
HAL Id: lirmm-00981467
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00981467

Submitted on 22 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concept lattices: a representation space to structure
software variability

Ra’Fat Ahmad Al-Msie’Deen, Marianne Huchard, Abdelhak-Djamel Seriai,
Christelle Urtado, Sylvain Vauttier

To cite this version:
Ra’Fat Ahmad Al-Msie’Deen, Marianne Huchard, Abdelhak-Djamel Seriai, Christelle Urtado, Syl-
vain Vauttier. Concept lattices: a representation space to structure software variability. ICICS:
International Conference on Information and Communication Systems, Apr 2014, Irbid, Jordan.
�10.1109/IACS.2014.6841949�. �lirmm-00981467�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00981467
https://hal.archives-ouvertes.fr

Concept lattices: a representation space to structure

software variability

R. AL-msie’deen1, M. Huchard1, A.-D. Seriai1, C. Urtado2, S. Vauttier2 and A. Al-Khlifat3

1 LIRMM / CNRS & Montpellier 2 University, Montpellier, France

{al-msiedee, huchard, seriai}@lirmm.fr
2 LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr
3 Al-Balqa’ Applied University Salt, Jordan

{amak n}@hotmail.com

Abstract—Formal Concept Analysis is a theoretical frame-
work which structures a set of objects described by properties.
Formal Concept Analysis is a classification technique that takes
data sets of objects and their attributes, and extracts relations
between these objects according to the attributes they share. This
structure reveals and categorizes commonalities and variability
in a canonical form. From this canonical form, other structures
can be derived, that can be more or less complex. In this paper,
we revisit two papers from the literature of the software product
line domain. We point to key contributions and limits of the
representation of variability by concept lattices, with illustrative
examples. We present tools to implement the approach and open
a discussion.

Keywords—Variability, Software Product Line, Formal Concept
Analysis, Concept Lattice, Feature Model.

I. INTRODUCTION

Studying variability in domain and software is a key issue
of product line engineering. From this study, a designer may
identify commonalities and variants of products, and be guided
in migrating products into a structured software product line, or
at improving its structure. Several papers have been published
on that topic [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]. Two of
them ([3] [7]) emphasize the use of Formal Concept Analysis
[11] as a tool for understanding and extracting variability, but
we think that they do not fully exploit the approach.

In this paper, we recall the main characteristics of FCA
(Section II) that are valuable for variability analysis and rep-
resentation (Section III). We also present simple algorithms for
building concept structures, to help detect similar algorithms
that may appear in the literature and to clarify the construction.
We recall how concept structures have been used in [3] [7]. At
last, we revisit two recent representative papers on variability
in the light of concept structures (Section IV). We conclude
and draw perspectives for this work in Section V.

II. CONCEPT LATTICES: A FRAMEWORK FOR EXPRESSING

COMMONALITIES AND VARIABILITY

Galois lattices [12] and concept lattices [11] are core
structures of a data analysis framework (Formal Concept
Analysis, or FCA for short) for extracting an ordered set of
concepts from a dataset, called a Formal Context, composed of
objects described by attributes. This data analysis framework is

currently applied to support various tasks, including informa-
tion retrieval [13], data mining [14], building or maintaining
class hierarchies in object-oriented software [15], software
understanding [16] or ontology alignment [17]. In this section,
we present the basics of FCA, and we highlight some of the
properties of FCA that are useful for variability structuring.

Definition 2.1 (Formal Context): A formal context is a
triple K = (O,A,R) where O and A are sets (objects and
attributes, respectively) and R is a binary relation, i.e., R ⊆
O ×A.

Choosing the right objects, the right attributes and the
right relation is a key modelling issue that strongly impacts
the analysis. Attributes are often dependent one from another,
and this dependency has to be reflected in the relation. A fine
representation has to be designed when attributes are numbers.
Objects (resp. attributes) may have to be grouped, etc.

