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New implementions of predictive alternate analog/RF
test with augmented model redundancy

H. AYARI, F. AZAIS, S. BERNARD, M. COMTE, V. KERZERHO and M. RENOVELL

LIRMM, CNRS/Univ. Montpellier 2
Montpellier, France

Abstract— This paper discusses new implementations of the
predictive alternate test strategy that exploit model redundancy
in order to improve test confidence. The key idea is to build
during the training phase, not only one regression model for each
specification as in the classical implementation, but several
regression models. This redundancy is then used during the
testing phase to identify suspect predictions and remove the
corresponding devices from the alternate test flow. In this paper,
we explore various options for implementing model redundancy,
based on the use of different indirect measurement combinations
and/or different partitions of the training set. The proposed
implementations are evaluated on a real case study for which we
have production test data from 10,000 devices.

Keywords— Test; analog/RF integrated circuits; alternate test,
specification prediction, test confidence

L INTRODUCTION

The alternate test strategy is a promising solution to reduce
the testing costs of analog/RF circuits. The basic idea of this
strategy is to replace standard specification tests by a set of few
alternate measurements obtained with low-cost test equipment,
and to infer the results of specification testing using only these
low-cost indirect measurements. This strategy therefore offers
substantial test cost reduction by relaxing constraints on both
the number and the complexity of required test configurations.

Alternate testing has been widely studied in the literature
for many years [1-10]. Many aspects have been researched,
such as the choice of the learning algorithm, the definition and
optimization of appropriate test stimuli, the processing of
complex signatures, the use of embedded sensors to gather
pertinent information, the exploitation multi-Vdd test
conditions and procedures for the selection of appropriate
indirect measurements. Despite the number of good results
reported in all these works that illustrate the efficiency of the
alternate test strategy, its industrial deployment is still limited,
mainly because of a confidence problem. To cope with this
issue, an interesting approach is to use a two-tier test scheme in
which devices for which the alternate test decision may be
prone to error are identified and directed towards a different
tier where further testing may apply [7]. Different solutions
have been explored for the identification of suspect devices
based either on kernel density estimation [8] or on the use of
redundancy [9,10]. In this paper, we extend our previous work
based on redundancy, and we explore various options for
implementing model redundancy with the objective to
strengthen the confidence in alternate test predictions.

978-3-9815370-2-4/DATE14/©2014 EDAA

II.  ALTERNATE TEST PRINCIPLE

The underlying idea of alternate testing is that process
variations that affect the conventional performance parameters
of the device also affect non-conventional low-cost indirect
parameters. If the correlation between the indirect parameter
space and the performance parameter space can be established,
then specifications may be verified using only the low-cost
indirect signatures. Unfortunately the relation between these
two sets of parameters is complex and cannot be simply
identified with an analytic function. The solution commonly
implemented uses machine-learning algorithms.

The alternate test principle is actually split into two
sequential steps, namely training and production testing phases.
The idea is to learn during the training phase the unknown
dependency between the low-cost indirect parameters and the
conventional test ones. For this, both the specification tests and
the low-cost measurements are performed on a training set of
device instances. The mapping derived from the training phase
is then used during the production testing phase in order to
perform device specification prediction or classification using
only the low-cost indirect measurements. The classical
implementation of predictive alternate testing is illustrated in
Fig. 1.
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Figure 1. Predictive alternate test strategy

III. PREVIOUS WORK AND LIMITATIONS

The alternate test strategy offers interesting perspectives for
a low-cost test solution of analog/RF circuits. However this
strategy is still not widely used in industry today, mainly
because of a problem of confidence. Indeed although
experiments reported in the literature show that good
prediction accuracy can be achieved on various devices, in



particular in terms of average prediction error, there are two
main points that limit the credit one can give to this good
accuracy. First, low average prediction error does not
guarantee low maximal prediction error, which is of crucial
importance regarding the classification step where the
predicted values are compared to the specification limits
promised in the data sheet. Second, evaluation is usually
performed on a small set of validation devices, typically
ranging from few hundreds to one thousand instances, while
the technique aims at predicting values for a large set of
fabricated devices, typically one or several millions.

