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The paper relates two variants of semantic models for natural language, logical functional models and

compositional distributional vector space models, by transferring the logic and reasoning from the

logical to the distributional models. The geometrical operations of quantum logic are reformulated

as algebraic operations on vectors. A map from functional models to vector space models makes it

possible to compare the meaning of sentences word by word.
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1 Introduction

Semantic models for natural language vary from logical models, e.g. first order models or Montague

models, to conceptual models. Conceptual models englobe variants of higher order type theory (1) and

the geometrical vector space models based on quantum logic (14), (15), (13). They all involve reasoning,

an essential ingredient of compositional semantics, (6).

This paper traces the switch from logical functional models of pregroup grammars to the distribu-

tional vector space models of (2) and shows how the predicate logic of functional models changes to the

quantum logic of vector space models. It also proposes a way to fill a gap left in (4), namely logic.

Pregroup grammars (7) provide the common mathematical background of compact closed categories,

which facilitates the passage from the functional logical models to vector space models. Both kinds of

models are implemented by structure preserving functors defined on the lexical category L (B), the

free compact closed category generated by a partially ordered set of basic types B and the entries in a

pregroup dictionary DB. In this study, all functors map entries in the dictionary to vectors in the category

FVectR of finite dimensional vector spaces over the real numbers.

Structure preserving functors are necessarily compositional, because all strings recognised by a pre-

group grammar are morphisms of the lexical category. Indeed, any grammatical analysis produced by

a pregroup grammar corresponds to a morphism r of the lexical category. The meaning of the string is

defined in the lexical category as the composite of r with the juxtaposition (tensor product) of the lexi-

cal entries (vectors). A model implemented by a functor from L (B) to some compact closed category

commutes with the structural operations. Hence the value of the string is computed from the values of

the words using the operations of the compact closed category.

The main difference between the functors standing for logical functional models and those standing

for vector space models lies in the interpretation of the sentence type. The former models map it to a two-

dimensional space of truth-values and the latter to a higher dimensional space of concepts represented

by words.
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A vector space model interprets the so-called property words or concepts, i.e. nouns, adjectives and

verbs, by vectors in a fixed finite dimensional space W , the basis vectors of which are identified with

a set of basic concepts. Words with a logical content like determiners, relative pronouns, connectives

(and, not etc.) and auxiliary verbs are not interpreted. They are ‘noise’. The compositional extension

to meanings of strings is given in (4) ”via a strongly monoidal functor from the free pregroup 1 of basic

types to the category of finite dimensional vector spaces FVectR” using the Frobenius multiplication in

form of the pointwise product ⊙ for composition.

Logical functional models interpret all words in the lexicon. They map nouns to vectors with coef-

ficients equal to 0 or 1, attributive adjectives to projectors (i.e. linear maps that map any basis vector to

itself or to 0) and verbs and predicative adjectives to predicates, (i.e. linear maps that take their values

in a space of truth values). They interpret logical words as distinguished linear maps that operate on

predicates by composition. For instance, if not : S → S is the linear map interpreting the negation not

and blue the predicate corresponding to the adjective blue then not ◦blue is the meaning of not blue.

The induced logic is four-valued and strictly extends first order predicate logic. Besides ‘true’ and ‘false’

it has truth-values ‘meaningless’, e.g. rocks sleep, and ‘mixed’, e.g. rocks are grey.

The question addressed here is if and how the compositional approach to vector space models can be

extended to noise words. Indeed, the compositional approach via a functor does not extend to most logic

words. For instance, there is no vector
−→
not for which

−→
not⊙

−−→
blue would be orthogonal to

−−→
blue.

The geometrical logical connectives and, not or, if-then of quantum logic operate on projectors, not

on vectors. After reformulating the geometrical operations as algebraic operations, this study shows that

the algebraic operations and the corresponding consequence relation define a conditional logic on the

concept space similar to the conditional logic of information retrieval in (13). Negation, for instance,

coincides with orthogonality.

How adequate is the extension of the vector space model with respect to the meaning of sentences? To

test the adequateness, I pair any logical functional model F with a vector space model MC interpreting

words in a space C and define a map J from ‘properties’, e.g. vectors, projectors and predicates, to

vectors of C such that MC coincides on words with the composite J ◦F . The model MC depends

on the model F , a possible world to which the statements refer, and the choice of basic vectors of C,

expressing semantic relations between words, and the grammatical role of words in strings of words. The

coefficients of the vectors in MC have a truth probabilistic content related to and motivated by quantum

logic.

The logical functional model and the vector space model are both functors defined on the lexical cat-

egory. The value in the functional model is the composite of the word values, e.g. F (rocks are grey) =
F (are) ◦F (grey) ◦F (rocks), whereas the vector space model MC uses the pointwise multiplica-

tion, e.g. MC(rocks are grey) = MC(rocks)⊙MC(are)⊙MC(grey). The meanings of strings in

the two models can be compared word by word and operator by operator. Under sufficient condi-

tions, the truth-probabilistic content of words is preserved by strings, i.e. J (F (word1 . . .wordn)) =
M (word1 . . .wordn).

In fact, the map J preserves truth and reflects the algebraic consequence relation. Moreover, J
preserves negation. Under sufficient conditions J also preserves the binary connectives. In particu-

lar, under these conditions the pointwise product commutes with the probability interpretation, because

the conjunction of vectors is their pointwise product. The algebraic operations also coincide with the

connectives of predicate logic in the degenerate case where individuals play the role of ‘basic concepts’.

1The authors seem to use the term ‘free pregroup’ in a sense that is not compatible with the existence of a strongly monoidal

functor, see Section 3.
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2 Lexical semantics of pregroup grammars

The free pregroup P(B) generated by a partially ordered set B introduced in (7) is a partially preordered

monoid in which every element a has a right adjoint ar and a left adjoint aℓ characterised by the equalities

aar ≤ 1 ≤ ara aℓa ≤ 1 ≤ aaℓ .

Semantics requires a slightly modified definition, namely the free compact closed category C (B) gener-

ated by B, introduced in (11). The only difference between the two versions is that P(B) identifies all

morphisms of C (B) that have a common domain and a common codomain. This difference is essential

when compositional semantics in vector spaces are mediated by a functor. An example of morphisms

identified in P(B) leading to different meanings is given in (11). See also Fact 1 in Section 3 showing

that a strongly monoidal functor from the free pregroup maps every element of the free pregroup to a

space of dimension at most one.