In the context of software product lines, a main idea is
that software products can be described by artifacts (from
analysis diagrams, code, or documentation) or identified high-
level features. As it is one of the approaches we want to
consider in the light of FCA, we use the example from [8]
to illustrate the notion of Formal Context. In this example, 8
products (bank systems) are described by construction primi-
tives, corresponding to the creation of main artifacts (packages,
classes, attributes and operations). Products constitute the rows
of the Table I, while construction primitives constitute the
columns. In the other example we will consider [9], wiki
systems (rows) are described by their characteristics (columns)
as shown in Table IV.

Definition 2.2 (Formal Concept): Given a formal context
K = (O,A,R), a formal concept is a pair (E, I) composed
of an object set E ⊆ O and an attribute set I ⊆ A. E =
{o ∈ O|∀a ∈ I, (o, a) ∈ R} is the extent of the concept,
I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is the intent of the concept.

Definition 2.3 (Concept Specialization Order): Given
a formal context K = (O,A,R), and two formal
concepts C1 = (E1, I1) and C2 = (E2, I2) of K,
the concept specialization order ≤s is defined by
C1 = (E1, I1) ≤s C2 = (E2, I2) if and only if E1 ⊆ E2 (and
equivalently I2 ⊆ I1). C1 is called a subconcept of C2. C2 is
called a super-concept of C1.

2014 5th International Conference on Information and Communication Systems (ICICS)

978-1-4799-3023-4/14/$31.00 ©2014 IEEE

TABLE I. A FORMAL CONTEXT DESCRIBING BANK SYSTEMS BY

CONSTRUCTION PRIMITIVES.

C
re

a
te

P
a
ck

a
g
e(

b
s)

C
re

a
te

C
la

ss
(B

a
n

k
,b

s)

C
re

a
te

A
tt

ri
b

u
te

(a
cc

o
u

n
ts

,B
a
n

k
)

C
re

a
te

O
p

er
a
ti

o
n

(d
ep

o
si

tO
n

A
cc

o
u

n
t,

B
a
n

k
)

C
re

a
te

O
p

er
a
ti

o
n

(w
it

h
d

ra
w

F
ro

m
A

cc
o
u

n
t,

B
a
n

k
)

C
re

a
te

C
la

ss
(A

cc
o
u

n
t,

b
s)

C
re

a
te

A
tt

ri
b

u
te

(i
d

,A
cc

o
u

n
t)

C
re

a
te

A
tt

ri
b

u
te

(a
m

o
u

n
t,

A
cc

o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(d
ep

o
si

t,
A

cc
o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(g
et

A
m

o
u

n
t,

A
cc

o
u

n
t)

C
re

a
te

C
la

ss
(C

li
en

t,
b

s)

C
re

a
te

A
tt

ri
b

u
te

(n
a
m

e,
C

li
en

t)

C
re

a
te

A
tt

ri
b

u
te

(i
d

,C
li

en
t)

Product1Bank × × × × × × × × × × × × ×
Product2Bank × × × × × × × × × × × × ×
Product3Bank × × × × × × × × × × × × ×
Product4Bank × × × × × × × × × × × × ×
Product5Bank × × × × × × × × × × × × ×
Product6Bank × × × × × × × × × × × × ×
Product7Bank × × × × × × × × × × × × ×
Product8Bank × × × × × × × × × × × × ×

C
re

a
te

A
tt

ri
b

u
te

(c
u

rr
en

cy
,A

cc
o
u

n
t)

C
re

a
te

C
la

ss
(C

o
n

v
er

te
r,

b
s)

C
re

a
te

O
p

er
a
ti

o
n

(c
o
n

v,
C

o
n

v
er

te
r)

C
re

a
te

A
tt

ri
b

u
te

(c
o
n

v
er

te
r,

B
a
n

k
)

C
re

a
te

O
p

er
a
ti

o
n

(c
o
n

v
er

t,
B

a
n

k
)

C
re

a
te

A
tt

ri
b

u
te

(l
im

it
,A

cc
o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(w
it

h
d

ra
w

W
it

h
L

im
it

,A
cc

o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(g
et

L
im

it
,A

cc
o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(s
et

L
im

it
,A

cc
o
u

n
t)

C
re

a
te

O
p

er
a
ti

o
n

(w
it

h
d

ra
w

W
it

h
o
u

tL
im

it
,A

cc
o
u

n
t)

