
HAL Id: lirmm-00977367
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00977367v2

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing the Evolution of Quality Requirements of
Web Service Orchestrations: A Pattern-Based Approach

Tarek Zernadji, Chouki Tibermacine, Foudil Cherif

To cite this version:
Tarek Zernadji, Chouki Tibermacine, Foudil Cherif. Processing the Evolution of Quality Requirements
of Web Service Orchestrations: A Pattern-Based Approach. WICSA: Working International Confer-
ence on Software Architecture, Apr 2014, Sydney, Australia. pp.139-142, �10.1109/WICSA.2014.35�.
�lirmm-00977367v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00977367v2
https://hal.archives-ouvertes.fr


Processing the Evolution of Quality Requirements of
Web Service Orchestrations:

a Pattern-based Approach

Tarek Zernadji
Computer Science Department
University of Biskra, Algeria

zernadji@yahoo.fr

Chouki Tibermacine
LIRMM, CNRS

and Montpellier II University, France
tibermacin@lirmm.fr

Foudil Cherif
Computer Science Department
University of Biskra, Algeria

foud cherif@yahoo.fr

Abstract—Currently Web services remain one of the leading
technologies for implementing components of service-oriented
software architectures. One of the most frequent form of composi-
tions of these entities is Web service orchestration. As any other
software artifact, such service compositions are subject to an
unescapable evolution (Lehman’s first law of software evolution).
Either for answering new user requirements, for adapting, for
correcting or for enhancing the provided functionality or quality,
an architect has to conduct some evolutions on the design of
these artifacts. In this paper, we present a method which aims
at helping software architects of Web service orchestrations in
processing an evolution of quality requirements. This method
introduces a template for describing quality evolution “intents”.
It then analyzes these intents and assists the architects in
answering them by proposing some patterns. We consider in
our work the postulate stating that quality can be implemented
through patterns, which are specified with checkable/processable
languages. Besides this, the method that we propose simulates
the application of these patterns and notifies the architect with
its consequences on the other implemented qualities.

I. INTRODUCTION: CONTEXT AND MOTIVATION

Service-oriented architectures (SOA) provide regardless of
particular implementation technologies, an architectural style
for building service-based software systems. This style sup-
poses the existence of a collection of reusable services, which
deliver some functionality for client applications. One possible
and quite frequent form of this kind of software architectures
is Web service orchestration. BPEL processes are one of the
most largely used technologies for making these orchestrations
executable.

As any other software artifact, these software architectures
must evolve during the system’s life cycle (Lehman’s 1st

law [1]), and undergo changes that can harm the qualities
originally planned by architects (Lehman’s 7th law). One of
the major causes of this alteration of quality is related to the
phenomenon of “knowledge vaporization” [2], which is due
to the fact that most decisions made during the construction
of software architectures remain implicit (undocumented). The
lack of information about previously made decisions can lead
architects to accidentally affect them and consequently alter
the qualities they implement. In a previous work [3], we have
proposed an approach to address the problem of “knowledge
vaporization” by documenting major design decisions and their
rationale (quality requirements) and use such documentation

for supervising the architectural evolution of Web service
orchestrations.

In this paper, we propose a process that provides a sys-
tematic assistance to architects during the evolution of quality
requirements of Web service orchestrations. Before starting
the process, the architect should first make an architecture
diagnosis and gather some information that feed the first
step. We propose a template for describing quality evolution
“intents” in order to enable the specification of this information
(Section II-A). Then, such intent descriptions are processed
(Section II-B) in order to propose to the architect some patterns
for helping her/him to take design decisions. We argue in this
work that for answering quality evolution intents, an architect
can have as a design decision the selection of an SOA pattern.
Our process is thus based on a documentation of design
decisions as SOA patterns and their rationale as the quality
attributes they implement. This process aims more precisely
at helping an architect in choosing the well suited pattern to
apply on her/his architecture. It uses a set of evaluation criteria
and a quality impact analysis for that purpose (Section II-D).
The architect is then assisted in a semi-automatic way to
apply the selected pattern (Section II-C) thanks to reusable
and customizable scripts defined using a scripting language
for Web service orchestrations, named WS-BScript, which
is introduced in this paper. The process ends by asking the
architect to document the new design decisions (Section II-G)
made into her/his architecture so that future evolutions can be
assisted in the same way. Before concluding and presenting
some perspectives to our work, we make an overview of the
related work (Section III).

