Optimal Pattern Generator Based on a Three-Mass Linear Inverted Pendulum Model for Dynamic Walking

David Galdeano, Ahmed Chemori, Sébastien Krut

To cite this version:

HAL Id: lirmm-00982345
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00982345
Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal Pattern Generator based on a Three-Mass Linear Inverted Pendulum Model for dynamic walking

David GALDEANO, Ahmed CHEMORI and Sébastien KRUT

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier
LIRMM - UMR 5506
161, Rue Ada 34392 Montpellier, France

February, 14th, 2011
Table of contents

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
Outline

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
Definition

A stability indicator is a mathematical criterion that can characterize the stability margins of a walking robot from the current state of the robot.

Walking mode

Statically stable walk
Indicator: CoM

Dynamically stable walk
Indicators: ZMP, CoP, FRI...
Context and motivation

SHERPA walking robot

Basic 3MLIPM pattern generator

Limitations and improvements

Simulation results

Conclusion and Future work

Stability indicators

State of art

Motivations

Center of Mass (CoM)

Projection of the CoM relative to the support polygon [Nunez, 2008]

CoM is the mean location of all masses of the robot links

\[
OG = \sum m_i OG_i
\]

Static stability criterion

Zero Moment Point (ZMP)

Projection of the ZMP relative to the support polygon [Nunez, 2008]

ZMP is the point where the vertical reaction force intersects the ground

\[
ZMP(t) = f(q(t), \dot{q}(t), \ddot{q}(t), f_e(t))
\]

Dynamic stability criterion
State of art on walking pattern generators

- Simplified models
 - LIPM
 - Kajita et al. 2001
 - Hong et al. 2009
 - Tang et al. 2007
 - Ferreira et al. 2009
 - Lee, 2007
 - 2MLIPM
 - Albert et al. 2003
 - 3MLIPM
 - Takenaka et al. 2009

- Biomechanics
 - Biomechanics
 - Bruneau et al. 1998

- Oscillators
 - Van der pol
 - Katoh et al. 1984
 - Sinusoids
 - Harada, 2009
 - Kim et al. 2009
 - Takano et al. 2007
 - FFT
 - Zhao et al. 2008
 - Yamaguchi et al. 1999

- B-Splines
 - Huang et al. 1999

- Others
 - Polynomial Functions
 - Zaier et al. 2007
 - Neural networks
 - Yang et al. 2007
Motivation

Objective

Design and implementation of a pattern generator for stable dynamic walking

Assumptions

- The ground is flat and without obstacles
- The walking cycle is made of single support and impact phases
- The double support phase is not considered
- The solution uses a simplified model of the robot

Method and application

- Model: 3 Masses Linear Inverted Pendulum Model (3MLIPM)
- Application: SHERPA biped robot
Outline

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
SHERPA biped robot

- 7 parts: one waist linked to two legs together articulated with knees and ankles
- 18 degrees of freedom / 12 actuated articulations
- 12 modular transparent actuators (low inertia, low friction and backdrivable)
- Control PC with a real time kernel (RTX)
Prototype

Sensor

- 12 Absolute Shaft Encoders (HENGSTLER AD36) to measure articular positions
- 2 six-axis force sensors (ATI-Mini 85) to measure contact forces with ground

Speaker: David GALDEANO (galdeano@lirmm.fr) February 14th, 2011 HLR 2011 WORKSHOP
First movements of the robot

Two motion scenarios are proposed.

Scenario 1

A swing movement Up and down of the hanged leg

Scenario 2

A swing movement Forward-backward movement of the hanged leg

Reference trajectories generation : based on b-splines functions
Objective

Find a trajectory: \(T = x(t), \ t \in [0, t_f] \)

under a set of constraint:

\[
\begin{align*}
 x(0) &= x_0 \\
 \dot{x}(0) &= \dot{x}_0 \\
 x(t_f) &= x_f \\
 \dot{x}(t_f) &= \dot{x}_f \\
 x(t_i) &= x_i
\end{align*}
\]

