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Abstract. During the design of class models for information systems,
databases or programming, experts of the domain and designers discuss
to identify and agree on the domain concepts. Formal Concept Analysis
(FCA) and Relational Concept Analysis (RCA) have been proposed, for
fostering the emergence of higher level domain concepts and relations,
while factorizing descriptions and behaviors. The risk of these methods
is overwhelming the designer with too many concepts to be analyzed. In
this paper, we systematically study a practical application of RCA on
several versions of a real class model for an information system in order
to give precise figures about RCA and to identify which configurations
are tractable.

Keywords: Class model, class model factorization, Formal Concept Analysis,
Relational Concept Analysis

1 Introduction

Designing class models for information systems, databases or programs is a com-
mon activity, that usually involves domain experts and designers. Their task con-
sists in capturing the domain concepts, and organizing them in a relevant special-
ization structure with adequate abstractions and avoiding redundant concepts.
Formal Concept Analysis (FCA) and its variant Relational Concept Analysis
(RCA) have been proposed to assist this elaboration phase, so as to introduce
new abstractions emerging from the identified domain concepts, and to set up a
factorization structure avoiding duplication. FCA classifies entities having char-
acteristics1, while RCA also takes into account the fact that entities are linked
by relations. The concept lattices produced can be exploited so as to obtain the
generalization structure for the class model.

Nevertheless, while this whole factorization structure of a class model is a
mathematical object with strong theoretical properties, its practical use might

1 The usual terms in the FCA domain are "objects" and "attributes"; we prefer not
using them here because they conflict with the vocabulary of class models.



suffer from limitations due to the large size of the obtained lattices. In such a
case, domain experts might be overwhelmed by the produced information making
it difficult (or even impossible) to use it to improve the class model.

In this paper we want to assess, in a real case study, the size of the fac-
torization results, in order to have a solid foundation for proposing practical
recommendations, tools or approaches. We work with a kind of "worst case" of
RCA application, by using all the modeling elements and not limiting our investi-
gation to some elements (like classes and attributes, or classes and operations).
We show, via various selected graphics, how RCA behaves. Our experiments
indicate which configurations are tractable, admitting that some tools present
results in a fine way, and which configurations lead to quite unusable results.

The rest of the paper is structured as follows. Section 2 briefly explains
how FCA and RCA can contribute to a class model design. Section 3 settles
the environment for our experiments and introduces our case study. Section 4
presents and discusses the obtained results. Section 5 presents related work, and
section 6 concludes.

2 Concept lattices in class model refactoring

In this section, we explain how concept lattices implement and reveal the under-
lying factorization structure of a class model. We also show how this property
can be exploited for class model refactoring, and in particular: generating new
reusable abstractions that improve the class organization and understanding,
especially for domain experts, limiting attribute and role duplication.

Formal Concept Analysis [5] is a mathematical framework that groups enti-
ties sharing characteristics: entities are described by characteristics (in a Formal
Context), and FCA builds (formal) concepts from this description. In Relational
Concept Analysis (RCA) [10], the data description consists of several Formal
Contexts and relations. The main principle of RCA is to iterate on FCA appli-
cation, and the concepts learnt during one iteration for one kind of entity are
propagated through the relations to the other kinds of entities. The concepts
are provided with a partial order which is a lattice. In the obtained concept
lattices, we distinguish merged concepts and new concepts. A merged concept is
a concept that has more than one entity in its simplified extent. This means that
the entities of the simplified extent share the same description. A new concept

is a concept that has an empty simplified extent. This means that no entity has
exactly the simplified intent of the concept as set of characteristics: Entities of
the whole extent own the characteristics of the simplified intent in addition to
other characteristics.

To apply FCA to class models, we encode the elements of a class model
into formal contexts. For example, we provide a context describing the classes
by their attributes. The FCA approach then reveals part of the factorization
structure and supports part of the refactoring process by using a straightforward
description of UML elements. For example, we can discover new concepts for
classes interpreted as new super-classes, factorizing two attributes.



Nevertheless this approach does not fully exploit the deep structure of the
class model. Let us take the example of Figure 1(a). The attribute name is dupli-
cated in classes B1 and B2, and FCA can generate the model of Figure 1(b) that
introduces a new class (here manually named NamedElement) that factorizes this
attribute. However, FCA does not compute the factorization that can be found
in Figure 1(c), in which a class called SuperA factorizes the two associations from
A1 to B1 and from A2 to B2, being given that now B1 and B2 have an ancestor
NamedElement.