Recall that a monoidal category consists of a category C , a bifunctor, (denoted somewhat mislead-

ingly by the tensor symbol) ⊗, a distinguished object I, the unit of the bifunctor, and natural isomor-

phisms αABC : (A⊗B)⊗C → A⊗ (B⊗C), λA : A → I ⊗A and ρA : A → A⊗ I subject to the coherence

conditions of (9). A monoidal category is symmetric if there is a natural isomorphism σAB : A⊗B→B⊗A

such that σ−1
AB = σBA, again subject to the coherence conditions of (9). A monoidal category is compact

closed if for every object A there are objects Ar and Aℓ, called right adjoint and left adjoint of A respec-

tively, and morphisms ηA : I → Ar ⊗A, εA : A⊗Ar → I, ηAℓ : I → A⊗Aℓ, εAℓ : Aℓ⊗A → I satisfying

λ−1
A ◦ (εA ⊗1A)◦α−1

AAr A ◦ (1A ⊗ηA)◦ρA = 1A, λ−1
Aℓ ◦ (εAℓ ⊗1Aℓ)◦α−1

Aℓ AAℓ ◦ (1Aℓ ⊗ηAℓ)◦ρAℓ = 1Aℓ .

For notational convenience, the associativity isomorphisms αABC and the unit isomorphisms λA and ρA

are replaced by identities, e.g. (A⊗B)⊗A = A⊗ (B⊗C), A = I ⊗A and A⊗ I . The equalities above

become the adjoint equalities

(εA ⊗1A)◦ (1A ⊗ηA) = 1A, (εAℓ ⊗1Aℓ)◦ (1Aℓ ⊗ηAℓ) = 1Aℓ . (1)

A functor between compact closed categories preserves the compact closed structure if it commutes

with the tensor product, the tensor unit and right and left adjoints up to natural isomorphisms.

Every morphism of the free compact closed category generated by some category C can be desig-

nated by a ‘normal’ graph where all links are labelled by morphisms of C and all paths have length 1.

In the case where the label is an identity it may be omitted. The graph displays the domain above, the

codomain below. Vertical links correspond to right or left adjoints of morphisms of C, overlinks to names

and the underlinks to conames of morphisms of C. For example, the right and the left adjoint of a basic

morphism f : aaa → bbb are represented by the graphs

f r : bbbr → aaar =

bbbr

aaar

OO

f f ℓ : bbbℓ → aaaℓ =

bbbℓ

aaaℓ

OO

f
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Any morphism f : aaa → bbb has two names

right name

η f = ( f r ⊗1bbb)◦ηbbb

I

f

!!
aaar ⊗ bbb

=

I

OO

f

��

  
bbbr ⊗ bbb

aaar ⊗ bbb

left name

η f ℓ = ( f ⊗1aaaℓ)◦ηaaaℓ

I

||
f

bbb ⊗ aaaℓ

=

I

f

��

OO
||
aaa ⊗ aaaℓ

bbb ⊗ aaaℓ

.

Analogous definitions and notations apply to conames, namely ε f and ε f ℓ

right coname

ε f = εbbb ◦ ( f ⊗1bbbr)

I

f

<<aaar ⊗ bbb

=

I

f

��

OO

<<

aaa ⊗ bbbr

bbb ⊗ bbbr

left coname

ε f ℓ = ε
bbbℓ
◦ (1

bbbℓ
⊗ f )

I

cc

f

bbbℓ ⊗ aaa

=

I

OO

f

��
cc

bbbℓ ⊗ aaa

bbbℓ ⊗ bbb

.

The equality of the composite graph on the right to the normal graph on the left is a particular instance

of the so-called ‘yanking’. Start at the tail of any link situated in the top or bottom line and follow the

oriented links until a head situated in the top or bottom line is reached. Replace the whole path by a

single link, labelled by the composite of the labels in the order they are encountered. In the case of

names, yanking works by definition. The general case concerning the composite of two arbitrary graphs

follows from the adjoint axioms (1).

(εaaa ⊗1aaa)◦ (1aaa ⊗ηaaa) = aaa ⊗ aaar ⊗ aaa

aaa

aaa

����
��

��
�

����
��

��
�<<
  
=

aaa

aaa
��

= aaa ⊗ aaaℓ ⊗ aaa

aaa

aaa

��>
>>

>>
>>

��>
>>

>>
>>

cc
~~

= (εaaaℓ ⊗1aaaℓ)◦ (1aaaℓ ⊗ηaaaℓ)

The same morphisms composed in the opposite order result in the normal graph on the right

(1aaa ⊗ηaaa)◦ (εaaa ⊗1aaa) =

aaa ⊗ aaar ⊗ aaa

aaa ⊗ aaar ⊗ aaa

aaa
����

��
��

��
��

""

;;

����
��

��
��

��
=

aaa ⊗ aaar ⊗ aaa

aaa ⊗ aaar ⊗ aaa
yyttttttttttttttt

""

;;

.

The free compact closed category generated by an arbitrary category has the ‘normal form property’,

namely there is a one-to-one correspondence between morphisms and graphs where all paths are reduced
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to a single link. This implies that

1aaa⊗aaar⊗aaa =

aaa ⊗ aaar ⊗ aaa

aaa ⊗ aaar ⊗ aaa
��

OO

��

6=

aaa ⊗ aaar ⊗ aaa

aaa ⊗ aaar ⊗ aaa
yyttttttttttttttt

""

;;

= (1aaa ⊗ηaaa)◦ (εaaa ⊗1aaa) .

The objects of the free compact closed category C (B) generated by a partially ordered set B
are called types, among them are the elements of B, called basic types. A simple type has the form

. . . ,aaa(−2) = aaaℓℓ, aaa(−1) = aaaℓ, aaa(0) = aaa, aaa(1) = aaar, aaa(2) = aaarr, . . . where the aaa is a basic type. Any object of

C (B) can be written as a finite string of simple types where juxtaposition plays the role of the monoidal

bifunctor. Clearly, C (B) is not symmetric

A pregroup lexicon consists of pairs word : T where word is a word of natural language and T a type.

One can view each entry word : T as a formal expression word : I → T in the language of compact closed

categories. For example,

no : sss⊗ sssℓ⊗nnn2 ⊗ ccc2
ℓ

new : nnn2 ⊗ ccc2
ℓ

triangles : ccc2

are : nnn2
r ⊗ sss⊗ pppℓ⊗nnn2

blue : nnnr ⊗ ppp

no : I →sss⊗ sssℓ⊗nnn2 ⊗ ccc2
ℓ

new : I →ccc2 ⊗ ccc2
ℓ

triangles : I →ccc2

are : I →nnn2
r ⊗ sss⊗ pppℓ⊗nnn2

blue : I →nnnr ⊗ ppp .

