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Abstract— This paper discusses new implementations of the 

predictive alternate test strategy that exploit model redundancy 

in order to improve test confidence. The key idea is to build 

during the training phase, not only one regression model for each 

specification as in the classical implementation, but several 

regression models. This redundancy is then used during the 

testing phase to identify suspect predictions and remove the 

corresponding devices from the alternate test flow. In this paper, 

we explore various options for implementing model redundancy, 

based on the use of different indirect measurement combinations 

and/or different partitions of the training set. The proposed 

implementations are evaluated on a real case study for which we 

have production test data from 10,000 devices.  

Keywords— Test; analog/RF integrated circuits; alternate test, 

specification prediction, test confidence  

I. INTRODUCTION  

The alternate test strategy is a promising solution to reduce 
the testing costs of analog/RF circuits. The basic idea of this 
strategy is to replace standard specification tests by a set of few 
alternate measurements obtained with low-cost test equipment, 
and to infer the results of specification testing using only these 
low-cost indirect measurements. This strategy therefore offers 
substantial test cost reduction by relaxing constraints on both 
the number and the complexity of required test configurations.  

Alternate testing has been widely studied in the literature 
for many years [1-10]. Many aspects have been researched, 
such as the choice of the learning algorithm, the definition and 
optimization of appropriate test stimuli, the processing of 
complex signatures, the use of embedded sensors to gather 
pertinent information, the exploitation multi-Vdd test 
conditions and procedures for the selection of appropriate 
indirect measurements. Despite the number of good results 
reported in all these works that illustrate the efficiency of the 
alternate test strategy, its industrial deployment is still limited, 
mainly because of a confidence problem. To cope with this 
issue, an interesting approach is to use a two-tier test scheme in 
which devices for which the alternate test decision may be 
prone to error are identified and directed towards a different 
tier where further testing may apply [7]. Different solutions 
have been explored for the identification of suspect devices 
based either on kernel density estimation [8] or on the use of 
redundancy [9,10]. In this paper, we extend our previous work 
based on redundancy, and we explore various options for 
implementing model redundancy with the objective to 
strengthen the confidence in alternate test predictions. 

II. ALTERNATE TEST PRINCIPLE 

The underlying idea of alternate testing is that process 
variations that affect the conventional performance parameters 
of the device also affect non-conventional low-cost indirect 
parameters. If the correlation between the indirect parameter 
space and the performance parameter space can be established, 
then specifications may be verified using only the low-cost 
indirect signatures. Unfortunately the relation between these 
two sets of parameters is complex and cannot be simply 
identified with an analytic function. The solution commonly 
implemented uses machine-learning algorithms. 

The alternate test principle is actually split into two 
sequential steps, namely training and production testing phases. 
The idea is to learn during the training phase the unknown 
dependency between the low-cost indirect parameters and the 
conventional test ones. For this, both the specification tests and 
the low-cost measurements are performed on a training set of 
device instances. The mapping derived from the training phase 
is then used during the production testing phase in order to 
perform device specification prediction or classification using 
only the low-cost indirect measurements. The classical 
implementation of predictive alternate testing is illustrated in 
Fig. 1.   

 

Figure 1. Predictive alternate test strategy 

III. PREVIOUS WORK AND LIMITATIONS 

The alternate test strategy offers interesting perspectives for 
a low-cost test solution of analog/RF circuits. However this 
strategy is still not widely used in industry today, mainly 
because of a problem of confidence. Indeed although 
experiments reported in the literature show that good 
prediction accuracy can be achieved on various devices, in 
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particular in terms of average prediction error, there are two 
main points that limit the credit one can give to this good 
accuracy. First, low average prediction error does not 
guarantee low maximal prediction error, which is of crucial 
importance regarding the classification step where the 
predicted values are compared to the specification limits 
promised in the data sheet. Second, evaluation is usually 
performed on a small set of validation devices, typically 
ranging from few hundreds to one thousand instances, while 
the technique aims at predicting values for a large set of 
fabricated devices, typically one or several millions.  