II. PROPOSED APPROACH

Through this process the architect is assisted to: i) make
concrete changes leading to a new service orchestration, and
ii) perform this with minimal negative effects on existing
qualities. The process steps are detailed in the following
sections.

A. Evolution Intent Specification

The architect should specify the needed information ac-
cording to a template described in Table I. She/he provides
in this template the quality attribute targeted by this evo-
lution activity (i.e. the architect wants to implement in the



TABLE I. TEMPLATE FOR QUALITY EVOLUTION INTENT
DESCRIPTION

Evolution Quality Attribute (What?) State the quality attribute targeted by the
evolution activity.

Evolution Kind (How?)
State if the evolution targets to add, en-
hance, weaken or withdraw the quality
attribute.

Related Quality Attribute (Ultimately
what?)

If the evolution kind is withdrawing
or weakening the quality attribute, state
here the quality attribute which will
be ultimately enhanced or added (left
empty otherwise).

Architectural Regions (Where?) Indicate where in the orchestration
changes will occur.

orchestration). We adopt at the top level of our specification
the ISO 91261 quality model. We consider in our work qual-
ity characteristics mainly as “abstract” quality attributes and
sub-characteristics as “concrete” quality attributes which are
specializations of the first ones. Some ISO 9126 quality sub-
characteristics like “security” are however still considered as
“abstract” quality attributes for service-based systems. These
sub-characteristics may have several specializations. Addition-
ally, the architect should identify the architectural regions
which are the main architectural elements (or sets of these
elements) in the BPEL process concerned by the changes.
Besides this, the architect has to indicate the evolution kind
by indicating if she/he wants to add (a new), enhance (an
existing), weaken, or withdraw (an existing) quality attribute.
Additional information should be specified if the architect
wants to withdraw or reduce a quality attribute. This is stated
in the “Related Quality Attribute” section. For example, when
the architect tries to remove “Authentication” for affecting
(weakening or removing) “Security”, there is a final goal of
enhancing “Performance”. In the other evolution kinds (add or
enhance), this section is left empty.

B. Evolution Intent Analysis

The evolution intent specification is analyzed, and depend-
ing on the evolution kind indicated in this specification two
cases are distinguished. These are detailed in the following
subsections. The proposed process is based on an “SOA
Patterns Catalog”, where each pattern is specified according
to a specific structure shown in Table II.

1) Processing the Evolution by Adding or Replacing a Pat-
tern: In this case, the architect wants to enhance (replace the
existing pattern implementing the quality attribute by applying
one or several other patterns) or add a new quality attribute
(apply a new pattern) to the orchestration. The patterns catalog
is automatically analyzed and a collection of patterns related to
the targeted quality is identified2 and proposed to the architect.

As depicted in Table II, the pattern’s specification in-
cludes a “name” with a simple description of its role, the
“quality attribute” the pattern implements, an “architectural
script” which describes the way it should be applied in the
orchestration, and finally “architectural constraints” which are
a formal specification of the pattern and allow the checking of
its presence or absence in the orchestration.

1Software engineering – Product quality – Part 1: Quality
model. The International Organization for Standardization
Website:http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue de-
tail.htm?csnumber=22749

2A quality attribute may be implemented by applying several patterns in
different ways.

TABLE II. PATTERN STRUCTURE SPECIFICATION

Pattern Name The identifier of the pattern and a simple textual
description of its role.

Quality Attribute
The ISO 9126 quality characteristic or sub- char-
acteristic that is implemented by the pattern (or
concrete quality attributes).

Architectural Script

The set of parameterized actions that indicate the
way the pattern can be applied on the architecture.
Actions are formalized using a scripting language
for Web service orchestration reconfiguration.

Architectural Constraints
The list of parameterized constraints that enable
to check if the orchestration is compliant with the
pattern.

2) Processing the Evolution by Removing a Pattern:
No patterns are proposed here, rather a cancellation of the
pattern implementing the quality attribute is performed. This
cancellation is automatically obtained from the scripts for a
pattern application.

