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Abstract: In this paper we present a new theory of possibility for correspondence search. The
proposed theory is based on fuzzy modeling of stereoscopic constraints. It defines a possibility
of matching and a possibility of unmatching for each pair of pixels from the two stereo images.
We estimate the initial disparities using a confidence degree calculated using the proposed
possibilities. An adaptive support window, whose weights are computed using initial disparities,
is used in a SAD aggregation function to calculate final disparity map. Experimental results
and comparison with other algorithms are presented to demonstrate the performance of our

approach.
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1. INTRODUCTION

Correspondence search is the most important and costing
task of stereo vision. Classical correlation based techniques
suffer from weakness because of two main problems. The
first problem is the choice of the support window size. In
one hand, a small size of the window increases the influence
of the noise. In the other hand, a large window covers
regions with different depths and gives unreliable support.
For this reason, unlike the existing methods that try to find
an optimal size of the support window, we adjusted the
support-weight of each pixel in a given support window.
The amount of the support that the central pixel receives
from a pixel in the support window should depend on the
distance separating the two pixels and the local variation
of disparity. There have been some researches for adap-
tive support window (Hoff & Narendra, 1989) (Panton,
1978), (Luo et al. 2008), (Bekaert et al. 2007), (Sizintsev
& Wildes, 2010), (Nalpantidis & Gasteratos, 2010). The
difficulty of a locally adaptive support weight approach
based on disparity variation lies in the difficulty of eval-
uating and using disparity variances since the disparity
is what we intend to calculate (Levine et al. 1973). The
second problem is that area based approaches are generally
reliable only when the following criteria are satisfied: The
lighting source must ideally be a point source at infinity;
the surfaces in the scene should ideally be Lambertian;
the amount of figural dissimilarity or distortion between

the views is small. In many situations where stereo is
applied, idealized environments and light sources cannot
be assumed. In these situations, classical correlation met-
rics are not sufficient to have reliable matches. The use
of imprecise techniques such as fuzzy logic can solve this
problem (Nieradka & Butkiewicz, 2009), (Medeiros et al.
2010), (Ghazouani et al. 2010). In this paper we propose a
theory of possibility to estimate initial disparities. We use
the estimated disparities to compute the support-weights
of a pixel in a given support window. We use this window in
a SAD aggregation function to search for correspondences.

2. THE THEORY OF POSSIBILITY

In this section we propose reliable fuzzy metrics based on
stereoscopic constraints to be used for the estimation of
initial disparities. Without loss of generality, we assume
that stereo pairs are rectified to have the baseline parallel
to the Y-axis and the disparity is supposed to be only
along the Y-coordinate.

We define a 3D disparity space whose dimensions are r, ¢
and d respectively to designate row, column and disparity.
Each element (r,¢,d) of the disparity space is projected
to pixel (r,c) on the reference image and the pixel (r,c+
d) on the matching image. Element (r,c,d) refers to the
pairing of the pixel (r,¢) in the reference image and the
pixel (7, ¢+ d) in the matching image and L(r,c,d) is the
associated matching cost.
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2.1 Possibility of Matching

Similarity constraint states that the projections of the
same physical point have comparable light intensities. The
major part of stereo matching approaches use this con-
straint in a static correlation criterion that calculates the
difference of illumination between two areas of the stereo
images. This correlation measure, based on numerical dis-
tances of intensities, is particularly disturbed by changes
caused by non ergodic phenomena, such as the change of
the point of view, partial occlusion, sampling, scanning, ...
These changes can be hardly modeled by simple normal
laws. In our approach, we propose to model the similarity
constraint by a fuzzy measure, which is more robust to
noise and changes. This measure expresses the degree of
membership of two pixels to a same grey class. We define a
grey scale classification of pixels. Three classes are defined;
black, white and average pixels. Membership functions
of these grey classes (given by equation 1) are Gaussian
centred in 0, 127.5 and 255.
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I(m) is the intensity at the pixel m, c.qss and oeqss are
respectively the center and the standard deviation of the
class under consideration. Based on this classification, we
give the following proposition.

Proposition 1. The pairing of the pixels m; and mo, from
the two stereo images, is possible if the two pixels belong
to the same grey class. That means (m; is black AND ms
is black) OR (m; is white AND mg is white) OR (m; is
average AND my is average).