Here ccc2 ≤ nnn2 ≤ nnn are the basic types standing for plural common nouns, plural noun phrases and noun

phrases where the number does not matter, in that order. The basic types ppp ≤ sss correspond to predicative

adjectives and to sentences. The reader can find a more comprehensive grammar of English in (8).

Every lexical entry word : I → T = aaa
(z1)
1 ⊗ . . .⊗aaa

(zn)
n creates a ‘lexical morphism’ word : aaai1 ⊗ . . .⊗

aaaim → aaa j where zik is odd for k = 1, . . . ,m and z j is even. For example,

blue=

I

nnnr ⊗ ppp
  

blue ,

ppp

nnn

��

blue new=

I

ccc2 ⊗ ccc2
ℓ}}

new ,

ccc2

ccc2

��

new triangles=

I

ccc2

��

triangles

are= (1nnn2
r ⊗ηareℓ ⊗1nnn)◦ηnnn2

=

I

nnn2
r ⊗ nnn

""

nnn2
r ⊗ sss ⊗ pppℓ ⊗nnn

}}
are

DD

��
��
��
�

��3
33

33
33 =

I

nnn2
r ⊗ sss ⊗ pppℓ ⊗ nnn

##}}
are

,

sss

ppp

��

are

no= ηnotℓ ⊗ηnnn2
ℓ =

I

sss ⊗ sssℓ ⊗ nnn2 ⊗ nnn2
ℓ��

not

}}
,

sss

sss

��

no .

Labelled links correspond to lexical morphisms like not : sss → sss, blue : nnn → ppp and new : ccc2 → nnn2.

Unlabelled links correspond to (in)equalities of basic types inaaabbb : aaa → bbb.
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Thus, every pregroup lexicon determines a lexical category L (B), namely the free compact closed

category generated by the partially ordered set of basic types and the lexical morphisms. A basic mor-

phism is an (in)equality inaaabbb : aaa→ bbb between elements of B or a lexical morphism word : aaa1⊗ . . .⊗aaam →
bbb. Note that the set of basic morphisms does not form a category. The generating category of L (B)
is the monoidal category generated by B and the lexical morphisms. The lexical category is the mathe-

matical tool of a pregroup grammar that provides both grammatical analysis and meanings of words and

strings of words.

Call reduction any morphism r : T1 . . .Tn → bbb of the free compact closed category involving (in)equalities

or counits of (in)equalities of basic types only. We omit all labels in the graphical picture, because they

are uniquely determined by the tail and the head of the link. The basic type at the tail is necessarily less

or equal to the basic type at the head.

A string of words word1 . . .wordn is grammatical if there are entries wordi : Ti in the lexicon, a basic

type bbb and a reduction r : T1 . . .Tn → bbb. For instance.

r =

No triangles are blue

sss ⊗ sssℓ ⊗ nnn2 ⊗ nnn2
ℓ ⊗ ccc2 ⊗ nnn2

r ⊗ sss ⊗ pppℓ ⊗ nnn ⊗ nnnr ⊗ ppp

��
sss

ee ::ee dd ==

Meanings of grammatical strings are best defined abstractly in the lexical category L (B). The

meaning of the string word1 . . .wordn recognised by the reduction r is

r ◦ (word1 ⊗ . . .⊗wordn) .

For example,

r ◦ (no⊗triangles⊗are⊗blue) =

sss ⊗ sssℓ ⊗ nnn2 ⊗ nnn2
ℓ ⊗ ccc2 ⊗ nnn2

r ⊗ sss ⊗ pppℓ ⊗ nnn ⊗ nnnr ⊗ ppp

��
sss

ee ::ee dd ==
~~

not
��

I

��
triangles

##��
are

  
blue

= not◦are◦blue◦ innnn2nnn ◦ inccc2nnn2
◦triangles

= not◦are◦blue◦ inccc2nnn ◦triangles.

Any compact closed structure preserving functor from the lexical category F into an arbitrary com-

pact closed category C provides us with a compositional interpretation of grammatical strings. The value

of the string is computed from the values of the words with the help of the operations (tensor, composi-

tion etc.) of the category. Assume, for instance, that F is a compact closed structure preserving functor

satisfying

N = F (nnn) = F (nnn2) = F (ccc2), S = F (sss) = F (ppp),
F (inaaabbb) = 1F (bbb), F (are) = 1S .

Then

F (r ◦ (no⊗triangles⊗are⊗blue)) = F (not)◦F (blue)◦F (triangles) . (2)
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3 Vector space models as functors

A functor between monoidal categories is strongly monoidal if it commutes with the tensor product and

the tensor unit up to natural isomorphisms. If both categories are compact closed a strongly monoidal

functor also commutes with the units and the counits of adjunction up to natural isomorphisms, hence

the functor preserves the compact closed structure.

The vector space models of (4) are ”strongly monoidal functors from the free pregroup to the full

subcategory FVectW of FVectR formed by the tensor powers of some chosen space W”. The subcategory

FVectW is a compact closed subcategory of FVectR. If W has dimension greater than one, however, such

a functor does not exist.

Fact 1. There is no monoidal structure preserving functor from P(B) to FVectR that maps a basic type

to a space of dimension greater than one.

Proof. Suppose to the contrary that A = F (aaa) has dimension at least two and that F is a functor from

P(B) to FVectR that preserves the monoidal structure and, as a consequence, also the compact structure

up to natural isomorphisms. Then from 1aaa⊗aaar⊗aaa = (1aaa ⊗ ηaaa) ◦ (εaaa ⊗ 1aaa) in P(B) follows that f =
(1A ⊗ηA)◦ (εA ⊗1A) is an isomorphism in FVectR. Assume a1,a2 ∈ A are different basis vectors. Then

(εA ⊗ 1A)(a1 ⊗ a2 ⊗ a1) = 0, because the counit εA : A⊗A → I is the inner product of the space A. It

follows that f (a1 ⊗a2 ⊗a1) = 0 and therefore has no inverse.

