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Influence of spring characteristics on the
behavior of tensegrity mechanisms

Quentin Boehler, Marc Vedrines, Salih Abdelaziz, Philippe Poignet, and Pierre

Renaud

Abstract There is today a growing interest for tensegrity mechanisms. Their anal-

ysis is however challenging because of their self-stress state. The most popular

tensegrity mechanisms use linear springs as tensioned elements. Their synthesis for

given user requirements is an open issue. In this article, we propose as a first step to

better understand the influence of the spring characteristics, that constitute impor-

tant design parameters. The influence of spring free length is in particular assessed,

considering two planar tensegrity mechanisms. Impact of the spring selection on

the workspace, the stiffness and the actuation requirements is observed. The simu-

lation results outline that using nonzero free length springs can be of interest, and

conclusions are given on further steps towards a synthesis method.

Key words: tensegrity mechanisms, stiffness computation, workspace estimation.

1 Introduction and scope of the study

Tensegrity systems can be defined [5] as systems in stable self-equilibrated state

comprising a discontinuous set of compressed components, i.e. struts, inside a con-

tinuum of tensioned components, either cables or springs. Thanks to the self-stress

state, prestress can be imposed for a same topology in order to modify the level of

internal forces. A high stiffness-to-mass ratio can thus be reached. Moreover, since

the components are axially loaded, they can be very light and so does the system [7].

Tensegrity mechanisms use actuators to modify their configuration [3, 6]. The ten-

sioned components are then generally linear springs, in order to systematically reach
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equilibrated configurations without tension loss. They have recently received a lot

of attention [8,9,11], and could be interesting solutions for instance in surgical con-

texts, where lightweight devices with large workspaces are required [1].

The analysis of tensegrity mechanisms is delicate compared to rigid-body mech-

anisms. The determination of a mechanism configuration requires for instance to

take into account joint variables and external loads while respecting self-equilibrium

state conditions. The corresponding static model is obtained using so-called form

finding methods [10]. Up to now, related works have been focused on the analy-

sis of tensegrity mechanisms, but not yet on their synthesis. Even the relationship

between the design parameters and the mechanism behavior, and the estimation of

actuator performances for given specifications remains to be investigated. In this

paper, we wish therefore to analyze the sensitivity of the tensegrity characteristics

to their design parameters.

The spring characteristics strongly influence the mechanism behavior. We there-

fore concentrate our efforts on the parameters related to the linear springs used

as tensioned components. The influence of spring stiffness is here considered, and

more importantly the free length of the springs. To our knowledge, estimating the

influence of nonzero free lengths on mechanism performances has not yet been cov-

ered in the literature.

As a result, we introduce in this paper an analysis of spring stiffness and free

length on the behavior of tensegrity mechanisms. Two planar tensegrity mechanisms

of Snelson-cross type [2,3] are considered, that respectively exhibit 1 and 2-DOF. In

section 2, the 1-DOF mechanism is considered. The mechanism is simple enough to

allow a detailed analysis of free length influence on mechanism workspace, stiffness

and criteria related to actuator requirements, namely actuator stroke, force and en-

ergy consumption. In section 3, a 2-DOF mechanism is analyzed. This mechanism

can be used as a tool holder in a surgical task [1]. Conclusions are finally given with

emphasis on further steps towards a generalization for other tensegrity mechanisms.

2 Sensitivity analysis of a 1-DOF tensegrity mechanism

2.1 Mechanism description

The 1-DOF tensegrity mechanism, based on the Snelson-cross planar tensegrity, is

represented in Figure 1. It consists in four nodes {A,B,C,D}. Two rigid struts of

length L connect respectively A with C and B with D. Three linear springs are in-

stalled on the outside of the mechanism, with same stiffness k and free length l0.

An actuator is used to modify the distance ‖AB‖= ρ , with the node A anchored to

the base and B constrained to move in a horizontal direction. In such a situation, the

mechanism exhibits 1 DOF, with nodes C and D that have equal vertical displace-

ments. The output variable is defined as y, the Y -coordinate of C and D, and ρ is the

input variable. For sake of simplicity, a so-called neutral configuration is defined as
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||AD||= ||BC||= ||CD||= ρ =100 mm with perpendicular struts. It implies that the

struts have a length L = 100
√

2 = 141 mm.
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Fig. 1 Kinematic schemes of the 1-DOF (left) and 2-DOF (right) tensegrity mechanisms. In black

plain lines, rigid struts and in red dotted lines, linear springs.

2.2 Modeling and analysis criteria

The mechanism modeling consists in deriving expressions of the direct and inverse

static models. The output variable y is obtained for a given value of ρ by solving the

direct static problem. An energy method, as described in [10], is here considered.

The mechanism configuration is then obtained by determining the local minimum

of the potential energy U stored in the mechanism springs. In our context, U can be

easily computed as

U =
1

2
k(2(l1 − l0)

2 +(l2 − l0)
2) (1)

with l1 = ||AD|| = ||BC|| and l2 = ||CD||. The lengths l1 and l2 can be expressed

using simple geometrical relationships as functions of the variables ρ and y and the

length L. In the following, we are only interested in positive solutions of y. The an-

alytic expression of y = f (ρ) is obtained by solving ∂U
∂y

= 0 for a given ρ , using a

computer algebra system (Mupad, The Mathworks Inc.). Only one admissible solu-

tion is found with the simulated conditions where ρ ∈ [70,130] mm and l0 ∈ [20,80]
mm. The inverse static model that expresses ρ as a function of y is difficult to obtain

if nonzero free length of the springs are considered. As noticed previously in [4], the

use of nonzero free length springs in a tensegrity mechanism significantly increases

its analysis complexity. In our situation, no analytical expression could be found.