Definition Considering two pixels m; and mo from the
two stereo images, we define II(my, m2) as the possibility
of matching between the two pixels by expressing propo-
sition 1 using classical fuzzy logic operators. II(m;, mo)
is a measure of co-membership to a same grey class. It
reflects how much it is possible to have m; and mo as
corresponding pixels. TI(m;,ms) is given by (2).

min(atack (M1), fotack (M2)),

H(ml, mg) = max (min(uavemge(ml)a Naverage(m2))a ) (2)

min(pwnite (1), fwhite(M2))

Lelass(m) is the degree of membership of the pixel m to
the class under consideration. The possibility of matching
ranges between 0 and 1.

Notation Thereafter, we will use the notation: II(r, ¢, d) =
II(my, me) with m; = (r,¢) and mg = (r,c + d).

2.2 Possibility of Unmatching

Supposing that the observed objects are opaque and the
disparity is not significant, the uniqueness constraint stip-
ulates that an object whose projection is a pixel on the first
image has a projection that is a pixel in the second image.
Using such a constraint reduces the number of potential
matches of a pixel in the reference image. This constraint
can be used only to modify an initial pairing distribution to
have a new distribution with less violation to the unique-
ness constraint. Referring to the possibilities of matching,
a match (r, ¢, d) violates the uniqueness constraint if there
is a match (r,¢,d") with d’ # d and I(r, ¢,d) < U(r,c,d’).

Definition Considering two pixels my = (r,¢) and mg =
(r,c+d) from the two stereo images, we define Il (r, ¢, d)
as a possibility of unmatching relatively to the uniqueness
constraint. Iy (r, ¢, d) reflects how much the pairing of the
pixel (r,c) in the reference image and the pixel (r,c + d)
in the matching image violates the uniqueness constraint.
Iy (r, ¢, d) is given by (3).

Hy(r,c,d) = 3};5 {I(r,c,d") > TI(r,c,d)} (3)

Under some conditions defined in (Faugeras, 1993), the
ordering of pixels is preserved across the images. This
constraint can be formulated by the following proposition.

Proposition 2. Considering two pixels m; and mo, respec-
tively from the reference and the matching image. If m;
and mo are projections of the same physical point M then
all the pixels on the right (respectively left) of the pixel
mq are on the right (respectively left) of the pixel mao.

By extension we can express the dual negative proposition
(proposition 3).

Proposition 3. Considering two pixels m; and mo, respec-
tively from the reference and the matching image. If m;
and mo are projections of the same physical point M then
all the pixels on the right (respectively left) of the pixel
mican not be on the left (respectively right) of the pixel
mao.

In other words, a match (r,c,d) violates the ordering
constraint if there is a match (r, ¢, d’) that verifies : (¢ < ¢/
AND c+d>cd +d)OR (c>c ANDc+d<cd +d)
AND (I(r,c,d) < II(r,c’,d’) ). Based on this analysis, we
give the following definition.

Definition Considering two pixels my = (r,¢) and mg =
(r,c+d) from the two stereo images, we define Il (r, ¢, d)
as the possibility of unmatching relatively to the ordering
constraint. IIp(r, ¢, d) reflects how much the pairing of the
pixel (r,c) in the reference image and the pixel (r,c + d)
in the matching image violates the ordering constraint.
Mo (r, e, d) is given by (4).

sup {H(r7c/7d/)>l_[(r,c7d)},
d>c
— d <d—(d—¢)
HO (7", & d) = max sup {H(T,c’,d/)>H(r,c,d)}
d<c

d>d+(c—¢)

Definition We define a global unmatching possibility by
merging unmatching possibilities relatively to uniqueness
constraint and ordering constraint. Global unmatching
possibility, given by (5), expresses how much the pairing
of the pixel (r,c¢) in the reference image and the pixel
(r,c+ d) in the matching image violates the stereoscopic
constraints.

II(r, ¢, d) = max(Ily (r, ¢, d), o (r, ¢, d)) (5)
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3. THE PROPOSED CORRESPONDENCE SEARCH
ALGORITHM

3.1 Initial Disparities

Using matching possibility and unmatching possibility we
attribute to each pairing (r,c,d) a matching confidence
degree defined by (6).

_ I(r,c,d)
7(r,c,d) = 1o o0 n /\Hm (6)

Where X is a scaling constant. The matching confidence
degree 7(r,c,d) expresses how much we can trust the
pairing of the pixels (r,¢) and (r,c¢ + d) regarding the
chromatic values of the two pixels and the stereoscopic
constraints satisfied by their pairing. This confidence de-
gree will be used as initial matching cost to estimate initial
disparities. The best disparity is selected by comparing
the confidence degrees across all disparities. The disparity
of the maximum confidence degree is defined as the best
disparity.