In our previous work [9], experiments performed on a 
Power Amplifier (PA) fabricated by NXP Semiconductors for 
which we have production test data from 10,000 devices have 
revealed that the large majority of devices can indeed be 
accurately predicted using the alternate test strategy, but rather 
large prediction errors are observed for some circuits. Although 
the number of devices affected by such large prediction error is 
very small, i.e. much less than 1%, this is a serious obstacle for 
the deployment of the strategy in an industrial context. To cope 
with this issue, we have proposed a two-tier test scheme that 
includes an additional step during the testing phase in order to 
evaluate prediction confidence; if confidence is good, the 
device is evaluated using the low-cost alternate test tier 
otherwise it is directed to another tier for further testing. As 
illustrated in Fig. 2, the proposed scheme exploits model 
redundancy in order to order to distinguish reliable predictions 
from suspect predictions. More precisely, 3 regression models 
that involve different combinations of indirect measurements 
are built during the training phase for each specification. Then 
during the testing phase, prediction confidence is established 
by checking the consistency between the values predicted by 
the 3 different models, for each specification. For this, the 
difference between the predicted values is computed for each 

pair of models and checked against a threshold value thi. If one 
(or more) of these differences is superior to εthi, the prediction 
is considered suspect and the device is directed to the second 
tier where further testing may be applied. On the contrary, if all 
these differences are inferior to the threshold, the prediction is 
considered reliable and device specification is computed as the 
mean of the values predicted by the different models.  

 

Figure 2. Two-tier alternate test scheme using model redundancy 

Validation results obtained on the power amplifier case 
study have shown that, compared to a classical alternate test 
implementation, this scheme permits to achieve better 
performances in terms of both average and maximal prediction 
errors for devices evaluated by the alternate test tier while only 
a small fraction of the devices are directed to the second tier 
therefore incurring low test cost overhead.  

The efficiency of the proposed scheme relies on the 
assumption that it is very unlikely that regression models built 
using different combinations of indirect measurements will 
erroneously predict the device performance with the same 
error. To verify this assumption, we have conducted a number 
of experiments on the power amplifier case study. Available 
production test data include 37 low-cost Indirect Measurements 
(IMs) based on standard DC tests and two RF performance 
measurements, namely the 1dB compression point (CP1) and 
3rd order intercept point (IP3). These data are separated in two 
distinct sets of 5,000 devices, one used for training and the 
other for validation. Based on previous work showing that the 
RF performance parameters can be predicted with low average 
prediction error using models based only on few IMs [6], we 
have built regression models using all possible combinations of 
3 IMs (7,770 models for each specification) and we have 
retained models with a relatively good accuracy (more than 
5,000 models with an average prediction error below 2% for 
each specification). We have then evaluated the performances 
achieved by the proposed two-tier test scheme regarding CP1 
specification when using 3 models randomly chosen among the 
retained models, repeating this experiment 100 times. As 
expected results show that, compared to the classical 
implementation with a single model, prediction errors are 
significantly reduced for all devices evaluated by the alternate 
test tier. However we denote one case where the procedure 
fails to identify a relatively large prediction error on one device 
of the validation set. For this case, the 3 regression models 
actually yield to an erroneous performance prediction with a 
similar error (difference between each pair of predicted values 
is less than 1dBm) for one particular device. The prediction is 
therefore not detected as a suspect one and the device is 
evaluated using the alternate test tier. So this is one limitation 
of the proposed approach. 

IV. PROPOSED IMPLEMENTATIONS WITH AUGMENTED 

MODEL REDUNDANCY 

Despite the use of 3 regression models based on different 
IM combinations, it may happen the 3 models erroneously 
predict a device performance with a similar error. In this case 
the procedure that checks prediction consistency is ineffective 
and the device is not directed towards the appropriate test tier. 
Our objective is to reinforce redundancy in order to avoid such 
situation. More precisely, the idea is to increase the number of 
redundant models used the procedure that checks prediction 
consistency in order to diminish the probability that all models 
give the same erroneous prediction for one device. 

A first option to increase redundancy is to continue to 
exploit the different indirect measurements and to build, for 
each specification, not only 3 but a higher number of 
regression models based different IM combinations. However 
it is clear that selecting a higher number of different IM 
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TABLE II.  CP1 PREDICTION RESULTS 
COMPARISON OF THE DIFFERENT IMPLEMENTATIONS  

 Initial 

Implem. 