This problem disappears when the free pregroup P(B) is replaced by the free compact closed

category C (B). A functor defined on C (B), however, is not eough, because it does not interpret the

lexical entries. Adjectives in attributive position, for instance, have type ccc2⊗ccc2
ℓ. The left unit is the only

morphism of C (B) with domain I and codomain ccc2⊗ccc2
ℓ, because the identity is the only endomorphism

of the basic type ccc2 in the free category. We must add the lexical morphisms and define a functor on the

lexical category L (B).

Choosing a vector space V and defining the word vectors in V from a corpus is a complex task. Here,

we are only interested in the result, namely a map MV from the entries of a pregroup lexicon to vectors in

V , called vector space model. The compositional extension of a MV via a functor such that the meaning

of a string is again a vector in V , namely the pointwise product of the word vectors has a straight forward

definition, due to the following fact.

Fact 2. Let V be a commutative monoid with binary operation ⋆ and neutral element e. Then the follow-

ing definitions define a compact closed category V⋆

V is the unique object of V⋆

The elements v ∈V are the morphisms v : V →V of V⋆

v1 ◦ v2 = v1 ⋆ v2, 1V = e

V ⊗V =V

v1 ⊗ v2 = v1 ⋆ v2

V r =V =V ℓ, ηV = e = εV

With these definitions, every morphism of V⋆ is equal to its name and coname.

Proof. The proof is straight forward. To see that V⋆ is a monoidal category with tensor unit V we must

show ⋆ is a bifunctor from the product category V⋆×V⋆ into V⋆, that is to say we must show the two

equalities

1V ⊗1V = 1V⊗V (v1 ⊗ v2)◦ (w1 ⊗w2) = (v1 ◦w1)⊗ (v2 ◦w2) .
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The first follows immediately from the definition. The second holds, because the operation ⋆ is commu-

tative. Compact closure is as easily checked. Indeed,

ηV = 1V : V →V =V ⊗V, εV = 1V : V =V ⊗V →V

(εV ⊗1V )◦ (1V ⊗ηV ) = (e⋆ e)⋆ (e⋆ e) = e = 1V .

The last assertion that pmq= m = xmy is a straight forward consequence of the definitions.

If ⋆ is a commutative binary operation on a vector space V then any compact closed structure pre-

serving functor from the lexical category to V⋆ is a vector-based model in the sense of (10).

There are two obvious choices for the binary operation ⋆ in the case of a finite dimensional vector

space V . One is the familiar addition of vectors. The other one is the pointwise product ⊙ of vectors

used in (3). It is defined in terms of any orthonormal basis A = {a1, . . . ,an} of V by the equality

(
n

∑
i=1

αiai)⊙ (
n

∑
i=1

βiai) =
n

∑
i=1

(αiβi)ai .

The neutral element of ⊙ is the vector
−→
1 = ∑

n
i=1 ai. We shall see that the pointwise multiplication also

equips the vector space V with a logic that is the vector version of the geometrical logic of projectors.

Any vector space model MV extends to a unique compact closed structure preserving functor MV

from the lexical category L (B) into the compact closed category V⊙ satisfying

M (aaa) =V M (inaaabbb) =
−→
1 , for all aaa,bbb ∈ B

M (wordT ) = M(word : T ) ∈V for all lexical entries word : T .

Indeed, such a functor exists and is unique because the lexical category is the free compact closed cate-

gory generated by the lexical words and the inequalities of basic types. The subscript V will be omitted

unless this leeds to confusion.

Note that the functor M satisfies M (T ) = V for every type T . Moreover, M (r) =
−→
1 for any

reduction r : T1⊗ . . .⊗Tn → bbb of the pregroup grammar, because a reduction is an expression of monoidal

categories involving only conames of inequalities of basic types. Every morphism of V⊙ is equal to its

name(s). Hence, the value assigned to a grammatical string word1 . . .wordn is simply the pointwise

product of the vectors

M (r ◦ (word1T1
⊗ . . .⊗wordnTn

)) = M(word1 : T1)⊙·· ·⊙M(wordn : Tn) . (3)

The result still depends on the reduction (the pregroup version of syntactical analysis), because it is the

reduction that chooses the types Ti. Evidently, this definition of compositional models avoids problem of

variable tensor powers.

4 Logical functional models as functors

The logical functional models are extensions of first order models to vector spaces. The resulting logic

properly extends first order logic, because not only individuals but also sets of individuals have truth

values.

A functor F from the lexical category to the category of finite-dimensional vector spaces over the

field of real numbers is a logical functional model if it maps the sentence type sss to a two-dimensional
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space S = F (sss) with ‘canonical’ basis vectors ⊤ and ⊥, nouns to sums of basic vectors of N = F (nnn),
determiners and attributive adjectives to projectors, verbs and predicative adjectives to ‘predicates’ and

logical words to ‘logical connectives’ .

PREDICATES

Let A = {a1, . . . ,an} be an orthonormal basis of Rn = VA . A linear map p : VA → S is a predicate if

p(a) ∈ {0,⊤,⊥} for any a ∈ A. It is a predicate on A if p(a) 6= 0 for all a ∈ A.

Examples are the linear maps true : VA → S and false : VA → S satisfying

true(ai) =⊤ respectively false(ai) =⊥ for i = 1, . . . ,n .

A linear predicate p ‘counts’ the number of basis vectors for which it takes the value ⊤. Identify any

subset B = {ai1 , . . . ,aim} of m distinct basis vectors with the vector
−→
B = ∑

m
l=1 ail . Let npB be the number

of elements of B for which p returns the value ⊤. Assume that p is a predicate on A. The following holds

COUNTING PROPERTY

p(
−→
B ) = npB⊤+(m−npB)⊥ and ntrueB = |B| . (4)

The counting property gives us a clue about how to generalise truth-values to real vector spaces.

Recall that a vector v is co-linear to a vector w if there is a scalar α 6= 0 such that v = αw

TRUTH-VALUES

Let p be a linear predicate on A and X any vector of VA. We say that

p(X) is true if p(X) is co-linear to ⊤
p(X) is false if p(X) is co-linear to ⊥
p(X) is mixed if p(X) = α⊤+β⊥ for some α 6= 0,β 6= 0

p(X) is mute if p(X) = 0.

The corresponding logic has four truth values, namely ‘true’, ‘false’, ‘mixed’ and ‘mute’. A linear

predicate assigns to a basis vector (individual) either ‘true’ or ‘false’ or ‘mute’. If the latter is the case,

the predicate has no answer to the question whether the individual has the property or not.

Truth-values are invariant under scaling. The vectors X and λX have identical truth-values for λ 6= 0.