Notation Thereafter, we will use the notation dy(r, ¢) for
the initial disparity of the pixel (r, ¢) determined using the
defined confidence degrees. The initial disparity function
associates to each pixel (r,c) in the reference image its
corresponding pixel (r,c+dy(r, ¢)) in the matching image.

3.2 Adaptive support-weights

The choice of the support window is a crux of corre-
spondence search. For acquiring more exact results, sev-
eral works have used an adaptive support-weight win-
dow (Yoon & Kweon, 2006), (Veksler, 2002), (Gu et al.
2008), (Boykov et al. 1998), (Yang et al. 2009), (Zhai
et al. 2009), (Mattoccia, 2010). In our implementation,
we use a support-weight approach in order to increase
the reliability of matching. In this approach, based on
the coherence principle used by Pradzny (Pardzny, 1985),
we examine candidate matches by calculating how much
support they receive from their local neighbourhood. The
coherence principle states that neighboring disparities, if
corresponding to the same 3D object, should be similar.
Two neighboring pixels with similar disparity should sup-
port each other, while pixels with dissimilar disparities
should not inhibit with each other. To incorporate this
idea into a stereo matching algorithm we define a support-
weight function based on distances and initial disparities.

UJ(Z ]): 1 exp(_|d0(rac)_dO(r+i7c+.j)|
’ N 2m\/i2 + 52 202 (i% + 5?)

Where w(i,7) is the amount of the support that central
pixel (r,c) of the support window receives from the pixel

(r+i,c+j). \/i® + j2 is the Euclidean distance between the
two pixels. do(r, ¢)—do(r+1, c+j) is the difference between
initial disparities at the two pixels. w(i,7) is inversely
proportional to the difference of disparities. More distant
pixels in the support window exert less influence in the
final disparities calculus; and the more distant the two
points are, the less seriously their difference of disparities
is considered.
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Fig. 1. Empirical fitting of the membership function stan-
dard deviations.

3.3 Final Disparities and occlusion handling

The absolute difference of intensity, which is given by
(8), is used as the matching cost computation. I,.(r,c)
is the pixel intensity at (r,c) in the reference image and
I,,,(r,c+d) is the intensity of pixel shifted in horizontal by
the disparity value, d, from (r,c) in the matching image.
A 2w-sized window with adaptive support weights, as
already described, is used to calculate the aggregation cost
C(r,c,d) given by (9).

Co(r,c,d) = |I.(r,c) — Iy (r,c + d)]| (8)

i=w J=w

SN wli j)Colr +iyc+ 4,d)(9)

i=—w j=—w

C(r,c,d) = L

T dw? s

The final matching cost is given by (10). For the final
disparity computation step, the best disparity is selected
by comparing the final costs across all disparities. In our
approach, we used a winner-take-all method (Bekaert et
al. 2007) to find the disparity at each pixel position. The
disparity of the maximum final cost is defined as the best
disparity. The disparity selected for every pixel position
defines the final disparity map.

[r(r,c,d)]"

L(r,c,d) = Clred)

(10)

In our approach, we explicitly detect occluded areas by
examining final matching costs. The proposed confidence
degree used in the final matching cost allows discrimina-
tion of false correspondences. Having the final matching
costs, we can determine if a pixel is occluded by finding the
element with the greatest matching cost along its line of
sight. If the maximum matching value is below a threshold,
the pixel is labelled as occluded.

4. EXPERIMENTAL RESULTS

For all the experiments, we set opjack = Twhite = 7-071 and

)(7Xavemge = 2.236 (1), A = 0.45 and o = 0.6 (10). These

alues were empirically determined. Fig. 1 shows fuzzy
membership functions of the defined classes. Using the
defined classification, we can have significant values of the
matching possibilities. As shown in Fig. 1, II(ml,m2) =
0.9 and II(m1,m3) = 0.26. Fig. 2 shows different initial
disparity maps for Tsukuba stereo pair using confidence
degrees with different values of the scaling constant A\ used
in (6). Best initial disparity map is found using A = 1.

Fig. 3 (a) and (b) show a pair of synthetic images with
random noise. Fig. 3 (c¢) is the theoretical disparity map.
Fig. 4 Shows disparity maps generated by our algorithm
using 4 x 4, 12 x 12, 18 x 18 and 24 x 24 local support
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Fig. 2. Initial disparity maps found using (from the left to
the right) A=0.5,A=1and A =0.5

©

Fig. 3. Synthetic scene, 50% density (a) reference image,
(b) right image, (c) true disparity, black areas are
occluded

Fig. 4. Disparity maps found using (from the left to the
right) 4 x4, 12x 12, 18 x 18, and 24 x 24 local support,
black areas are detected occlusions.

window. The best disparity map is found using 12x12 local
support window. For all next experiments we set A = 1 and
use a 12 x 12 local support window (w = 6).