Proposed solution

CSAPE algorithm from b-splin toolbox of Matlab software
B-splines

Illustration example

Constraints:

\[
\begin{align*}
 x(0) &= 4 \\
 x(1) &= 8 \\
 x(2) &= 6 \\
 \dot{x}(0) &= 0 \\
 \dot{x}(2) &= 3
\end{align*}
\]

B-splines MATLAB function:

```
bspline([0,1,2],[4,8,6],[1,1],[0,3])
```

t₀ = 0, tᵢ = 1, tᵢ = 2

Obtained trajectories
First movements of the robot (Experiments)

Scenario 1

Scenario 2
Context and motivation

SHERPA walking robot

Basic 3MLIPM pattern generator

Limitations and improvements

Simulation results

Conclusion and Future work
Simplified models

LIPM
[Kajita et al., 2009]

2MLIPM
[Albert and Gerth, 2003]

3MLIPM
[Feng and Sun, 2008]

Reduce the dynamic of the robot to the dynamic of a point mass.
The three masses linear inverted pendulum model

"3 Mass Linear Inverted Pendulum Model (3MLIPM)" [Feng and Sun, 2008]

Properties
- Simplified model of the robot
- Three point masses
- Three massless links

Hypothesis
- Walk on flat ground
- No double support phases
The three masses linear inverted pendulum model

"3 Mass Linear Inverted Pendulum Model (3MLIPM)" [Feng and Sun, 2008]

Properties
- Simplified model of the robot
- Three point masses
- Three massless links

Hypothesis
- Walk on flat ground
- No double support phases

Decoupled equations

Motion generated separately

{ Sagittal plane
 Frontal plane

Speaker: David GALDEANO (galdeano@lirmm.fr) February, 14th, 2011
HLR 2011 WORKSHOP
Motion in sagittal plane

Dynamic of 3MLIPM in the sagittal plane

x_i: Cartesian position of mass m_i in x axis
z_i: Cartesian position of mass m_i in z axis
Motion in sagittal plane

Dynamic of 3MLIPM in the sagittal plane

\[\sum_{i=1}^{3} m_i \ddot{x}_i z_i = \sum_{i=1}^{3} m_i g x_i \]

\(x_i \): Cartesian position of mass \(m_i \) in \(x \) axis
\(z_i \): Cartesian position of mass \(m_i \) in \(z \) axis
The three masses linear inverted pendulum model

Motion in sagittal plane

\[\sum_{i=1}^{3} m_i \ddot{x}_i z_i = \sum_{i=1}^{3} m_i g x_i \]
\[b \ddot{x}_1 + d \ddot{x}_3 = a x_1 + x_3 \]

- \(x_i \): Cartesian position of mass \(m_i \) in x axis
- \(z_i \): Cartesian position of mass \(m_i \) in z axis

Dynamic of 3MLIPM in the sagittal plane

Speaker: David GALDEANO (galdeano@lirmm.fr)
February, 14th, 2011
HLR 2011 WORKSHOP 18
Motion in sagittal plane

Dynamic of 3MLIPM in the sagittal plane

\[\sum_{i=1}^{3} m_i \ddot{x}_i z_i = \sum_{i=1}^{3} m_i g x_i \]

\[b \ddot{x}_1 + d \ddot{x}_3 = a x_1 + x_3 \]

Choose a trajectory for the swinging foot

\[x_i : \text{Cartesian position of mass } m_i \text{ in } x \text{ axis} \]

\[z_i : \text{Cartesian position of mass } m_i \text{ in } z \text{ axis} \]
The three masses linear inverted pendulum model

Motion in sagittal plane

\[\sum_{i=1}^{3} m_i \ddot{z}_i = \sum_{i=1}^{3} m_i g x_i \]

Choose a trajectory for the swinging foot

Motion of the three masses

\[b \ddot{x}_1 + d \ddot{x}_3 = a x_1 + x_3 \]

\(x_i \): Cartesian position of mass \(m_i \) in \(x \) axis
\(z_i \): Cartesian position of mass \(m_i \) in \(z \) axis
Motion in frontal plane

Dynamic of 3MLIPM in the frontal plane

x_i: Cartesian position of mass m_i in x axis
z_i: Cartesian position of mass m_i in z axis
Motion in frontal plane