(a)

(b)

(c)

Fig. 1. Example of factorization in class models

Extracting abstractions using this deep structure can be done with RCA,
which builds the entire factorization structure, including information on the
elements (classes, attributes, associations) and their relations. RCA uses the
fact that classes are linked through associations. In the first iteration step, RCA
computes the factorization in Figure 1(b), and then propagates the new concept

NamedElement through the association between classes. Then the factorization
of Figure 1(c) is computed during the next iteration steps. The process stops
there since a fixpoint is found (no new abstractions can be found).



The obtained structure contains no duplication, and improves the organiza-
tion of the model. However, when applied on large data, RCA may result in
the introduction of many new concepts, that may be too abstract, and/or too
many to be analyzed. That is why in the next sections, we investigate on a case
study the behavior of RCA for a large class model corresponding to an actual
information system. Our objective is to determine if RCA remains suitable for
large class models, and how to configure RCA to obtain exploitable results.

3 The Pesticides class model and experimental setup

Our case study is a class model which is part of a project from the Irstea insti-
tute, called Environmental Information System for Pesticides (EIS-Pesticides).
It aims at designing an information system centralizing knowledge and informa-
tion produced by two teams: a Transfer team in charge of studying the pesticide
transfers from plots to rivers and a Practice team which mainly works on the
agricultural practices of the farmers. The domain analysis has been carried on
during series of meetings with one team or both teams. Fifteen versions of this
class model have been created during this analysis. Figure 2 shows the number
of model elements over the versions.
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Fig. 2. The number of model elements over the various versions

Our tool is based on the Modeling Tool Objecteering2 and the framework
eRCA3. eRCA has been extended for computing metrics. In this paper we fo-
cus on a configuration (part of the meta-model) including the following entities
described in formal contexts: classes, associations, operations (very few in the
Pesticides model), roles and attributes. Their characteristics are their names.
The relations describe: which class owns which attribute, which class owns which
operation, which class owns which role, which association owns which role and
which type (class) has a role. When applying RCA to this configuration, we
obtain 5 concept lattices, one for each formal context. We also consider four

2 http://www.objecteering.com/
3 http://code.google.com/p/erca/



parameterizations for this configuration depending on whether we take into ac-
count navigability and undefined elements. If a navigability is indicated on an
association, meaning that objects from the source know objects from the target
(not the reverse), taking into account navigability (denoted by Nav) results in
the following encoding: the source class owns the corresponding role, but the
target class does not own any role corresponding to that association. Not taking
into account navigability (denoted by noNav) means that the source class and the
target class own their respective role in the association. In the modeling tool, un-
named roles are named "undefined". We can choose to include this "undefined"
name in the contexts (denoted by Undef) or not (denoted by noUndef).

4 Results

In this section, we report the main results that we obtain. We consider two
special iteration steps: step 1 (close to FCA application) and step 6 (where
paths of length 6 in the model are followed, meaning that abstractions on classes
created at step 1 have been exploited to create other class abstractions through
roles and associations). At step 1 for example, common name attributes are used
to find new superclasses. At step 4, new superclasses can be found as shown in
Figure 1(c), and 2 steps later, new super-associations can be found from the class
concepts found at step 4. We examine, for classes and associations, which are the
main elements of the model, metrics on new class concepts and new associations
concepts (Section 4.1), then on merge class and association concepts (Section
4.2). Execution time is presented in Section 4.3, and we conclude this part by
giving indications about the number of steps when the process reaches the fix-
point.

4.1 New abstractions

We focus first on the new concepts that appear in the class lattice and in the
association lattice. They will be interpreted as new superclasses or as new gener-
alizations of associations. In a collaborative work, these concepts are presented
to the experts who use some of them to improve the higher levels of the class
model with domain concepts not explicit until then. This is why their number is
important; if too many new abstractions are presented to the experts, these ex-
perts might be overwhelmed by the quantity, preventing a relevant and efficient
use of the method.