In our previous work [9], experiments performed on a
Power Amplifier (PA) fabricated by NXP Semiconductors for
which we have production test data from 10,000 devices have
revealed that the large majority of devices can indeed be
accurately predicted using the alternate test strategy, but rather
large prediction errors are observed for some circuits. Although
the number of devices affected by such large prediction error is
very small, i.e. much less than 1%, this is a serious obstacle for
the deployment of the strategy in an industrial context. To cope
with this issue, we have proposed a two-tier test scheme that
includes an additional step during the testing phase in order to
evaluate prediction confidence; if confidence is good, the
device is evaluated using the low-cost alternate test tier
otherwise it is directed to another tier for further testing. As
illustrated in Fig.2, the proposed scheme exploits model
redundancy in order to order to distinguish reliable predictions
from suspect predictions. More precisely, 3 regression models
that involve different combinations of indirect measurements
are built during the training phase for each specification. Then
during the testing phase, prediction confidence is established
by checking the consistency between the values predicted by
the 3 different models, for each specification. For this, the
difference between the predicted values is computed for each
pair of models and checked against a threshold value g,;. If one
(or more) of these differences is superior to gy, the prediction
is considered suspect and the device is directed to the second
tier where further testing may be applied. On the contrary, if all
these differences are inferior to the threshold, the prediction is
considered reliable and device specification is computed as the
mean of the values predicted by the different models.
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Figure 2. Two-tier alternate test scheme using model redundancy

Validation results obtained on the power amplifier case
study have shown that, compared to a classical alternate test
implementation, this scheme permits to achieve Dbetter
performances in terms of both average and maximal prediction
errors for devices evaluated by the alternate test tier while only
a small fraction of the devices are directed to the second tier
therefore incurring low test cost overhead.

The efficiency of the proposed scheme relies on the
assumption that it is very unlikely that regression models built
using different combinations of indirect measurements will
erroneously predict the device performance with the same
error. To verify this assumption, we have conducted a number
of experiments on the power amplifier case study. Available
production test data include 37 low-cost Indirect Measurements
(IMs) based on standard DC tests and two RF performance
measurements, namely the 1dB compression point (CP1) and
3rd order intercept point (IP3). These data are separated in two
distinct sets of 5,000 devices, one used for training and the
other for validation. Based on previous work showing that the
RF performance parameters can be predicted with low average
prediction error using models based only on few IMs [6], we
have built regression models using all possible combinations of
3 IMs (7,770 models for each specification) and we have
retained models with a relatively good accuracy (more than
5,000 models with an average prediction error below 2% for
each specification). We have then evaluated the performances
achieved by the proposed two-tier test scheme regarding CP1
specification when using 3 models randomly chosen among the
retained models, repeating this experiment 100 times. As
expected results show that, compared to the -classical
implementation with a single model, prediction errors are
significantly reduced for all devices evaluated by the alternate
test tier. However we denote one case where the procedure
fails to identify a relatively large prediction error on one device
of the validation set. For this case, the 3 regression models
actually yield to an erroneous performance prediction with a
similar error (difference between each pair of predicted values
is less than 1dBm) for one particular device. The prediction is
therefore not detected as a suspect one and the device is
evaluated using the alternate test tier. So this is one limitation
of the proposed approach.

IV. PROPOSED IMPLEMENTATIONS WITH AUGMENTED
MODEL REDUNDANCY

Despite the use of 3 regression models based on different
IM combinations, it may happen the 3 models erroneously
predict a device performance with a similar error. In this case
the procedure that checks prediction consistency is ineffective
and the device is not directed towards the appropriate test tier.
Our objective is to reinforce redundancy in order to avoid such
situation. More precisely, the idea is to increase the number of
redundant models used the procedure that checks prediction
consistency in order to diminish the probability that all models
give the same erroneous prediction for one device.

A first option to increase redundancy is to continue to
exploit the different indirect measurements and to build, for
each specification, not only 3 but a higher number of
regression models based different IM combinations. However
it is clear that selecting a higher number of different IM



combinations will inevitably imply a higher number of indirect
measurements that have to be performed, which has a direct
impact on the testing costs. This option is therefore not
favored. Instead, our idea is to exploit another attribute of the
data available for the construction of regression models related
to training devices. Indeed, data used for the construction of a
regression model clearly involves two aspects, i.e. indirect
measurements and training devices. Any change in the set of
indirect measurements or in the set of training devices results
in a different model. Up to now, redundant models have been
built by changing the set of considered indirect measurements.
The idea is maintain this feature but also to exploit the other
aspect, i.e. to build redundant models by changing the set of
training devices. In particular, the idea is to split the training
set in a number of partitions and to build regression models for
the different partitions.