Dynamic of 3MLIPM in the frontal plane

\[\sum_{i=1}^{3} m_i \ddot{y}_i z_i = \sum_{i=1}^{3} m_i g y_i \]

- \(x_i \) : Cartesian position of mass \(m_i \) in \(x \) axis
- \(z_i \) : Cartesian position of mass \(m_i \) in \(z \) axis
Motion in frontal plane

Dynamic of 3MLIPM in the frontal plane

\[\sum_{i=1}^{3} m_i \ddot{y}_i z_i = \sum_{i=1}^{3} m_i g y_i \]

\[u \ddot{y}_1 - v y_1 = w \]

\(x_i \) : Cartesian position of mass \(m_i \) in \(x \) axis

\(z_i \) : Cartesian position of mass \(m_i \) in \(z \) axis
The three masses linear inverted pendulum model

Motion in sagittal plane

Motion in frontal plane

Dynamic of 3MLIPM in the frontal plane

\[\sum_{i=1}^{3} m_i \dddot{y}_i z_i = \sum_{i=1}^{3} m_i g y_i \]

\[u \dddot{y}_1 - v y_1 = w \]

3D trajectories of hip and ankles

\(x_i \): Cartesian position of mass \(m_i \) in \(x \) axis

\(z_i \): Cartesian position of mass \(m_i \) in \(z \) axis

Speaker: David GALDEANO (galdeano@lirmm.fr) February, 14th, 2011 HLR 2011 WORKSHOP
Motion in frontal plane

Dynamic of 3MLIPM in the frontal plane

$$\sum_{i=1}^{3} m_i \ddot{y}_i z_i = \sum_{i=1}^{3} m_i g y_i$$

$$u \ddot{y}_1 - v y_1 = w$$

3D trajectories of hip and ankles

Inverse kinematics \rightarrow Joints space trajectories

x_i : Cartesian position of mass m_i in x axis
z_i : Cartesian position of mass m_i in z axis
Outline

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
First contribution

First limitation of the 3MLIPM model:
The dynamic stability is not guaranteed

Proposed improvement: Optimization with respect to ZMP
Principle: optimal value of mass m_1 and its position z_1:

$$
\begin{bmatrix}
\hat{z}_1 \\
\hat{m}_1
\end{bmatrix} = \arg \min_{z_1, m_1} \max \left(\sqrt{\alpha(x_{zmp} - x_{dzmp})^2 + \beta(y_{zmp} - y_{dzmp})^2} \right)
$$

This optimization aims to find the best fit between the desired and the computed ZMP.
Second contribution

Second limitation of the 3MLIPM model:
Change of walking direction is not allowed

Proposed improvement: Modification of the hip trajectory
Principle: the hip trajectory is modified as follow:

$$\Omega(t) = -\frac{R}{2} \cos\left(\frac{\pi t}{T}\right) \quad t \in [0, T]$$

with T: half step period and R: amplitude of rotation.
The modification of the hip trajectory allows a change of walking direction.
Outline

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
Developed simulator

Proposed scenarios:

Scenario 1: Straight walking

Scenario 2: Change of walking direction

Comparison of the original pattern generator with the improved one
First scenario: Straight walking

Joints’ positions

- position: q_1 [rad] and q_7 [rad]
- position: q_2 [rad] and q_8 [rad]
- position: q_3 [rad] and q_9 [rad]
- position: q_4 [rad] and q_{10} [rad]
- position: q_5 [rad] and q_{11} [rad]
- position: q_6 [rad] and q_{12} [rad]

Characteristics:
- Joints’ trajectories are periodic
- Discontinuities in joints’ velocities

Joints’ velocities

- velocity: \dot{q}_1 [rad/s] and \dot{q}_7 [rad/s]
- velocity: \dot{q}_2 [rad/s] and \dot{q}_8 [rad/s]
- velocity: \dot{q}_3 [rad/s] and \dot{q}_9 [rad/s]
- velocity: \dot{q}_4 [rad/s] and \dot{q}_{10} [rad/s]
- velocity: \dot{q}_5 [rad/s] and \dot{q}_{11} [rad/s]
- velocity: \dot{q}_6 [rad/s] and \dot{q}_{12} [rad/s]
First scenario: Straight walking

