situ programs for
the linear mappings considered here. The matrix operations performed here all have complexity O(n2)
because of the special shape of the assignment matrices. Therefore, the overall computational complexity
of the decomposition is O(n3).

Example 32 The procedure in the proof of Theorem 29 can be illustrated by a small example. Assume
we want to decompose the mapping in Z/12Z given by the matrix

E =

(
4 5
6 4

)
.

Let M be this matrix. The g.c.d of column 1 in M is gcd(4, 6) = 2, which is not invertible modulo 12.
We therefore firstly use Corollary 28 to make gcd(4, 6) = 2 appear in the top left coefficient. We use the
relation

1 ∗ (4/2) + 1 ∗ (6/2) = 5 ∈ (Z/12Z)∗,

1 ∗ 4 + 1 ∗ 6 = 10 ∈ 2(Z/12Z)∗.
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We take therefore λ1 = λ2 = 1 and the matrix T =

(
1 1
0 1

)
gives

M ′ = TM =

(
1 1
0 1

)(
4 5
6 4

)
=

(
10 9
6 4

)
.

The common divisor 2 of column 1 can then be set aside. Let G =

(
2 0
0 1

)
. We have M ′′ =

M ′G−1 = TMG−1 =

(
5 9
3 4

)
. Now let U =

(
5 9
0 1

)
reproduce the first row of M ′′. We have

M ′′U−1 ≡
(

1 0
3 1

)
, exploiting the fact that because 5 is invertible modulo 12, U is an invertible

matrix modulo 12. This eventually unfolds as the following factorization of M :(
1 1
0 1

)
M =

(
5 9
3 4

)(
2 0
0 1

)
≡
(

1 0
3 1

)(
5 9
0 1

)(
2 0
0 1

)
.

M =

(
1 −1
0 1

)(
1 0
3 1

)(
10 9
0 1

)
.

This corresponds to the following sequence of assignments:

x1 := 10x1 + 9x2; x2 := 3x1 + x2; x1 := x1 − x2.

Open problem 3 As mentioned in the introduction, natural subsequent questions are the following. Let
S = {0, 1} be the binary field, and E : Sn → Sn be a mapping the components of which are polynomials
of degree at most k.

1. Does there always exist an in situ program ofE the assignments of which are polynomials of degree
at most k?

2. If so, what is the maximum (over all such E) of the minimum (over all such in situ programs of E)
number of assignments in the program?

The following example tested on a computer shows that, in contrast to the linear case or the boolean
bijective case developed earlier in the paper, this bound has to be strictly larger than 2n − 1. For the
mapping

E : (x1, x2, x3) −→ ( x2x3, x1x3, x1x2 ),

the following in situ program of E has the smallest possible number of assignments using degree-2 poly-
nomials:

x1 := x2 + x2x3 + x1;
x2 := x3 + x1 + x2;
x3 := x3 + x2 + x1x2;
x1 := x3 + x2x3 + x1x3;
x2 := x3 + x2x3 + x1x3;
x3 := x3 + x2x3 + x1x3.
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Conclusion To conclude, further work can consist in applications: for instance the context of computa-
tions modulo e.g. Z/264Z is close to the concern of integer arithmetic with machine words. Theorem 29
shows that we can obtain a short sequence for computing linear mappings on such data. About the in
situ approach of this computation, a question may arise, though, as to whether the constants appearing
in the computation defeat the claim that the computation avoids temporaries. In fact, such constants can
be directly embodied in the code, so that they contribute exclusively to the code size and not to its re-
quested variable data size (or number of registers). Further work can also consist in improving bounds:
for instance, it has been claimed very recently in [10] that the tight bound is b3.n/2c linear assignments
to compute linear mappings when S is the field Z/qZ for a prime power q (see also Open problem 1).
Further work can also consist in dynamic routing for a network approcah (see [14] and Open problem 2),
or in algebraic generalizations (such as proposed by Open problem 3)...
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