C
re

a
te

C
la

ss
(C

o
n

so
rt

iu
m

,b
s)

C
re

a
te

A
tt

ri
b

u
te

(c
o
n

s,
B

a
n

k
)

Product1Bank × × × × × × × × × × ×
Product2Bank ×
Product3Bank × × × × × × × ×
Product4Bank × × × × × × × × ×
Product5Bank × × ×
Product6Bank × × × ×
Product7Bank × × × × × ×
Product8Bank × × × × × ×

For example, Concept 9 is a subconcept of Concept 12
(cf.Table II and Table III). Due to this specialization order
definition, an evident property is that a subconcept owns
(inherits in top-down manner) the attributes of its super-
concepts, while a super-concept owns (inherits in bottom-
up manner) the objects of its subconcepts. This is why, for
simplicity’s sake, most lattice representations show attributes
(resp. objects) solely where they are introduced (not repeating
the inherited ones). They are said to show the simplified intents
and simplified extents.

TABLE II. CONCEPT 12 IN FIGURE 1 (i.e., FORMAL CONCEPT

EXAMPLE).

Extent Intent

Product1Bank CreatePackage(bs)

Product3Bank CreateClass(Bank,bs)

Product5Bank CreateAttribute(accounts,Bank)

Product7Bank CreateOperation(depositOnAccount,Bank)

CreateOperation(withdrawFromAccount,Bank)

CreateClass(Account,bs)

CreateAttribute(id,Account)

CreateAttribute(amount,Account)

CreateOperation(deposit,Account)

CreateOperation(getAmount,Account)

CreateClass(Client,bs)

CreateAttribute(name,Client)

CreateAttribute(id,Client)

CreateClass(Consortium, bs)

CreateAttribute(cons, bank)

TABLE III. CONCEPT 9 IN FIGURE 1 (i.e., FORMAL CONCEPT

EXAMPLE).

Extent Intent

Product1Bank CreatePackage(bs)

Product3Bank CreateClass(Bank,bs)

CreateOperation(withdrawFromAccount,Bank)

CreateClass(Account,bs)

CreateAttribute(id,Account)

CreateAttribute(amount,Account)

CreateOperation(deposit,Account)

CreateOperation(getAmount,Account)

CreateClass(Client,bs)

CreateAttribute(name,Client)

CreateAttribute(id,Client)

CreateClass(Consortium, bs)

CreateAttribute(cons, bank)

CreateAttribute(currency,Account)

CreateClass(Converter,bs)

CreateOperation(conv,Converter)

CreateAttribute(converter,Bank)

CreateOperation(convert,Bank)

Definition 2.4 (Concept Lattice): Let CK be the set of all
concepts of a formal context K. This set of concepts provided
with the specialization order (CK , ≤s) has a lattice structure,
and is called the concept lattice associated with K.

Figure 1 shows the concept lattice associated with the
formal context of Table I.

Fig. 1. The concept lattice for the formal context of Table I.

Algorithm 1 is a simple algorithm for building the Hasse
diagram of a concept lattice (not recommended for implemen-
tation, but useful to understand how concepts are formed).

The reader may have noticed that, applying the simplifi-
cation of extents and intents (removing inherited elements),
some concepts, like Concept 9, are represented having empty
simplified extent and intent. These concepts introduce neither
objects nor attributes. In several FCA applications, they can

2014 5th International Conference on Information and Communication Systems (ICICS)

Algorithm 1: ComputeConceptLattice(K)

Data: K: a formal context
Result: (CK , ≤s): the concept lattice associated with K

1 // compute the concepts of CK
2 CK ← ∅
3 foreach i from |O| to 1 do
4 foreach subset S ⊆ O, with |S| = i do
5 compute IS = {a ∈ A|∀o ∈ S, (o, a) ∈ R} the

shared attributes
6 if IS is not the intent of a concept already

calculated in CK then
7 CK ← CK ∪ (S, IS)

8 // establish the specialization order
9 Compute the transitive reduction of ≤s by comparing

the concept extents in CK

be ignored (e.g., in [15] [3] [7]).