Saying ‘p(X) is not true’ means that p(X) is not co-linear to the basis vector ⊤ . This does not imply

that ‘p is false on X’.

LOGICAL CONNECTIVES

The logical connectives are the linear maps not : S → S, and : S⊗S → S, or : S⊗S → S and ifthen :

S⊗S → S determined by their values on the basis vectors z ∈ {⊤⊗⊤,⊤⊗⊥,⊥⊗⊤,⊥⊗⊥} thus

and(z) =

{

⊤ if z =⊤⊗⊤

⊥ else
or(z) =

{

⊥ if z =⊥⊗⊥

⊤ else

ifthen(z) =

{

⊥ if z =⊤⊗⊥

⊤ else
not(⊤) =⊥ not(⊥) =⊤ .

The logical connectives induce a Boolean algebra structure on the set of predicates on A with largest

element true. Let dA : VA →VA⊗VA be the unique linear map satisfying dA(ai) = ai⊗ai for i = 1, . . . ,n
and

〈p,q〉= (p⊗q)◦dA : VA → S⊗S .

Then the linear maps

not◦ p : VA → S, and◦ 〈p,q〉, or◦ 〈p,q〉, ifthen◦ 〈p,q〉 : VA → S
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are predicates on A.

LOGICAL CONSEQUENCE RELATION

A predicate q is said to be a logical consequence of a predicate p if

ifthen◦ 〈p,q〉= true .

The logic introduced above extends first order predicate logic. Indeed, assume that a vector X =

∑
n
i=1 αiai 6= 0 satisfies αi ≥ 0, for i = 1, . . . ,n, and let X = {ai1 , . . .aim} be the subset of basis vectors aik

for which αik 6= 0 . Then the following holds

FUNDAMENTAL PROPERTY

p is true on X ⇔∀x(x ∈ X ⇒ p(x) =⊤)
p is false on X ⇔∀x(x ∈ X ⇒ p(x) =⊥)
p is mixed on X ⇔∃x∃y(x,y ∈ X & p(x) =⊤ & p(y) =⊥) .

(5)

Words are interpreted by vectors with non-negative coordinates in the functional vector models. Hence,

the Fundamental Property applies to all of them.

The linear map not plays a double role in this logic. It is negation when the predicate is applied to a

basis vector. For instance, joe is tall versus joe is not tall. It is the opposite, when applied to an arbitrary

vector, a second order entity. For instance, all boys are tall versus no boys are tall. The latter assertion

implies the negation of the former, but the converse does not hold.

Example 1. Property? : yes/no

Consider a game involving chips that come in different shapes and colours. Each shape is coloured with

one or several of the colours red, yellow and blue. The machine that distributes the chips can recognise

colours, but not shapes. Players who want a certain shape therefore must describe the shape, say triangle,

square, circle, in terms of colour combinations.

A player who believes in functional models observes thirty chips A = {a1, . . . ,a30} extracted from

the machine and represents them by a functional model F , namely

F (nnn) = N =VA

F (triangle) = a1 + · · ·+a10 F (square) = a11 + · · ·+a20 F (circle) = a21 + · · ·+a30

F (new)(ai) = ai if i = 5,7−15,20,25,30 F (new)(ai) = 0 else

F (blue)(ai) =⊤ if i = 16−20 F (blue)(ai) =⊥ else

F (red)(ai) =⊤ if i = 1−9,11−20 F (red)(ai) =⊥ else

F (yellow)(ai) =⊤ if i = 7−15,21 F (yellow)(ai) =⊥ else .

Because of his preference for new chips, he computes the noun phrases new triangles, new squares etc.

F (new◦square) = F (new)◦F (square) = F (new)(a11 + · · ·+a20)
= a11 +a12 +a13 +a14 +a15 +a20

F (new◦triangle) = F (new)◦F (triangle) = F (new)(a1 + · · ·+a10)
= a5 +a7 +a8 +a9 +a10

F (new◦circle) = F (new)◦F (circle) = F (new)(a21 + · · ·+a30)
= a25 +a30

Concentrating on triangles, he finds that the meaning of the sentence ‘No triangles are blue’ computes to

not◦blue◦ inccc2nnn ◦triangles in the lexical category, by (2). Hence, the interpretation of the sentence
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in the functional vector space model F maps logical words to logical connectives and the inequalities to

identities. Therefore F (not) = not and the meaning of the sentence in the model F is

not◦F (blue)◦F (triangle) = not(10 ·⊥) = 10 ·⊤.

The resulting vector is colinear to ⊤, hence the sentence No triangles are blue is true in the model. The

Fundamental Property implies that F (blue)(x) = ⊥ for every basis vector x ∈ F (triangle). The

predicates F (red) and F (yellow) are mixed on F (triangle)

F (red◦triangle) = F (red)(a1 + · · ·+a9)+F (red)(a10) = 9 ·⊤+1 ·⊥
F (yellow◦triangle) = 4 ·⊤+6 ·⊥ .

Example 2. Property? : probability of yes

The player decides to describe the concepts triangle, square, circle by their colours and use the proba-

bility that a chip with colour combination c j has shape p. Therefore he needs the number kp j of chips of

shape p appearing with a given colour combination c j and the number m j of chips having colour com-

bination c j. Using r if the red colour is present and ¬r if the red colour is absent and similarly for the

other colours, he first arranges the chips according to their colour combinations

combination chips number

c1 = r ¬y b

c2 = r y ¬b
c3 = r ¬y ¬b
c4 = ¬r y ¬b
c5 = ¬r ¬y ¬b

C1 = {a16, . . . ,a20}
C2 = {a7,a8,a9}∪{a11, . . . ,a15}
C3 = {a1, . . . ,a6}
C4 = {a10,a21}
C5 = {a22, . . . ,a30}

m1 = 5

m2 = 8

m3 = 6

m4 = 2

m5 = 9 .

number shape combination

ks1 = 5

ks2 = 5

kc4 = 1

kc5 = 9

kt3 = 6

kt2 = 3

kt4 = 1

s = square

s = square

c = circle

c = circle

t = triangle

t = triangle

t = triangle

c1 = r ¬y b

c2 = r y ¬b
c4 = ¬r y ¬b
c5 = ¬r ¬y ¬b
c3 = r ¬y ¬b
c2 = r y ¬b
c4 = ¬r y ¬b

Representing each shape p by the extent to which the primitive properties are true, namely the vector

p = ∑
j

kp j/m j · c j

he obtains

F (square) 7→ square = 5/5 · c1 +5/8 · c2

F (triangle) 7→ triangle = 3/8 · c2 +6/6 · c3 +1/2 · c4

F (circle) 7→ circle = 1/2 · c4 +9/9 · c5 .