Figure 3 (left-hand side) shows the new concepts in the class lattice (thus
the new superclasses) at step 1, when paths of size 1 have been traversed. For
example, this means that if some classes have attributes (or roles) of the same
name in common, those attributes (or roles) will certainly be grouped in a new

class concept. This new class concept can be presented to the expert to control
if this corresponds to a new relevant class abstraction (or superclass). We notice
that Nav parameterizations produce less new concepts than noNav ones. This is
due to the fact that noNav parameterizations induce much more circuits in the



analyzed data, increasing the number of RCA steps and the number of gener-
ated concepts. The number of new concepts decreases as the analysis process
progresses.

Step 1 Step 6

Fig. 3. New class abstractions created at step 1 and 6 v.s. the number of initial classes

In the best case (of percentage of new superclasses), 32% of new potential
superclasses will be presented to the experts, for the model V11 which contains
170 classes, giving 54 new potential superclasses. In the worst case, we have
112% of new potential superclasses, for V0 model, which has 34 classes, thus
only 38 new potential superclasses are found. At this stage, we do not see a
serious difference between the four parameterizations.

Results obtained at step 6 are much more difficult to deal with. Figure 3
(right-hand-side) shows that the two parameterizations noNav (generating more
cycles in data) give results that will need serious filtering to separate relevant
new concepts from the large set of new concepts. Nav parameterizations will
produce less than one and a half the initial number of classes, while noNav

parameterizations can produce up to 10998 class concepts, really requiring either
additional post-treatments or avoiding to generate all the concepts.

Figure 4 (left-hand side) shows the new concepts in the association lattice at
step 1. They represent associations that are at a higher level of abstraction. Ex-
perts can examine them, to see if they can replace a set of low-level associations.
In Nav parameterizations, at most 15 higher level associations are presented to
experts; in noNav parameterizations, the number grows until 32, remaining very
reasonable to analyze.

Figure 4 (right-hand side) shows the new concepts in the association lattice
at step 6. It highlights the fact that, at this step, the number of these concepts
may explode, and it is especially high in the last versions of the class model,
in which we initially have many associations. The number of new association
concepts, in Nav parameterizations, is less than a hundred, and it still remains
reasonable (even if it is higher than in step 1), but in noNav parameterizations
it dramatically grows and may reach about 9500 concepts.



Step 1 Step 6

Fig. 4. New association abstractions created at step1 and 6 v.s. the number of initial
associations

4.2 Merged concepts

Merged concepts are concepts which introduce several entities (e.g classes or
associations) in their extent. Such entities share exactly the same description
in the model. For example, a merge class concept can group classes that have
exactly the same name attributes. This common description is first detected at
step 1, then it does not change because the following steps refine the description
by adding new relational characteristics and concepts; entities remain introduced
in the same concepts. For classes and associations, the merged concept number
is the same for the four analysis configurations. For experts, analyzing a merged

concept consists in reviewing the simplified extent and examining if the entities
(class or association) have been exhaustively described or effectively correspond
to a same domain concept.

Figure 5 (left-hand side) presents metrics for merge class concepts. V5 and V6
have a higher percentage of merged concepts because during analysis, a package
has been duplicated at step 5 for refactoring purpose. The duplicated classes have
been removed at step V7. In the other cases, there are not so much merge class
concepts to be presented to the experts, between 0% and 2%, giving a maximum
of two classes. This often corresponds to classes with incomplete description,
that the experts should develop into more details. The low number of such cases
makes the task of experts easy.

Ratio # merge class concepts
on # initial classes

Ratio # merge association concepts
on # initial associations

Fig. 5. Merge class concept and merge association concepts vs. initial elements



Figure 5 (right-hand side) presents metrics for merge association concepts.
The percentage of merge association concepts is higher than the percentage of
merge class concepts. This is explained by the fact that associations are only
described by roles, that occasionally share the same names (identical to some
class names). It varies between about 2% and 18%, meaning that at most 10
merge association concepts are presented to the experts for evaluation, making
a little bit more complicated the analysis task compared to the case of classes,
but it remains very reasonable.

4.3 Execution time, used RAM and total number of steps

Experimentations have been performed on a cluster composed of 9 nodes, each
one having 8 processors Intel (R) Xeon (R) CPU E5335 @ 2.00GHz with 8 Go of
RAM. The operating system was Linux (64 bits) and the programs are written
in Java.