Reversely, the term object concept (resp. attribute concept)
refers to a concept which introduces at least one object (resp.
attribute). In Figure 1, Concepts 0, 1, 3, 6, 12 are attribute
concepts; Concepts 2, 3, 5, 6, 7, 8, 10, 11, are object concepts;
Concepts 4 and 9 do not introduce any object or any attribute.

Definition 2.5 (AOC-poset): The AOC-poset (for
Attribute-Object-Concept poset) is the sub-order of (CK ,
≤s) restricted to object-concepts and attribute-concepts.

Algorithm 2 is a simple algorithm for building the Hasse
diagram of the AOC-poset. In this algorithm, we use comple-
mentary classical FCA notations: for any object set So ⊆ O,
the set of shared attributes is S′

o = {a ∈ A|∀o ∈ So, (o, a) ∈
R}, and for any attribute set Sa ⊆ A, the set of owners is
S′
a = {o ∈ O|∀a ∈ Sa, (o, a) ∈ R}. Figure 2 shows the AOC-

poset for the context of Table I (Concepts 9 and 4 have been
removed from the lattice; concepts have been re-numbered by
the tool).

Algorithm 2: ComputeAOCposet(K)

Data: K: a formal context
Result: (AOCK , ≤s): the AOC-poset associated with

K
1 // compute the object concepts and the attribute concepts
2 AOCK ← ∅
3 foreach o ∈ O do
4 AOCK ← AOCK ∪ ({o}′′, {o}′) // that is, objects

that share the same attributes as o, with the
attributes of o

5 foreach a ∈ A do
6 AOCK ← AOCK ∪ ({a}′, {a}′′) //that is, objects

that share the attribute a, with the attributes they
share

7 // establish the specialization order
8 Compute the transitive reduction of ≤s by comparing

the concept extents in AOCK

There is a drastic difference of complexity between the two
structures, because the concept lattice may have 2min(|O|,|A|)

concepts, while the number of concepts in the AOC-poset is

bounded by |O| + |A| [18] [19] [20] [21] [22]. Most of the
algorithms for building concept lattices are cited and compared
in [23]. Algorithms for building AOC-posets are introduced
and compared in [24], except for the more recent one [25].
Most of the existing tools are referenced from the web page
of Uta Priss [26]. For this paper, we used the eclipse eRCA
platform [27].

Fig. 2. The AOC-poset for the formal context of Table I.

III. PROPERTIES OF THE CONCEPT LATTICE AND THE

AOC-POSET WITH REGARD TO VARIABILITY

Now that definitions have been given, we can, in the tracks
of [3] [7], highlight some interesting properties of concept
lattices or AOC-posets with regard to variability. Note that [3]
uses the concept lattice. [7] prefers to use the lattice reduced
to attribute concepts (that we call the AC-poset for attribute
concept poset). In these two papers, a formal context describes
the products through their high-level features rather than arti-
facts extracted from source code or construction primitives, but
their underlying principles remain the same. These structures
(often referred in the following as concept structures) contain
many information about both products and the way attributes
are present in these products. Lessons can also be learnt about
relations among attributes (for example implications), that are
true for the considered products.

Commonalities are found in the top concept. They cor-
respond to artifacts that are always present or mandatory
features [3]. If some attributes appear in the bottom concept,
this means they are never used in products (dead features)
[3]. Mutually exclusive features (or artifacts) can be rec-
ognized in the concept lattice using the meet (denoted by
⊓) lattice operation ([3]), or computing the greatest lower
bounds in the AOC-poset. If a feature f1 is introduced in
concept C1, a feature f2 is introduced in concept C2 and
C1 ⊓ C2 = ⊥, that is, if the bottom of the lattice is