Stability analysis through ZMP

Without optimization

With optimization

Optimization ⇒ Improvement of the stability margins

Speaker: David GALDEANO (galdeano@lirmm.fr) February 14th, 2011

HLR 2011 WORKSHOP 26
Second scenario: Change of walking direction

Characteristics:
- Joints' trajectories are periodic
- Discontinuities in joints' velocities
Second scenario: Change of walking direction

Stability analysis through ZMP

Without optimization

With optimization

[Graphs showing stability analysis with and without optimization]
Second scenario: Change of walking direction

Stability analysis through ZMP

Without optimization

With optimization

Instable dynamic walking

Stable dynamic walking
Second scenario: Change of walking direction

Stability analysis through ZMP

Without optimization

With optimization

Instable dynamic walking

Stable dynamic walking

Optimization

⇒ Dynamic walking stability is guaranteed
Video
Outline

1. Context and motivation
2. SHERPA walking robot
3. Basic 3MLIPM pattern generator
4. Limitations and improvements
5. Simulation results
6. Conclusion and Future work
Conclusion

Motivation:

Design and implementation of a pattern generator for dynamically stable walking

Deals with:

- Stability of dynamic walking
- 3D Movements
- Complex nonlinear dynamics
- Low CoM position (no torso)

Proposed solution:

- A pattern generator based on a 3 masses simplified model
- Stability margin improvement using optimization
- Change of walking direction is allowed
Future work can include...

- Real-time implementation of the proposed pattern generator on the biped robot SHERPA
- Development of a hybrid Position/Force controller to stabilize dynamic walking (in progress)
- Combine the hybrid Position/Force controller with the developed pattern generator
- Test the effectiveness of controller for walking on uneven ground
- Compare this approach to other pattern generators
Analytic path planning algorithms for bipedal robots without a trunk.

Dynamic transition simulation of a walking anthropomorphic robot.

Biped robot walking using three-mass linear inverted pendulum model.

ZMP trajectory reference for the sagittal plane control of a biped robot based on a human CoP and gait.
In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’09)*, pages 1588–1593, St. Louis, USA.

Toward human-like walking pattern generator.

A walking pattern generation method with feedback and feedforward control for humanoid robots.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'09), pages 1078–1083, St. Louis, USA.

A high stability, smooth walking pattern for a biped robot.
In IEEE International Conference on Robotics and Automation (ICRA'99), pages 65–71, Detroit, Michigan, USA.

Introduction à la commande des robots humanoides. Translated in French by Sakka, S. Springer.

The 3d linear inverted pendulum mode: A simple modeling for a biped walking pattern generation.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'01), pages 239–246, Hawaii, USA.

Control method of biped locomotion giving asymptotic stability of trajectory.

Stable whole-body motion generation for humanoid robots to imitate human motions.
In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'09)*, pages 2518–2524, St. Louis, USA.

Modifiable walking pattern generation using real-time zmp manipulation for humanoid robots.

Étude de la commande des mouvements dynamiques d’un robot humanoïde.
ITL - LISV.

Takano, W., Yamane, K., and Nakamura, Y. (2007).
Capture database through symbolization, recognition and generation of motion patterns.
In *IEEE International Conference on Robotics and Automation (ICRA’07)*, pages 3092–3097, Roma, Italy.

Real time motion generation and control for biped robot-1st report : Walking gait pattern generation.
In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’09)*, pages 1084–1091, St. Louis, USA.

Humanoid 3d gait generation based on inverted pendulum model.
Development of a bipedal humanoid robot - control method of whole body cooperative
dynamic biped walking.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'1999),
pages 368–374, Detroit, Michigan.

Self-adapting humanoid locomotion using a neural oscillator network.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'07), pages
309–316, San Diego, USA.

Piecewise-linear pattern generator and reflex system for humanoid robots.
In IEEE International Conference on Robotics and Automation (ICRA'07), pages 2188–2194,
Roma, Italy.

Humanoid robot gait generation based on limit cycle stability.