Our proposal for the generation of redundant regression
models, for each specification S;, is summarized in Fig. 3. On
one hand 3 combinations of indirect measurements are selected
from the set of available indirect measurements, and on the
other hand the training set is split is 3 distinct partitions. For
each selected IM combination C;, a regression model is then
built considering the different partitions of the training set. A
total number of 9 redundant models are therefore built, which
exploit both different IM combinations and different partitions
of the training set. These 9 models will be used during the
testing phase in order to establish prediction confidence.
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Figure 3. Generation of redundant regression models

We have actually explored different implementations of the
procedure that Checks Prediction Consistency (CPC). In the
first version, consistency between the values predicted by the 9
models is checked in a single step, i.e. the difference between
the predicted values is computed for each pair of models and
prediction is considered reliable only if all these 36 differences
are inferior to a given threshold gg;. In the case, the final
predicted value is computed as the mean of the 9 predicted
values. In the two other versions, prediction consistency is
verified is two steps. In the first step, consistency between
predicted values is checked considering models 3 by 3
according to the used training set partition in one version or the
used IM combination in the other version; 3 intermediate
predicted values can then computed. In the second step,
consistency between these 3 intermediate values is checked
and the final predicted value is computed as the mean of these
3 values.

V. EXPERIMENTAL RESULTS

A number of experiments have been performed on the PA
case study to validate the proposed strategy. First, we have
evaluated the proposed implementations considering the
particular example discussed in section III. Results are
summarized in Table I that reports both average and maximal
prediction errors observed for the different implementations.
Note that implementations with augmented model redundancy
involve the partitioning of the training set in 3 disjoint subsets.
Although the training set comprises a rather large number of
devices, results are quite sensitive to the repartition of training
devices in the different subsets. Consequently, we create
several random splits of the training devices in 3 partitions and
we report minimum, mean and maximum values observed over
all runs (100 runs in this experiment). Finally for the sake of
comparison, we also report results obtained when using a
reduced-cost implementation that exploits model redundancy
based only on different training set partitions (a single IM
combination is considered and only 3 redundant models are
built using the 3 different partitions).

From the results of table I, it can be observed that the 3
versions of the new implementation of augmented model
redundancy have equivalent performances. The efficiency of
these new implementations is clearly demonstrated, since they
permit to reduce average and maximal prediction errors
compared to the initial implementation. The improvement is
particularly significant regarding the maximal prediction error
that reduces from 4.08dBm with the initial implementation
down to less than 1dBm. Also it can be observed that the cost-
reduced implementation that exploits model redundancy based
only on different training set partitions offers degraded
performances compared to other implementations.

TABLE L. AVERAGE AND MAXIMAL PREDICTION ERRORS FOR THE
PARTICULAR CP1 PREDICTION EXAMPLE OF SECTION III
Initial New Implementations Cost-
Implem - - - reduced
pl€Mm. | Version A | Version B | Version C Implem.
" min 1.17 % 1.17 % 1.17 % 1.65 %
G |mean| 128% 1.18 % 1.18 % 1.18% 1.71 %
max 1.19 % 1.19% 1.20 % 1.76 %
. | min 0.77dBm | 0.77dBm | 0.78dBm | 2.03 dBm
(;é mean | 4.08dBm | 0.81 dBm | 0.81 dBm | 0.82dBm | 3.35 dBm
max 0.96dBm | 0.96dBm | 0.96dBm | 5.09 dBm

Results on the previous CP1 prediction example are
obtained considering 3 particular IM combinations. To further
corroborate these results, we have conducted a large campaign
of experiments varying the IM combinations used to build the
redundant models. More precisely for each specification, we
perform 50 random selections of 3 different IM combinations
among all the combinations corresponding to models with a
satisfying accuracy. For each 3 selected IM combinations,
redundant models are then built considering 100 random splits
of the training devices in 3 partitions. Implementations with
augmented model redundancy are therefore evaluated over
5,000 different cases of generated redundant models. Results
are summarized in Tables II and III for CP1 and IP3
predictions respectively.