2014 5th International Conference on Information and Communication Systems (ICICS)

the greatest lower bound of C1 and C2, the two features
never occur together in a product. In the lattice of Fig-
ure 1, CreateOperation(withdrawWithLimit, Account)
and CreateOperation(withdrawWithoutLimit, Account)
are introduced in Concept 3 and Concept 6 respectively. The
two concepts meet at the bottom concept in the lattice, or
never meet in the AOC-poset, meaning they are exclusive
alternatives. Required relations can also be easily obtained
in the concept structure [7]. Data mining research often uses
a property of concept structures to extract implication rules:
when an attribute (a feature or an artifact) a1 is introduced in
a subconcept of the concept that introduces another attribute
a2, there is an implication: a1 → a2. This also means that if
two attributes a1 and a2 are introduced in the same concept,
a1 ↔ a2 (they are co-occurrence). In [7], authors propose an
algorithm to extract all the implications from the AC-poset.
For example, in the lattice of Figure 3, storage ↔ unicode
(from Concept 6) and License GPL2→ Language PHP .
To mine implications with negations (called exclude con-
straints in [9]), we use the meet of the introducers of the two
involved features. For example, the meet of Concept 11 which
introduces LicenseCostFree DifferentLicenses and Concept 4
which introduces License GPL is the bottom. We can
thus deduce that LicenseCostFree DifferentLicenses→
¬License GPL.

We enrich this set of properties already noticed by [3]
[7] by a few original ones, we believe will be useful in
future work using FCA for variability representation. First,
the simplified intents of concepts correspond to variability
blocks. We can hypothesize these blocks contain both main
features and alternatives. In Figure 2, the intent of Concept 9
effectively corresponds to a feature (conversion), but the intent
of Concept 8 acts more as a miscellanea that should be
redivided using extra information, as linguistic information or
code dependencies.

Then, the presence of products in concept extents and their
position in the concept structure have been under-exploited
although they might reveal important information on the
product variants. A concept’s support (number of objects
in the extent) is often used in data-mining as one of the
indicators on implication and association rules. We should
consider it as an interesting measure on variability blocks. For
example, the concept structure helps identify the variability
blocks (and their corresponding features) that are often shared
(e.g., Storage, Unicode shared by 7 wikis) and those that
are rare (e.g., Language Java which we can find only in
Confluence).

If the products are successive versions, analyzing concept
extents may help identify evolution patterns: blocks of fea-
tures that appear in a version, that disappear, that disappear
then reappear, etc. In very large software product lines, only
frequent variability blocks can be extracted, using the iceberg
lattices [28], to have a simplified view. Besides, indicative
relationships between products can be read directly from
the concept structure. Generally speaking, we can say that
the concept structure is a kind of classification of products
with regard to exposed features. If two products are in the
same simplified extent (e.g.,, in the wiki lattice in Figure
3, the extent of Concept 14 contains both DokuWiki and
PmWiki), these products have an equivalent set of features

(or artifacts). One may replace the other in some cases. If a
product p1 (e.g., Product8Bank in Concept 7) is introduced
in a subconcept of a concept that introduces a product p2
(e.g., Product2Bank in Concept 1), p1 adds new features to p2.
The concept structure also reveals that a product merges the
features of several other products (e.g., Product3Bank merges
artifacts from Product5Bank and Product8Bank). Similarity
between products can be measured with a proximity measure
in the concept structure like it has been done for ontologies
[29], using various variants of path length calculus or set
comparison operations on the intents of the involved concepts.
Incompatible products can be revealed by having the meet of
their introducer concepts at the bottom (or nothing).

The concept structure also produces concepts that do not
correspond to existing products but to suggested abstract
products that can be built by navigating the concept structure.
For example, Concept 12 in lattice 1. Such products could be
interesting and relatively cheap to develop as they conform
to the product line definition and would be alternate feature
combinations that might be interesting for software products’
customers.

Some patterns in the concept structure may be of interest
to structure the whole software product family. For example,
some lattices are disconnected into smaller pieces when remov-
ing the top and the bottom concepts. In this case, we obtain
an horizontal decomposition of the lattice, that may help find
sub-families among software products (a.k.a. product ranges).

This view on variability has its limits. First, it is very de-
pendent on the set of products that are considered, and a kind
of ”closed world assumption” is made. Moreover, as noticed
in [8], separating variability blocks that constitute concepts
intents into features needs extra information. In some cases,
we believe this extra information should be available early,
to be included in the formal context itself, so as to be treated
uniformly when extracting variability. Besides, the structure of
the feature tree is not directly in the lattice, except if a wise
encoding is used for formal contexts that embeds the feature
structure (cf. illustrative details on the wiki example below).