It suffices to ask for a red chip that is not yellow and not blue to obtain a triangle.
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5 Conceptual vector semantics

Distributional vector space models represent words by vectors in a finite dimensional space V . Its basis

vectors are assimilated with previously chosen words, e.g. the key words of a thesaurus or the most

frequent words in a set of documents. If the distribution is based on context, the coordinates of a word

vector stand for frequencies of co-occurrences with the respective basis vectors in contexts.

This study takes a more general approach. We assume that the coefficients of the word vectors belong

to the real interval [0,1]. Call concept vector any vector that has its coordinates in [0,1]. The method

by which the coordinates have been obtained is irrelevant in this section. We want to define a logic on

the space V so that we can reason with vectors in a vector space model according to our intuition. For

instance, the vectors assigned to the statements All apples are juicy and No apples are juicy must be

contradictory.

The following definitions refer to an orthonormal basis A = {a1, . . . ,an} of Rn. A vector is Boolean

if its coordinates with respect to A are equal to 0 or 1. The set of Boolean vectors is denoted

BA = {
n

∑
i=1

αiai : αi ∈ {0,1}} .

Denote p fqAA the matrix in the basis A defined by an endomorphism f . The endomorphisms of Rn that

are diagonalisable with respect to A and the projectors among them form the sets

DA = { f : Rn −→ R
n : p fqAA is a diagonal matrix}

PA = { f ∈ DA : f ◦ f = f} .

There is an obvious bijection between vectors of Rn and DA via the correspondence

X =
n

∑
i=1

αiai ⇆ DX =







α1 0
. . .

0 αn







This correspondence is the vector space analogue of the bijection between subsets and predicates in set

theory. Moreover, it maps BA onto PA.

The algebraic connectives below generalise the connectives of predicate logic and coincide with

those of quantum logic for projectors arising in vector space models. They are inspired by a probabilistic

interpretation of truth.

ALGEBRAIC CONNECTIVES

The algebraic connectives are defined for scalars and for arbitrary square matrices thus

negation ¬α = 1−α ¬D = 1−D

conjunction α ∧β = αβ D∧E = DE

disjunction α ∨ β = α +β −αβ D ∨ E = D+E −DE

implication α → β = 1−α +αβ D → E = 1−D+DE .

The algebraic connectives are lifted from scalars to vectors by the conditions

¬X = ¬(∑n
i=1 αiai) = ∑

n
i=1(¬αi)ai

X▽Y = (∑n
i=1 αiai)▽(∑

n
i=1 βiai) = ∑

n
i=1(αi▽βi)ai ,
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where ▽ stands for any of the binary algebraic connectives. It follows that

¬DX = D¬X and DX▽DY = DX▽Y (6)

The two equalities above say that the one-to-one correspondence that identifies a vector X with the

diagonal matrix DX is an isomorphism. Note that the conjunction of two vectors is the same as their

pointwise product and that they relate to composition by the equalities

DX ◦DY = DX ∧DY = DX∧Y = DX⊙Y , DX ◦ 〈Y |= 〈X ∧Y | , (7)

where 〈Z| denotes the matrix of the linear map from I to VA that assigns the vector Z ∈ VA to the basis

vector of I.

Concept vectors are closed under the algebraic connectives, because the interval [0,1] is closed under

the algebraic connectives on scalars. The proof is straightforward. For instance, to show the assertion for

the algebraic disjunction, assume α,β ∈ [0,1]. The inequality 0 ≤ α +β −αβ follows from β −αβ =
β (1−α)≥ 0. The inequality α +β −αβ ≤ 1 follows from 1−α −β +αβ = (1−α)(1−β )≥ 0 .

The algebraic connectives do not define a lattice structure, the algebraic conjunction for instance is

not idempotent unless the involved scalars are equal to 0 or 1. The algebraic connectives have, however,

several properties with a logical flavour, among them the laws of a weak conditional logic in the sense of

(13).

Any real numbers α,β ∈ [0,1] and diagonal matrices D,E ∈ DA with entries in [0,1] satisfy

α → β = 1 ⇐⇒ α = 0 or β = 1 (8)

α → β = 1 ⇐⇒ αβ = α

If α → β = 1 then α ≤ β

D → E = 1 ⇐⇒ E ◦D = D

If D → E = 1 then D ≤ E .

ALGEBRAIC CONSEQUENCE RELATION

The endomorphism defined by E is an algebraic consequence of that defined by D if and only if

D → E = 1 .

PROBABILISTIC CONSEQUENCE RELATION

The endomorphism defined by E is a probabilistic consequence of that defined by D if

D ≤ E .

Projectors stand for properties in quantum logic and geometrical operations define the connectives.

These geometrical operations are introduced in (13) via the range of the involved projectors based on the

fact that for every subspace there is a unique projector which maps the whole space onto the subspace in

question.

GEOMETRICAL CONNECTIVES

Let p,q : Rn −→ R
n be projectors. Then

the geometrical negation ¬p is the unique projector that has range

(¬p)(Rn) = p(Rn)⊥
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the geometrical conjunction p∧q is the unique projector that has range

(p∧q)(Rn) = p(Rn)∩q(Rn)

the geometrical disjunction p∨q is the unique projector that has range

(p∨q)(Rn) = p(Rn)+q(Rn)

the geometrical implication p ⇒ q is the unique projector that has range

(p ⇒ q)(Rn) = {x ∈ R
n : (q◦ p)(x) = p(x)} .

QUANTUM CONSEQUENCE RELATION

Projector q is said to be a geometrical consequence of projector p if and only if

p ⇒ q = 1 .

The definition makes the detour via the subspaces, because there is no obvious algebraic operation

defining the projector. For example, p◦q maps Rn onto the intersection of the image of p and the image

of q, but p◦q is not a projector unless p and q commute. If p and q do not commute, there is no basis in

which they are both diagonalisable. Are we not losing representatives of properties in probability when

replacing the projectors by DA? The answers is that to the contrary, we are gaining representatives at

least as long as we accept the geometric consequence relation.

Proposition 1. If projector q is a geometrical consequence of projector p then there is an orthogonal

basis of Rn consisting of eigenvectors of both p and q .