C. Pattern Application

This is an important step in the process where the
selected SOA patterns are applied on a targeted Web service
orchestration by means of some scripts, which specify simple
architectural changes expressed with a Web service orchestra-
tion scripting language called “WS-BScript”. WS-BScript is
a lightweight DSL that enables the patterns catalog adminis-
trator, whose responsibility is to feed the patterns catalog, to
specify primitive changes making possible the reconfiguration
of Web service orchestrations. The idea behind WS-BScript
is to formalize some SOA patterns in order to apply them as
much automatically as possible in the form of reusable design
decisions. This language allows the definition of parameterized
“scripts”. A script is composed of a set of actions like add,
wire, and remove, among others3. A script declares a set of
parameters (BPEL orchestration elements), which represent the
scope of the architectural actions.

In this step of the process, the architect will apply one or
several predefined4 scripts (issued from the catalog of patterns)
on her/his orchestration. For this end, the architect has to
configure the scripts she/he wants to apply by initializing
their parameters first and then by customizing them on the
fly (through ask actions).

D. Quality Impact Analysis

There are two key elements that are used in the Qual-
ity Impact Analysis step of the process: i) the use of a
Multi-Criteria Decision Making (MCDM) method, named
“WSM” [4] (Weighted Sum Model), to evaluate a number
of SOA pattern alternatives and determine the one that best
satisfies the architect in a quality requirement evolution step,
and ii) the solicitation of a quality-oriented assistance service
that helps in diagnosing the consequences of any applied
pattern on the other implemented qualities.

For the first element, the MCDM problem we want to
solve can be expressed as following: “what is the pattern that
impacts the less the most important quality attributes, having
the best degree of satisfaction for the targeted quality attribute,
and is the most suitable to the architect preferences (context

3The complete specification can be found here:
https://sites.google.com/site/wsbscript/ws-bscript-specification

4The patterns scripts are already specified in the patterns catalog, the
architect has just to apply them.



suitability, e.g., price, applicability related conditions, etc.)?”
We have formulated the MCDM problem as follows:

• Alternatives are some selected patterns we want to
classify;

• Decision criteria are defined as follows:
1) Criticality of the impacted quality attribute

(C1);
2) Satisfaction degree of a pattern for a quality

attribute (C2);
3) Context-Suitability of the pattern (C3).

For our evaluation purpose using the “WSM” method, we
chose to normalize the aforementioned criteria according to the
scale proposed in [5]. The later gives eleven scores ranging
from 0.045..0.665, 0.745, to 0.955 and their corresponding
linguistic terms from “Exceptionally low”..“High”, “Very
high”, to “Exceptionally high”. This normalization allows us
to deal with a single-dimensional case (all the units are the
same) of the MCDM problem which fits well the use of
“WSM” method. If there are M alternatives and N criteria,
then the best alternative (pattern) is the one that satisfies (in
the maximization case) the following formula [4]:

Awsm
i = maxi

N∑
j=1

aijwj , for i = 1, 2, 3, ...,M. (1)

Weights wj represent the importance of each criterion accord-
ing to the architect’s preferences in the evolution process (also
normalized according to the scale). aij is the value of an
alternative “i” (pattern) in terms of a decision criterion “j”.
We note here that the patterns in the catalog are previously
documented by the architect according to the model proposed
in [3]. This model introduces some fine-grained information
namely, the criticality degree (aiC1) of a quality attribute, the
formalization degree, and the satisfaction degree (aiC2). The
documentation is enriched with a context-suitability degree
(aiC3), which is specified and documented at evolution time
because it depends on the pattern’s suitability to a given
situation and to the orchestration. This degree cannot be reused
in different orchestrations. It can however be reused in the
future evolutions of the same orchestration.

The second element of the quality-related impact analy-
sis step is an assistance service which aims to notify the
architect of the consequences of the applied pattern on the
other qualities. It indicates what are the related qualities that
may be altered when applying the pattern which implements
the new quality attribute. This assistance is mainly based on
the evaluation of some OCL-like constraints that we used
to specify parameterized architecture constraints [6] for Web
service orchestrations. These constraints are defined using
OCL and navigate in a metamodel of BPEL. They serve to
verify if an architecture conforms to the pattern or not.

E. New Patterns Definition

It is on the responsibility of the architect to validate its
choice of a specific pattern or to reject it. If the architect is
not satisfied with any of the proposed patterns, then she/he
can define new patterns (specialization of existing patterns, for
example), which she/he is asked to document according to the

proposed structure (Table II). They will be considered as new
reusable architecture design decisions that could potentially be
applied on some architecture descriptions in the future. After
that, the architect is redirected to the “Patterns Application”
step to simulate the effect of the new catalogued pattern.