IV. REVISITING SOME SPL REVERSE ENGINEERING

APPROACHES IN THE LIGHT OF FCA

Several approaches extract features or feature models from
products or domains including [1] [4] [5] [6] [2]. Our objective
is not to be exhaustive and we do not pretend that concept
structures are useful for or underlying all the approaches.
We choose to focus on two representative approaches (where
concept structures might be interesting to look at) to have
enough space to go into details and open a discussion. We
use the first approach to show that detected variability can
sometimes be mapped into concepts of the concept structure.
As for the second approach, it is used to raise the question of
the potential complementarity of concept structures and feature
models.

A. FCA as a framework (Ziadi et al. [8])

Authors of this paper propose an automatic approach for
feature identification from source code for a set of product
variants. They assume that the product variants use the same
vocabulary to name packages, classes, attributes and methods.

2014 5th International Conference on Information and Communication Systems (ICICS)

They describe the products with construction primitives, as
it has been shown in Table I. The recovered feature model
contains a single mandatory feature that includes the common
parts for all product variants’ source code, and optional fea-
tures. What is interesting is a clever algorithm for variability
block (feature) identification that we rephrase hereafter using
our notations.

Let K = (O,A,R) be the formal context between products
and construction primitives (cf. Table I). F is the resulting set,
it will be composed of subsets of A. Rwork is initially the
relation R, Rwork will evolve during the algorithm. Note that
in the algorithm {a}′ and {a}′′ are computed in Rwork.

Algorithm 3: ComputeFeatures(R)

Data: R: a binary relation (a part of a formal context
K = (O,A,R))

Result: F: a set of subsets of attributes from A
1 F ← ∅
2 Rwork ← R
3 while Rwork 6= ∅ do
4 mfcp ← any element a ∈ A with a maximal |{a}′|
5 products ← {a}’ // the products that have a in

Rwork

6 f ← {a}′′ // the attributes shared by products having
a in Rwork

7 Rwork ← Rwork \{(x, y) s.t. x ∈ f}
8 F ← F ∪{f}

This algorithm efficiently builds the simplified intents of
the attribute concepts (Concepts 1, 5, 8, 9, 10 in Figure 2),
going top-down: the attributes are considered from the most
to the less frequent. When an attribute a is considered, {a}′′

is computed in Rwork and added to the result (F). This is
equivalent to computing {a}′′ in R and then removing the
attributes that are strictly more frequent than a (that also are
inherited attributes). This is thus the simplified intent of a
concept.

This is an example where variability elements can be
mapped to concepts of the concept structure, and this high-
lights their algorithm and gives foundations of their result in
the FCA framework. For the specific application the authors
chose in this paper, it was not necessary to build the whole
structure. Anyway, this is interesting to know that with a slight
modification of their algorithm (adding the edges of the con-
ceptual structure), they could, for example, mine knowledge
about mutually exclusive construction primitives.

B. FCA for a complementary view (Acher et al. [9])

This other paper we would like to elaborate on, takes
product descriptions as its input and synthesizes a feature
model. Products are described by characteristics (language,
license, etc.) with different patterns on values (many-valued,
one-valued, etc.). Table IV shows how we interpreted the
values in a formal context. As the authors of the paper, we
think that such an interpretation has to be guided by the user. In
a sense, rather than building a feature model for each product
and then assembling them, the formal context gathers product
descriptions.

At first sight, with a concept structure approach, we might
find it difficult to have a feature tree that resembles the
author’s. Concept structures would not tell us what the main
features and their variations are. But given that this information
is included in the table itself (columns of the initial table in the
paper, reproduced as columns without symbol in our formal
context), the root and the first level of the feature model can
be built. The lattice contains information to decide whether
main features are mandatory (RSS, or License), optional
(Language, or Storage), or alternatives (LicenseCostFee
and Storage). It also makes it possible to know if feature
values are xor groups (the values of License for example), or
mutex (values of LicenseCostFee). Constraints can also be
further deduced with specific lattice operations as we explained
before. Of course, in the concept structure, as when authors
assemble the feature models, we can read many things, but
they remain assumptions that should be user-validated. For
example, when considering two features (or feature values),
introduced by two comparable concepts, we can deduce a
real require constraint, but this situation can also be purely
fortuitous.