The geometrical consequence relation and the algebraic consequence relation coincide on projec-

tors. If one of p or q is a geometrical consequence of the other then the geometrical connectives coincide

with the algebraic connectives for p and q.

Proof. (Outline) Clearly, the second statement follows from the first. To see the first statement, assume

that q is a geometrical consequence of p and let A be an orthonormal basis of Rn formed by eigenvectors

of p . The eigenvectors in A left invariant by p are also left invariant by q. Let A1 denote this set and V

be the subspace generated by A1. Then q maps the orthogonal complement of V onto itself whereas p

maps it to 0. Hence any set C of orthonormal eigenvectors of q belonging to V are also eigenvectors of

p. Thus A1 ∪C is a basis of orthonormal eigenvectors for both p and q.

The proposition above also implies that the algebraic connectives can be captured by geometrical

properties, at least on Boolean vectors. In particular, two distinct basis vectors contradict each other.

This raises the question of how to choose the basis vectors so that they represent contradictory properties.

6 Distributional interpretations

Everyday language switches commonly from asserting facts about some real or possible world to up-

dating the concepts intervening in the statements about the facts. This switch is related to the canonical

distribution based on the counting property of predicates. The coefficient of a property, say apple, at a

basis vector, say juicy, is the probability of the event apple given the event juicy. It gives us the extent to

which the property juicy is characteristic for the concept apple.
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The section concludes with sufficient conditions for concept logic to be reflected and predicate logic

to be preserved.

Predicates q1, . . . ,qk on A = {a1, . . . ,an} are said to partition A if for any a ∈ A there is a j for which

q j(a) =⊤ and i 6= l implies qi(a) =⊥ or ql(a) =⊥ for i, l = 1, . . . ,k . Clearly, families of partitioning

predicates are in one-to-one correspondence with set-theoretical partitions {C1, . . . ,Ck} of A given by

C j = {a ∈ A : q j(a) =⊤}, j = 1, . . . ,k .

Let m j = |C j| so that ∑ j m j = n = |A| . Assuming that every individual in A has probability 1/n, the real

number

µ j = m j/n

can be understood as the probability that an arbitrary individual a ∈ A has property q j, for j = 1, . . . ,k.

Choose some orthonormal basis C = {c1, . . . ,ck} of VC = R
k. Think of the basis vectors c1, . . . ,ck

as ‘basic events on A’ or as ‘basic properties’ of the elements of A. The density operator defined by the

diagonal matrix

Dµ =







µ1 0
. . .

0 µk







summarises the first order model consisting of A and the predicates q j, for j = 1, . . . ,k . The composite

of the density operator Dµ with the j’th projector of Rk maps an arbitrary vector ∑
k
i=1 βici to µ jβ j. We

shall define for any property p on A a vector J (p) = ∑
k
i=1 αici ∈VC such that ∑

k
j=1 αiµi = npA/n. Recall

that npA is the number of elements of A satisfying p. If we call p a ‘state’ of the ‘system’ A, q1, . . . ,qk

then npA/n is the probability that the system is in state p.

For any predicate p on A, the integer npC j
is the coefficient of p(

−→
C j) at ⊤. Define

JC(p) =
k

∑
j=1

αp jc j, where αp j =

{

npC j
/m j if m j 6= 0

0 else
, for j = 1, . . . ,k .

The number αp j is the conditional probability that an element has property p given property q j. It follows

from the linearity of p that npA = ∑ j npC j
. Therefore, the probability that an arbitrary element of A has

property p is equal to

npA/n = ∑
j

npC j
/n = ∑

j

(npC j
/m j)(m j/n) = trace(Dµ ◦DJ (p)) = ∑

j

αp jµ j .

The interpretation JC is a one-to-one map from predicates on A to Boolean vectors of VC ≃VA if C

consists of the singleton sets {a1} , . . . ,{an}. If this is the case then αp j = 1 if p(a j) = ⊤ and αp j = 0

otherwise. In the general case, JC is neither one-to-one nor onto the set of vectors with coefficients in

[0,1]. The following Lemma describes the general situation.

Lemma 1. Let p,q : VA → S be any predicates on A, assume that the sets C j are not empty for j = 1, . . . ,k
and that for every j at least one of p or q is constant on C j. Then the following holds

JC(and◦ 〈p,q〉) = JC(p)∧JC(q)
JC(or◦ 〈p,q〉) = JC(p)∨JC(q)

JC(ifthen◦ 〈p,q〉) = JC(p)→ JC(q) .



16

Theorem 1. Suppose that the the non-empty sets C1, . . . ,Ck partition A and that p and q are predicates

on A. Then JC preserves negation

JC(not◦ p) = ¬JC(p)

and reflects the consequence relation

JC(p)→ JC(q) = 1 implies ifthen◦ 〈p,q〉= true (9)

If one of JC(q) and JC(p) is an algebraic/geometrical consequence of the other then JC preserves

the logical connectives, i.e. the algebraic/geometrical connectives preserve the probabilistic interpreta-

tion of concept vectors.

JC(p)∧JC(q) = JC(and◦ 〈p,q〉)
JC(p)∨JC(q) = JC(or◦ 〈p,q〉)

JC(p)→ JC(q) = JC(ifthen◦ 〈p,q〉)
JC(q)→ JC(p) = JC(ifthen◦ 〈q, p〉) .

(10)

Proof. Assume that JC(p)→JC(q) = 1 . Then 1−αp j +αpiαq j = 1 and therefore αp j = 0 or αq j = 1,

for j = 1, . . . ,k . Otherwise said, p maps every element of C j to ⊥ or q maps every element of C j to ⊤.

As every element of A belongs to some C j, we have

ifthen◦ 〈p,q〉(x) =⊤, for all x ∈ A .

The equality ifthen◦ 〈p,q〉= true follows. This completes the proof of (9).

The equalities (10) hold, because the assumptions of the preceding lemma are satisfied.

Negation is preserved exactly when Dµ is positive definite, i.e µ j > 0, for j = 1, . . . ,k. This condition

alone is not sufficient for JC to preserve the binary connectives.

In the particular case where the partition of A is C1 = {a1}, . . . ,Cn = {an}, the hypotheses of Lemma 1

and Theorem 1 are satisfied. Therefore, JA is an isomorphism of the Boolean algebra of predicates on A

onto the Boolean algebra of Boolean vectors BA of VA. Hence in the case where µi = 1/n, for i= 1, . . . ,n,

predicate logic, quantum logic and vector space logic are the same, because the lattice of predicates on

A, the lattice of projectors in PA and the lattice of Boolean vectors BA are isomorphic. Composition

of projectors, conjunction of predicates and pointwise product of vectors are three variants of the same

operation on property words.