Figure 6 shows the execution time in seconds, at step 1 and at step 6. At
step 1, the execution time for the two Nav parameterizations are below 6 seconds,
while for the two noNav parameterizations, for some versions (especially when
there are more associations, like in the last versions) it may reach about 13 sec-
onds. At step 6, the execution time for the two Nav parameterizations are below
8 seconds. But for the noNav parameterizations, we notice longer executions, up
to 10 minutes. However, such a task does not require an instantaneous answer,
and has not to be carried out too many times. Even if it occurs during an expert
meeting, it can be admitted to spend a few minutes for constructing the concept
lattices.

Table 1. Figures on used memory (in MegaBytes)

Step Parameters min max average

Step 1

Nav-Undef 39 453 237
Nav-noUndef 17 471 205
noNav-Undef 41 969 480

noNav-noUndef 24 969 532

Step 6

Nav-Undef 44 471 213
Nav-noUndef 6 403 140
noNav-Undef 33 1846 656

noNav-noUndef 33 1147 520

Table 1 shows the RAM used during execution, here again, noNav parame-
terizations are the worst, reaching about 2 GigaBytes of used memory. In the
case of Nav parameterizations, it is interesting to observe that there is not a
significant difference between step 1 and step 6.



Step 1 Step 6

Fig. 6. Execution time at step 1 and 6 (in seconds)

Figure 7 shows, for the Nav-noUndef parameterization the total number of
steps needed to reach the fix-point, and the size of a longest path with no re-
peated arcs (such a path can be a cycle). We observe that the step number (from
6 to 16) is always below the size of the longest simple path which gives in our
context a practical upper bound to the number of steps. This means that if we
dispose in the future of relevant filtering strategies, we can envisage studying
new concepts appearing after step 6.

Fig. 7. Step number (first) and longest simple path size (second) in C2, Nav-noUndef
parameterization

4.4 Discussion

During this study, we observed that analyzing merge class concepts and merge

association concepts was a feasible task in all parameterizations. The analysis
of new class concepts and new associations concepts is more difficult. Nav pa-
rameterizations produce exploitable results with a maximum of about 50 class
concepts (resp. about 30 new association concepts) to be examined at step 1.
At step 6, experts may have to face from one to three hundreds of new class
concepts (resp. about one hundred of new association concepts). Execution time
and used memory are not problematic issues and we get a practical upper bound
to the number of steps in this kind of data, which is given by the size of a longest
simple path.

These observations may be the starting point of an efficient steering method
for a collaborative class model construction. The objective of such a method



would be to insert between each model release, an RCA-based analysis, in order
to accelerate the discovery of new abstractions, and the completion of elements
(highlighting of the merged concepts). Both the concepts and the structure of
the lattice are useful for the experts to determine which relevant modifications
should be applied. The strength of the lattice representation is that it provides
a structure adapted to the task of choosing the right new abstractions, since
concepts can be presented following the specialization order, depending of what
is the demand of experts.

Known effects of some parameterizations can serve to favor different steering
strategies. The longest simple path size gives a bound on the step number, giving
an heuristic to decide when to stop the RCA process, with an idea about how
far we are from the convergence. Nav parameterizations can be easily controlled
by looking, at each step, the appearing concepts (and marking the non-relevant
ones to avoid finding them again at next steps). If information is expected from
NoNav parameterizations, experts have to be very careful because many concepts
will be created. A particular sub-order of the concept lattice (the AOC-poset),
induced by the concepts that introduce an entity or a characteristic, might offer
an important reduction of the produced concept numbers, without loosing main
information about factorization.

Another track is limiting input data, for example by removing attributes that
have limited semantic value and to group concepts declaring few attributes.

There are of course some limits to the generalization of our conclusions. The
class model is mainly a data model (very few operations), destined to build a
database schema and we study various versions of a same class model. Never-
theless, the Pesticides model is a classical model, representative of the models
that are built in the environmental field.

5 Related work

The use of FCA in the domain of class model refactoring has a long and rich
history in the literature. As far as we know, it has been introduced in the semi-
nal paper of Godin et al. [6] for extracting abstract interfaces from a Smalltalk
class hierarchy and extensions of the work have been published in [7]. Other ap-
proaches have been proposed, that take into account more information extracted
from source code like super calls and method signatures in [2].