Comparing theoretically the merging of feature models and
what can be learned in the concept structure would really be
interesting. We think that a hint in that direction might be
to define, for any feature model, an equivalent (minimal if
possible, but it is not necessary) representative set of products,
and then to derive a concept structure from this object set. At
least, we can say that merging the collection of feature models
on one side and building the concept structure on the other side
give us complementary views on variability.

TABLE IV. A FORMAL CONTEXT DESCRIBING WIKI SYSTEMS BY

CHARACTERISTICS.

L
ic

en
se

L
ic

en
se

C
o

m
m

er
ci

a
l

L
ic

en
se

N
o

L
im

it

L
ic

en
se

G
P

L

L
ic

en
se

G
P

L
2

L
a

n
g

u
a

g
e

L
a

n
g

u
a

g
e

J
a
v
a

L
a

n
g

u
a

g
e

P
y

th
o

n

L
a

n
g

u
a

g
e

P
H

P

L
a

n
g

u
a

g
e

P
er

l

Confluence × × × ×
Pbwiki × ×
MoinMoin × × × ×
DokuWiki × × × ×
PmWiki × × × ×
DrupalWiki × × × ×
Twiki × × × ×
MediaWiki × × × ×

S
to

ra
g

e

S
to

ra
g

e
D

B

S
to

ra
g

e
F

il
es

S
to

ra
g

e
F

il
es

R
C

S

L
ic

en
se

C
o

st
F

re
e

L
ic

en
se

C
o

st
F

re
e

U
S

1
0

L
ic

en
se

C
o

st
F

re
e

D
if

fe
re

n
tL

ic
en

se
s

L
ic

en
se

C
o

st
F

re
e

C
o

m
m

u
n

it
y

R
S

S

U
n

ic
o

d
e

Confluence × × × × ×
Pbwiki × ×
MoinMoin × × × ×
DokuWiki × × × ×
PmWiki × × × ×
DrupalWiki × × × × ×
Twiki × × × × ×
MediaWiki × × × ×

V. CONCLUSION AND PERSPECTIVES

In this paper, we focused on concept structures and the
opportunities they offer for structuring variability. Concept
structures can be seen a summary of known data (artifacts, fea-
tures, etc.) for a set of products. Existing theory and algorithms

2014 5th International Conference on Information and Communication Systems (ICICS)

Fig. 3. The concept lattice for the formal context of Table IV.

can be used to extract many information about variability
(variability blocks, constraints, relationships between products,
structure of the software product line, etc.) and cope with the
intrinsic complexity of the whole concept lattice. We revisited
two representative papers on variability extraction to show their
commonality and complementarity with the concept structure
view.

Some theoretical questions are raised on the relations
between feature models and concept structures that we would
like to explore into more details. We have discussed about
extracting information from the concept structure in order to
build (part of) a feature model. Reversely, from a feature
model, can we map to a canonical concept structure that
embeds the same information? Besides, as we explained, many
opportunities offered by concept structures are not applied to
variability yet, thus opening paths to plenty of future works.

Acknowledgments: This work has been supported by project
CUTTER ANR-10-BLAN-0219.

REFERENCES

[1] Y. Yang, X. Peng, and W. Zhao, “Domain feature model recovery from
multiple applications using data access semantics and formal concept
analysis,” in WCRE, 2009, pp. 215–224.

[2] S. Duszynski, “A scalable goal-oriented approach to software variability
recovery,” in SPLC Workshops, 2011, p. 42.

[3] F. Loesch and E. Ploedereder, “Restructuring variability in software
product lines using concept analysis of product configurations,” in
CSMR, 2007, pp. 159–170.

[4] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer,
P. Rayson, C. Pohl, and A. Rummler, “An exploratory study of in-
formation retrieval techniques in domain analysis,” in SPLC, 2008, pp.
67–76.

[5] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in ICSE, 2011, pp. 461–470.