F. Pattern Cancellation

The architect may want to enhance a quality attribute not
by adding a new pattern that implements the quality, or by
replacing an existing pattern by another one which implements
better the quality, but by eliminating or weakening a given
quality attribute. In this case, the process execution takes
another path. Thus, if the specified kind in the evolution intent
is to withdraw or weaken a quality attribute, the process goes
through the pattern cancellation step where an elimination of
the concerned pattern is performed. This is done by deducing
the opposite effect of the pattern’s architectural actions, hence
avoiding to the architect the burden of doing it manually or
specifying the cancellation script. The generated cancellation
script is then executed on the Web service orchestration. The
generation of a cancellation script is handled automatically (by
the “WS-BScript” interpreter) following a bottom-up approach
starting by the last action in the script and going up to the first
one, by respecting some specific rules5.

G. Documentation of the New Architecture

In this step, the chosen pattern is applied to the orches-
tration and added in the architecture decision documentation
as a new design decision. This documentation contains all
design decisions (SOA patterns) that was made to build the
architecture. In addition, the architect has to complete a part of
this documentation, namely the criticality degree of the quality
attribute the pattern implements, the satisfaction degree of the
pattern for the quality attribute, the formalization degree of the
pattern, and also the related qualities of the quality attribute.
This information is necessary for the evolution assistance
especially in the patterns selection process (quality impact
analysis step).

III. RELATED WORK

Many works have been proposed in the literature to address
quality requirements integration in software architectures. Al-
naeem et al [7] proposed “ArchDesigner”, which use optimiza-
tion techniques to determine optimal combination of design
alternatives. We use a simulation and feedback technique at
the evolution stage to help architects in the decision selec-
tion process to meet their quality goals. Architectural design
decisions in our work are SOA Patterns which are applied
in semi-automatic way, while in their work they are high
level architecture design decisions (the choice of Java EE, for
example).

In [8], [9] the authors use reusable design decisions namely
attribute primitives and architectural tactics, we use SOA
patterns. However, they focus on the design stage, while we
focus on the evolution stage. In addition, we give support
to the architect to choose among several possible alternatives
of a design decision the one that satisfies the best a given

5A complete list of these rules can be found in:
https://sites.google.com/site/wsbscript/ws-bscript-cancellation-rules



quality goal. Besides this, we help the architect in applying
the selected design decision in a semi-automatic fashion, and
we give her/him assistance to make impact analysis.

In [10], [11] the authors use a Patterns catalog to document
patterns as identified design decisions. However, their work
differs in the way pattern selection and validation is performed.
Indeed, in [10] they use questions to help architects in choosing
and validating patterns, whereas, we use an MCDM method
in a complementary way with a quality-related impact analysis
to select and validate patterns. Additionally, our process offers
a support to integrate patterns in a semi-automatic way.

In [12], similarly to our work they mapped some quality
attributes addressed by SOA patterns [13] (that could not be
related to any quality attribute in the S-Cube Quality Reference
Model (QRM) [14]) to quality attributes from the ISO 9126
quality model. Their work is complementary to our work and
could be helpful to the architect especially while building
the patterns catalog. It could be used to deal with mapping
between patterns and the quality attributes they impact as well
as filtering only patterns having impact from those without
impact on quality attributes.

Harrison et al [15] investigated as in [12] a quantitative
evaluation of the impact of some architectural patterns (Layers,
Pipes and Filters, Blackboard...) from [16] on quality attributes.
In our work, we identify automatically the impact through the
solicitation of a quality-oriented assistance service that helps
in diagnosing the consequences of any applied pattern on the
other implemented qualities.

In [17], the authors integrate quality requirements as usable
information at a functional and runtime level, while our
work is positioned at the architectural level and incorporates
quality requirements as reusable solutions (SOA Patterns). This
approach is complementary to our work, since our work deals
with quality requirements as architectural design decisions
which are used to generate designs encompassing quality
requirements, and not as extra information which are exploited
at a post-deployment time.

In [18], the quality attributes and the high level architec-
tural design decisions achieving them are identified manually.
In our work, design decisions are identified and proposed to
the architects in a catalog as patterns (for SOA). They used
a decision graph transformation strategy to analyze a design
decision impact, whereas, we simulate the application of a
selected collection of patterns and assist the selection (MCDM
method) of the most appropriate pattern (semi-automatically),
then report its impact (automatically) to the architect.