New Implementations Cost-

reduced 

Implem. Version A Version B Version C 

 avg
 

min 

mean 

max 

0.69 % 

0.97 % 

1.28 % 

0.66 % 

0.96 % 

1.25 % 

0.66 % 

0.96 % 

1.25 % 

0.66 % 

0.97 % 

1.26 % 

0.64 % 

1.11 % 

5.03 % 

 0.16 % 0.15 % 0.15 % 0.15 % 0.31 % 

 max
 

min 

mean 

max 

0.70 dBm 

1.06 dBm 

4.08 dBm 

0.52 dBm 

0.91 dBm 

2.16 dBm 

0.53 dBm 

0.93 dBm 

2.17 dBm 

0.53 dBm 

0.95 dBm 

2.16 dBm 

0.66 dBm

1.57 dBm

38.49 dBm

 0.42 dBm 0.28 dBm 0.29 dBm 0.29 dBm 0.78 dBm 

TABLE III.  IP3 PREDICTION RESULTS 
COMPARISON OF THE DIFFERENT IMPLEMENTATIONS 

 Initial 

Implem. 

New Implementations Cost-

reduced 

Implem. Version A Version B Version C 

 avg
 

min 

mean 

max 

0.87 % 

1.06 % 

1.31 % 

0.85 % 

1.06 % 

1.41 % 

0.85 % 

1.06 % 

1.43 % 

0.85 % 

1.06 % 

1.44 % 

0.91 % 

1.17 % 

1.58 % 

 0.07 % 0.07 % 0.07 % 0.07 % 0.09 % 

 max
 

min 

mean 

max 

1.01 dBm 

1.77 dBm 

7.35 dBm 

0.97 dBm 

1.51 dBm 

4.47 dBm 

0.97 dBm 

1.55 dBm 

6.28 dBm 

0.97 dBm 

1.59 dBm 

6.50 dBm 

1.17 dBm

2.93 dBm

14.66 dBm

 0.96 dBm 0.50 dBm 0.53 dBm 0.56 dBm 1.74 dBm 

 
These results confirm the superiority of the new 

implementations with augmented model redundancy. Indeed 
although impact on the average prediction error is not 
significant, there is a substantial improvement regarding the 
maximal prediction error, with a reduction not only of the 
mean and maximum values observed over the different cases of 
generated redundant models, but also of the standard deviation. 
In particular, this standard deviation reduces from 0.42dBm 
with the initial implementation down to 0.28dBm for CP1 
specification, and from 0.96dBm down to 0.5dBm for IP3 
specification. This constitutes an important improvement of the 
robustness of the technique. Regarding comparison between 
the performances offered by the 3 versions of the new 
implementation, they are equivalent for CP1 specification, but 
version A leads to slightly better results for IP3 specification; 
this implementation may therefore be preferred. Regarding the 
cost-reduced implementation that exploit model redundancy 
based only on different training set partitions, this solution 
should not be retained as it presents degraded performances 
compared to other implementations. 

Finally we have compared the different implementations 
regarding the percentage of circuits for which suspect 
predictions are identified. Results are summarized in Fig. 4. As 
expected, implementations with augmented model redundancy 
lead to a higher number of suspect predictions compared to 
implementations with model redundancy based only on either 
different IM combinations or different training set partitions, 
both for CP1 and IP3 specifications. However the percentage 
remains extremely low, less than 1.5%, which means that the 
new implementations permits to improve prediction results 
while maintaining a low test cost overhead.  

 

Figure 4. Comparison of different implementations in tems of  

percentage of suspect predictions 

VI. CONCLUSION 

In this paper we have proposed new implementations of the 
predictive alternate test strategy that exploit model redundancy. 
These new implementations are based on redundant models 
that involve not only different combinations of indirect 
measurements as initially proposed, but also different partitions 
of the training set. Combining these two aspects permits the 
generation of a higher number of redundant models while 
maintaining the same cost, i.e. the same number of indirect 
measurements to be performed. The different implementations 
have been evaluated on a real case study for which we have 
production test data from 10,000 devices. Results have shown 
that implementations with reinforced model redundancy permit 
to reduce prediction errors of circuits evaluated by the alternate 
test tier, while maintaining a very small number of devices 
directed to a second tier for further testing.  
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