To evaluate the performance of our stereo matching ap-
proach, we used a test bed proposed by Shcarstein and
Szeliski (Scharstein & Szeliski, 2002) and updated by Yoon
et al. in (Yoon & Kweon, 2005). We evaluated the proposed
approach on these test data sets: Tsukuba, Venus, Saw-
tooth and Map. The error rate, defined by Scharstein and
Szeliski in (Scharstein & Szeliski, 2002), measures the per-
centage of pixels in which the absolute difference between
the result and the theoretical disparity map is greater
than 1 pixel. It provides a useful qualitative measure for
performance comparison of different algorithms.

Fig. 5 shows the results of stereo matching for the four
standard stereo images. For comparison, we include the
results of window based methods. The results show that
our algorithm achieves a good performance in conven-
tionally challenging regions such as untextured and dis-
continued regions. This is due to the efficient calculus of
the support weights in the correlation window and fuzzy
reliable estimation of initial disparities. Table 1 shows
quantitative results for stereo matching using true dis-
parity maps in different stereo pairs. Table 2 and Table
3 show, respectively, quantitative results in discontinued
and untextured regions. The results demonstrate that the
proposed approach has comparable performance and even
best then state-of-the-arts.

The threshold for explicit occlusion detection is set to 0.65.
Tsukuba Ground truth pairs shows 84003 labeled as non-

Original
image

Var. win Our algorithm

Fig. 5. Results for (from the top to the bottom) Tsukuba,
Swatooth, and Venus and Map images pairs.

Table 1. Performance comparison of stereo
Correspendence Search Algorithms

Tsuk. Swat. Venus Map
Proposed method 1.38 1.33 1.11 0.3
Adapt.Wgt(Yoon&Kweon 05) 1.51 1.14 1.14 1.47
Var. win. (Veksler, 03) 2.35 1.28 1.23 0.24
Graph cut (Boykov et al. 01) 1.94 1.30 1.79 0.31
Tree DP (Veksler, 05) 1.77 1.44 1.21 1.45
Comp. win. (Veksler, 01) 3.36 1.61 1.67 0.33
MMHM (Miihlmann et al. 02)  9.76 4.76 6.48 8.42
Table 2. Performance comparison in discontin-
ued regions
Tsukuba  Swatooth  Venus
Proposed method 6.85 6.78 5.95
Adpt.Wgt(Yoon&Kweon05) 7.24 5.48 4.49
Var. win(Veksler, 03) 12.17 7.09 13.35
Graph cut(Boykov et al.01) 9.49 6.34 6.91
Tree DP(Veksler, 05) 9.48 6.87 5.04
Comp. win(Veksler, 01) 12.91 7.87 13.24
MMHM(Miihlmann et al.02) 24.39 22.49 31.29
Table 3. Performance comparison in untex-
tured regions
Tsukuba  Swatooth  Venus
Proposed method 0.73 0.82 0.12
Adpt.Wgt(Yoon&Kweon05) 0.65 0.27 0.61
Var. win(Veksler, 03) 1.65 0.23 1.16
Graph cut(Boykov et al.01) 1.09 0.06 2.61
Tree DP(Veksler, 05) 0.38 0.84 1.41
Comp. win(Veksler, 01) 3.54 0.45 2.18
MMHM(Miihlmann et al.02) 13.85 1.87 10.36

occluded and 1902 pixels labelled as occluded. Among the
84003 non-occluded pixels, our algorithm has correctly
matched 82842 pixels, wrongly matched 988 pixels and
labelled 181 pixels as occluded. Among the 1902 occluded
pixels, our algorithm has correctly labelled 1798 pixels
and wrongly labelled 104 pixels as mon-occluded. The
percentage of occlusion detection is 94.53%.
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5. CONCLUSION

In this paper, we have proposed a theory of possibility to
estimate initial disparities. We defined a support-weight
function based on estimated disparities. We used the
proposed support-weights in an aggregation function to
find final disparity map. The proposed algorithm explicitly
detects occlusion by comparing maximum matching costs
to a threshold. Experimental results have demonstrated
that our algorithm gives comparable performance and even
best than state-of-the-art methods
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