IV. CONCLUSION AND FUTURE WORK

We argue in this paper that catalogs such as [19], [16],
or [13] of design patterns can be documented in a
(more or less) structured, automatically checkable and semi-
automatically processable way. Such documentation is oper-
ated by a process that we specified in this paper, and whose
main goal is to assist architects in processing the evolution
of quality requirements by suggesting to them the “most”
appropriate patterns: i) that respects the more the evolved
quality attribute (the pattern that gives the best scores for
the evaluation criteria), and ii) that affects the less the other

quality requirements already satisfied and documented in the
software architecture (through the use of the quality impact
analysis). We deal in our work with a particular specialization
of service-oriented software architectures, which are Web
service orchestrations concretely defined as BPEL processes.

As perspectives to our work, we would like to enhance
the organization of the catalog of patterns. Instead of a flat
organization, we want to define a hierarchical one, built using
some classification techniques like FCA (Formal Concept
Analysis [20]). In this way, we can easily look for substitutable
patterns which can be proposed together to the architect in
the process. Besides this, we plan to integrate in the proposed
process an impact analysis activity on the business logic aspect,
thus evaluate also the impact on the existing functionality
implemented in the software architecture.

REFERENCES

[1] M. M. Lehman and L. A. Belady, Eds., Program evolution: processes
of software change. Academic Press Professional, Inc., 1985.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Proc. of WICSA’05. IEEE CS, 2005, pp. 109–120.

[3] C. Tibermacine and T. Zernadji, “Supervising the evolution of web
service orchestrations using quality requirements,” in Proc. of ECSA’11.
Essen, Germany: Springer-Verlag, September 2011, pp. 1–16.

[4] P. C. Fishburn, “Additive utilities with incomplete product sets: Appli-
cation to priorities and assignments,” Operations Research, 1967.

[5] S.-J. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision
Making: Methods and Applications. Springer-Verlag, 1992.

[6] C. Tibermacine, R. Fleurquin, and S. Sadou, “A family of languages
for architecture constraint specification,” In the Journal of Systems and
Software (JSS), Elsevier, vol. 83, no. 5, 2010.

[7] T. Al-naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah, “A
quality-driven systematic approach for architecting distributed software
applications,” in Proc. of ICSE’05. ACM Press, 2005, pp. 244–253.

[8] L. Bass, F. Bachmann, and M. Klein, “Quality attribute design primi-
tives and the attribute driven design method,” in Proc. of PFE-4 2001.
Bilbao, Spain: Springer-Verlag, October 2001.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd Ed. Addison-Wesley, 2003.

[10] Z. Durdik and R. Reussner, “Position paper: approach for architectural
design and modelling with documented design decisions (admd3),” in
Proc. of QoSA ’12, 2012.

[11] T. M. Ton That, S. Sadou, and F. Oquendo, “Using Architectural Pat-
terns to Define Architectural Decisions,” in Proc. of WICSA/ECSA’12,
Helsinki, Finland, Aug. 2012, pp. 196–200.

[12] M. Galster and P. Avgeriou, “Qualitative analysis of the impact of soa
patterns on quality attributes,” in Proc of QSIC’12, 2012.

[13] T. Erl, SOA Design Patterns. Prentice Hall, 2009.
[14] A. Gehlert and A. Metzger, “Quality reference model for sba,” S-Cube

Consortium, Tech. Rep., 2009.
[15] N. B. Harrison and P. Avgeriou, “Leveraging architecture patterns to

satisfy quality attributes,” in Proc. of ECSA’07, 2007.
[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern Oriented Software Architecture: A System of Patterns. John
Wiley & Sons, 1996.

[17] F. Baligand, D. Le Botlan, T. Ledoux, and P. Combes, “A language for
quality of service requirements specification in web services orchestra-
tions,” in Proc. of ICSOC’06. Springer-Verlag, 2006.

[18] H. Choi, Y. Choi, and K. Yeom, “An integrated approach to quality
achievement with architectural design decisions,” JSW, vol. 1, 2006.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Sofware. Addison-Wesley
Professional Computing Series, 1995.

[20] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, Inc., 1999.