TABLE II. CP1 PREDICTION RESULTS
COMPARISON OF THE DIFFERENT IMPLEMENTATIONS
Initial New Implementations Cost-
Implem - - - reduced
plem. | Version A | Version B | Version C Implem.
min 0.69 % 0.66 % 0.66 % 0.66 % 0.64 %
w |mean | 0.97 % 0.96 % 0.96 % 0.97 % 1.11 %
< | max 1.28 % 1.25 % 1.25 % 1.26 % 5.03 %
c 0.16 % 0.15% 0.15% 0.15% 031 %
min | 0.70dBm | 0.52dBm | 0.53dBm | 0.53dBm | 0.66 dBm
% |[mean| 1.06 dBm | 091 dBm | 0.93dBm | 0.95dBm | 1.57 dBm
¢ | max | 408dBm | 2.16dBm | 2.17dBm | 2.16 dBm | 38.49 dBm
c 0.42dBm | 0.28dBm | 0.29dBm | 0.29dBm | 0.78 dBm
TABLE III. IP3 PREDICTION RESULTS
COMPARISON OF THE DIFFERENT IMPLEMENTATIONS
Initial New Implementations Cost-
1 reduced
Implem. | vergion A | Version B | Version C Implem.
min 0.87 % 0.85 % 0.85 % 0.85 % 091 %
» |mean| 1.06 % 1.06 % 1.06 % 1.06 % 1.17 %
& | max 1.31% 1.41 % 1.43 % 1.44 % 1.58 %
c 0.07 % 0.07 % 0.07 % 0.07 % 0.09 %
min | 1.01dBm | 0.97dBm | 0.97dBm | 0.97dBm | 1.17 dBm
%z |mean| 1.77dBm | 1.51dBm | 1.55dBm | 1.59dBm | 2.93 dBm
& | max | 7.35dBm | 447dBm | 628dBm | 6.50 dBm | 14.66 dBm
o 0.96dBm | 0.50dBm | 0.53dBm | 0.56dBm | 1.74 dBm
These results confirm the superiority of the new

implementations with augmented model redundancy. Indeed
although impact on the average prediction error is not
significant, there is a substantial improvement regarding the
maximal prediction error, with a reduction not only of the
mean and maximum values observed over the different cases of
generated redundant models, but also of the standard deviation.
In particular, this standard deviation reduces from 0.42dBm
with the initial implementation down to 0.28dBm for CP1
specification, and from 0.96dBm down to 0.5dBm for IP3
specification. This constitutes an important improvement of the
robustness of the technique. Regarding comparison between
the performances offered by the 3 versions of the new
implementation, they are equivalent for CP1 specification, but
version A leads to slightly better results for IP3 specification;
this implementation may therefore be preferred. Regarding the
cost-reduced implementation that exploit model redundancy
based only on different training set partitions, this solution
should not be retained as it presents degraded performances
compared to other implementations.

Finally we have compared the different implementations
regarding the percentage of circuits for which suspect
predictions are identified. Results are summarized in Fig. 4. As
expected, implementations with augmented model redundancy
lead to a higher number of suspect predictions compared to
implementations with model redundancy based only on either
different IM combinations or different training set partitions,
both for CP1 and IP3 specifications. However the percentage
remains extremely low, less than 1.5%, which means that the
new implementations permits to improve prediction results
while maintaining a low test cost overhead.
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VI. CONCLUSION

In this paper we have proposed new implementations of the
predictive alternate test strategy that exploit model redundancy.
These new implementations are based on redundant models
that involve not only different combinations of indirect
measurements as initially proposed, but also different partitions
of the training set. Combining these two aspects permits the
generation of a higher number of redundant models while
maintaining the same cost, i.e. the same number of indirect
measurements to be performed. The different implementations
have been evaluated on a real case study for which we have
production test data from 10,000 devices. Results have shown
that implementations with reinforced model redundancy permit
to reduce prediction errors of circuits evaluated by the alternate
test tier, while maintaining a very small number of devices
directed to a second tier for further testing.
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