In the general case, extend JC from predicates on A to projectors and Boolean vectors of the space

VA. Then Theorem 1 remains valid. Moreover, the composite JC ◦F is a well defined map from

property words to vectors in VC. The induced compact closed structure preserving functor MC : L (B)→
VC given by

MC(wordT ) = JC(F (wordT ))

maps the lexical meaning of a string to the pointwise product of the word vectors, by Equation (3). The

truth-probabilistic relation between the vector model and the logical functional model extends under the

sufficient conditions of Theorem 1 to string of words

MC(word1T1
)⊙·· ·⊙MC(wordnTn

) = JC(F (r ◦ (word1T1
⊗ . . .⊗wordnTn

))).

Theorem 1 also provides a method for checking how appropriate a possible extension of an arbitrary

vector model to other noise words would be. For example, F (are) is the identity map in all functional
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models. Hence F (rocks are grey) =F (grey)◦F (rocks). The unit for ⊙, the vector
−→
1 , is the identity

when we think of ⊙ as composition. Hence we let M (are) =
−→
1 so that in the vector model

M (rocks)⊙M (are)⊙M (grey) = M (rocks)⊙M (grey) = M (rocks)∧M (grey) .

Similarly, if M (and) =
−→
1 then M maps the lexical meaning and ◦ (red⊗ blue) : ppp⊗ ppp → ppp of the

string red and blue to

M (and)⊙M (red)⊙M (blue) = M (red)⊙M (blue) = M (red)∧M (blue) .

Our toy example concerns unary predicates only, for the sake of simplicity, but the definitions apply

to arbitrary predicates. Consider the case of binary predicates. A logical functional model F interprets

a transitive verb as a binary predicate p : VE⊗E ≃VE ⊗VE → S and nouns as vectors in VE . A somewhat

realistic pregroup lexicon lists a transitive verb with type nnnr
subsssnnnℓob and a noun with the types nnnsub and

nnnob. Note that the tensor product of vectors v,w ∈ VA is related to the pointwise product in VE⊗E by the

equality

v⊗w = (v⊗
−→
1 )⊙ (

−→
1 ⊗w)

The passage from F to the vector space model M described above is facilitated by defining

M(noun : nnnsub) = v⊗
−→
1 M(noun : nnnob) =

−→
1 ⊗w ,

where v = J (F (nounnnnsub)) and w = J (F (nounnnnob)).
The fact that the binary operation⊙ is commutative does not imply that meanings are necessarily

commutative, because the model interprets the sentence cats chase dogs by

M (catsnnnsub)⊙M (chasennnsubsssnnnℓob
)⊙M (dogsnnnob

) ,

and dogs chase cats by

M (dogsnnnsub
)⊙M (chasennnr

subsssnnnℓob
)⊙M (catsnnnob) .

7 Logic and the basis of the vector space

Theorem 1 in the preceding section shows that the quality of reasoning in a vector space model depends

essentially on the choice of the basic concepts. The most frequent property words in a document do

not in general constitute a partition. In the world of fruit, there may be things that are juicy and sweet

simultaneously. It is the requirement borrowed from quantum logic that orthogonal vectors must be

contradictory that forces basis vectors to be contradictory.

There is however a general method for transforming an arbitrary choice of properties into a set of

partitioning properties. This method was used in our Example 2.

Let P = {w1, . . . ,wd} be a set of property words in the lexicon. Think of them as primitive properties.

Invent a two-dimensional space Si = V{wi,¬wi} with basis vectors wi and ¬wi, for i = 1, . . . ,d and define

the concept space generated by P as

C(P) = S1 ⊗ . . .⊗Sd .

The basis vectors of C(P) are of the form

c j = c j(1)⊗ . . .⊗ c j(d)
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where c j(i) ∈ {wi,¬wi} , for j = 1, . . . ,2d , i = 1, . . . ,d.

Without loss of generality, we may assume that the functional model interprets the words w1, . . . ,wd

as predicates p1, . . . , pd on a space VA. The basis vectors correspond to the following partition C1, . . . ,C2d

of subsets of A

a ∈C j ⇐⇒ pi(a) =

{

⊤ if c j(i) = wi

⊥ if ¬wi

, for i = 1, . . . ,d .

If we work within the subspace C of C(P) generated by the basis vectors c j for which C j 6= /0, the

interpretation JC reflects concept logic. It preserves predicate logic under the conditions of Theorem 1.

Example 3.

A text describing the world of coloured chips may contain pertinent knowledge about the relation of

shapes and colours. The concept triangle to be characterised by the three primitive properties red, yellow

and blue has the form

triangle = α1c1 + · · ·+α8c8, 0 ≤ αi ≤ 1 .

The truth of the statement No triangle is blue implies that αi = 0 for all four colour combinations ci

involving b (blue) without the negation symbol. Hence

triangle = α2c2 +α3c3 +α4c4 +α5c5 .

Note that the vector triangle is orthogonal to every basis vector that lists the colour blue as present,

namely c1,c6,c7 and c8 . Therefore triangle is orthogonal to the subspace ‘blue’ generated by c1,c6,c7

and c8.

The player wants to find out if there is also a winning strategy for a new square. He computes the

concept corresponding to the predicate F (new) and then the concept newsquare

J (F (new)) = 1/5 · c1 +8/8 · c2 +1/6 · c3 +1/2 · c4 +2/9 · c5

J (F (new◦square)) = 1/5 · c1 +5/8 · c2 = J (F (new))⊙J (F (square)) .

He guesses that the same works for the other shapes. But

J (F (new◦triangle)) = 3/8 · c2 +1/6 · c3 +1/2 · c4 6= J (F (new))⊙J (F (triangle)).

In our particular characterisation of the world of chips the concept ‘new’ does not always interact logi-

cally with the other concepts.

8 Conclusion

The preceding is only an outline how to extend vector space models compositionally to statements that

go beyond the property words. The vector space models depend on the chosen probability on the vector

space standing for the ‘universe of discourse’. Grammar is another parameter of our vector space models.

Different types may result in different meanings. The parameter ‘background knowledge’ is also present

via the choice of the primitive properties leading to the basis vectors of the concept space.

The truth-probabilistic approach to compositional vector space models provides a tool to compare

probabilistic reasoning in vector space models and reasoning with traditional logical tools, depending on

the parameters.
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