In [1], authors report an application of RCA to several medium-size class
models of France Télécom (now Orange Labs). The RCA configuration was com-
posed of classes, methods, attributes, and associations. Classes have no descrip-
tion; attributes are described by name, multiplicity and initial value; methods
are described by name and method body; associations are described by names,
role name and information like multiplicity and navigability. Associations are
connected to their origin and destination classes, classes are connected to the
attributes and operations they own, attributes are connected to classes that are
their type, etc. The class models contain a few dozens of classes and the new con-

cepts to be examined by experts varies from a few concepts to several hundreds.



In [11] detailed figures are given. In the largest project (57 classes), the number
of new concepts was 110 for the classes, 9 for the associations and 59 for the
properties. In this paper, we have several class models that are greater in terms
of number of classes and we reify the role notion, rather than encoding it in
the association description, with the risk of having more produced concepts. We
discard technical description (like multiplicity which has no strong semantics).
We also analyze the merged concepts, another interesting product of RCA.

In [9], RCA has been applied on an excerpt of the class model of the Jetsmiles
software of JETSGO society4. The class model excerpt is composed of only 6
classes, connected by 9 associations, and about 30 attributes. Attributes and
roles are mixed, and classes are connected by a relational context to attributes-
+roles, while attributes+roles are connected by another relational context to
their type (when it is a class). The UML elements are described by many tech-
nical features: multiplicity, visibility, being "abstract", initial value, etc. A post-
treatment analyzes the built concepts in order to keep the most relevant ones.
The class concept lattice contains about 35 concepts while the attribute+role
concept lattice has about 25 concepts. In [9], the size of the class model is very
small. We suspect that using the configuration with many technical elements
would not be scalable in the case of the Pesticides model.

RCA has been experimented on two Ecore models, two Java programs and
five UML models in [4]. The used configuration is composed of the classes and
the properties (including attributes and roles) described by their names and their
connections. To report some representative results of this experiment, in Apache
Common Collections, which is composed of 250 classes, RCA finds 34 new class
concepts and less than 80 new property concepts; in UML2 metamodel, which
is composed of 246 classes and 615 properties, RCA extracts 1534 new class
concepts and 998 new property concepts. In this experiment, associations were
not encoded, contrary to what we do. Nevertheless an explosion of the concept
number yet appears. In our case, we introduce associations in the configuration,
and we show, that with some precautions as annotating by navigability and
naming the roles, refactoring with data including the associations may remain
feasible.

A more recent study [3] compared three strategies of FCA/RCA application
to part of the open-source Java Salome-TMF software which comprises 37 classes
and 142 attributes5. In the RCA strategy (ARC-Name), a formal context in-
cludes the classes (no description), a formal context describes the attributes by
their names and the hyperonyms of their names, and relations connect classes
and their attributes (and reversely). ARC-Name produces 33 new class con-
cepts, and 3 merge class concepts, 21 new attribute concepts and 13 merge
attribute concepts. Java softwares do not have associations and it is difficult
to generalize these results to the general case of class models. Compared to this
work, here we do not use linguistic information, this will be done in a future work,
nevertheless the terms in the model are not technical identifiers but rather do-

4 http://www.jetsgo.net/
5 http://wiki.ow2.org/salome-tmf/



main terms carefully selected by the expert group, thus there are less problems
in using them directly.

Here we use the same class models as in [8] where RCA based metrics were
proposed to assist a designer during the evolution of the class model in indicating
him the evolution of the level of description and the level of abstraction.

6 Conclusion and perspectives

In this paper, we describe the most advanced study of the application of RCA on
class models, so as to obtain a relevant factorization structure. We apply RCA
on several versions of the model of the same information system (from 40 to
170 classes), and we study the impact of several parameters in the application.
The objective was to observe RCA on real-sized class models, so as to draw
conclusions, mainly on its scalability. The experiment shows that taking into
account the navigability, it is still possible to analyze the newly introduced ab-
stractions. Consequently, RCA can be considered to scale to real-size models, if
it is adequately parameterized. However, the produced results remain quite large
to analyze, and new strategies can be settled to face the number of concepts to
analyze.
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