[6] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire,
“Reverse engineering architectural feature models,” in ECSA, 2011, pp.
220–235.

[7] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Extraction of feature models
from formal contexts,” in SPLC Workshops, 2011, p. 4.

[8] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identifi-
cation from the source code of product variants,” in CSMR, 2012, pp.
417–422.

[9] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire, “On extracting feature models from product descriptions,”
in VaMoS, 2012, pp. 45–54.

[10] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in WCRE, 2012, pp. 145–154.

[11] B. Ganter and R. Wille, Formal Concept Analysis, Mathematical

Foundations. Springer-Verlag, 1999.

[12] M. Barbut and B. Monjardet, Ordre et Classification: Algèbre et

combinatoire. Hachette, 1970, vol. 2.

[13] C. Carpineto and G. Romano, “Exploiting the potential of concept
lattices for information retrieval with credo,” j-jucs, vol. 10, no. 8, pp.
985–1013, aug 2004.

[14] P. Valtchev, R. Missaoui, and R. Godin, “Formal concept analysis for
knowledge discovery and data mining: The new challenges,” in ICFCA

2004, ser. LNCS, vol. 2961. Springer, 2004, pp. 352–371.

[15] R. Godin and H. Mili, “Building and maintaining analysis-level class
hierarchies using galois lattices,” in OOPSLA, 1993, pp. 394–410.

[16] M. U. Bhatti, N. Anquetil, M. Huchard, and S. Ducasse, “A catalog of
patterns for concept lattice interpretation in software reengineering,” in
SEKE, 2012, pp. 118–123.

[17] G. Stumme and A. Maedche, “Ontology merging for federated ontolo-
gies on the semantic web,” in FMII, 2001, pp. 413–418.

[18] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Mining features from the object-oriented source code
of a collection of software variants using formal concept analysis and
latent semantic indexing,” in SEKE, 2013, pp. 244–249.

[19] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and
H. E. Salman, “Feature location in a collection of software product
variants using formal concept analysis,” in ICSR. Springer, 2013, pp.
302–307.

[20] R. Al-Msie’deen, A.-D. Seriai, M. Huchard, C. Urtado, and S. Vauttier,
“Mining features from the object-oriented source code of software
variants by combining lexical and structural similarity,” in IRI. IEEE,
2013, pp. 586–593.

[21] R. Al-Msie’deen, A. Seriai, and M. Huchard, Reengineering software

product variants into software product line: REVPLINE approach. LAP
LAMBERT Academic Publishing, January 2014.

[22] R. AL-Msie’deen, A. D. Seriai, M. Huchard, C. Urtado, S. Vauttier,
and H. E. Salman, “An approach to recover feature models from object-
oriented source code,” in Actes de la Journée Lignes de Produits 2012,
Lille, France, Novembre 2012, pp. 15–26.

[23] S. O. Kuznetsov and S. A. Obiedkov, “Comparing performance of
algorithms for generating concept lattices,” J. Exp. Theor. Artif. Intell.,
vol. 14, no. 2-3, pp. 189–216, 2002.

[24] G. Arévalo, A. Berry, M. Huchard, G. Perrot, and A. Sigayret, “Perfor-
mances of galois sub-hierarchy-building algorithms,” in ICFCA, 2007,
pp. 166–180.

[25] A. Berry, M. Huchard, A. Napoli, and A. Sigayret, “Hermes: an
efficient algorithm for building galois sub-hierarchies,” in to appear in

proceedings of Concept Lattices and Applications (CLA 2012), 2012.

[26] Uta Priss: http://www.upriss.org.uk/fca/fca.html, 2007.

[27] Eclipse eRCA Platform: https://code.google.com/p/erca/, 2010.

[28] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, “Com-
puting iceberg concept lattices with titanic,” Data Knowl. Eng., vol. 42,
no. 2, pp. 189–222, 2002.

[29] E. G. M. Petrakis, G. Varelas, A. Hliaoutakis, and P. Raftopoulou,
“X-similarity: Computing semantic similarity between concepts from
different ontologies,” JDIM, vol. 4, no. 4, pp. 233–237, 2006.

2014 5th International Conference on Information and Communication Systems (ICICS)