A numerical approach is then adopted, with a Levenberg-Marquardt algorithm to

compute the ρ value for a given y as the solution of (y− f (ρ))2 = 0. The tensegrity

mechanism behavior is assessed by using two types of criteria. The first type cor-

responds to usual mechanism properties, namely the workspace and the stiffness.

The workspace is the range of y values for a given range of ρ . The stiffness of the

mechanism is defined as Ky =
δFy

δuy
with δuy the infinitesimal displacement of nodes

C and D along the Y -axis when an infinitesimal external vertical force δFy is evenly
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applied on these nodes, while the actuator is locked. As stated in [2], the stiffness

Ky can be estimated with ∂ 2U
∂y2 . The other type of criteria characterizes the actuation

requirements of the mechanism. For a predefined path followed by the mechanism

in quasistatic conditions, we compute

• ∆ρ : the corresponding required actuator stroke

• F and Fmax: respectively the mean and maximum forces delivered by the actuator

• ∆U : the variation of potential energy.

Meanwhile, the mean value Ky and the variation ∆Ky of the stiffness are also esti-

mated. In the presented results, the path is defined as symmetric with respect to the

neutral configuration, with a 20-mm displacement. It is discretized in 11 steps to

compute the analysis criteria.

2.3 Results and discussion

As it can be observed in Eq. (1), the configuration corresponding to the local mini-

mum of the potential energy U does not depend on the springs stiffness k. The equi-

librium configuration is therefore invariant with respect to k. Consequently, modify-

ing the spring stiffness does not modify the mechanism workspace. The mechanism

stiffness Ky is proportional to k as it can be observed in Eq. (1). The energy variation

∆U and the actuator force F are also proportional to k. The energy variation corre-

sponds to the energy to be delivered by the actuator. The actuation requirements are

therefore linearly dependent on the spring stiffness for a given workspace.

The spring free length l0 has on the contrary a non-linear influence on the anal-

ysis criteria. Figure 2 represents the computation of y and Ky according to l0 when

ρ varies between 70 and 130 mm in 25 steps, for k = 4 N/mm. In this example,

one may observe that the neutral configuration is not dependent on the spring free

length. For a given y, increasing l0 leads to an increase of Ky while the force de-

livered by the actuator decreases. This may appear unintuitive, but it is explained

by the reconfiguration of the mechanism when l0 is increased (bottom of Figure 2).

The workspace is on the contrary reduced for the same actuation stroke. For given

mechanism specifications, interesting compromises therefore exist for nonzero free

lengths.

Figure 3 shows the evolution of the criteria related to the actuator requirements.

Increasing l0 leads to the increase of the actuation stroke ∆ρ while F , Fmax are

reduced, as well as the potential energy variation ∆U . An optimal value of l0 could

be searched for in order to adapt the mechanism and the actuator force/displacement

characteristics. The influence of the free length on the stiffness is complex, with an

increase of the mean value Ky but a reduction of the variation ∆Ky. As a conclusion

of this case, the analysis suggests first that nonzero free lengths can be of interest

for the mechanism performance, and that the choice of l0 is a compromise between

mechanism properties Ky, ∆Ky and the actuator requirements ∆ρ , F , Fmax and ∆U .
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Fig. 2 Relationships between the spring free length l0 and the stiffness Ky and the workspace.

Cases (a), (b) and (c) depict the mechanism at y=95 mm for l0=20, 50 and 80 mm respectively.
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Fig. 3 Evolution of the analysis criteria according to l0.

3 Analysis of a 2-DOF tensegrity mechanism

3.1 Mechanism description

A second actuator is integrated between nodes B and C in the previous tensegrity

mechanism (Figure 1). The mechanism becomes a 2-DOF manipulator with two

joint variables (ρ1,ρ2) and its end-effector in D.
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3.2 Modeling and analysis criteria

For this 2-DOF mechanism, no analytical direct static model could be obtained if

springs have a nonzero free length. Hence, the coordinates of D are determined

by minimizing the potential energy U using a Nelder-Mead algorithm. The inverse

static model is not implemented since it is not necessary for the evaluation.

Contrary to a rigid-body mechanism, the mechanism configuration does not de-

pend only on (ρ1,ρ2), but also on one parameter that can be either the angle ÂBD,

the variable x, or y. ThereforeU =U1(ρ1,ρ2,x) =U2(ρ1,ρ2,y), and the end-effector

stiffnesses Kx and Ky in X- and Y -direction can be computed as follows

Kx =
∂ 2U1(ρ1,ρ2,x)

∂x2
(2) Ky =

∂ 2U2(ρ1,ρ2,y)

∂y2
(3)

For this mechanism, analysis criteria are related to the mechanism workspace,

stiffness and the actuation requirements:

• A is the area of the reachable workspace

• Kx and Ky are the mean values of respectively Kx and Ky over the workspace

• ∆Kx and ∆Ky designate the variations of respectively Kx and Ky over the workspace

• F and Fmax are computed as the mean and maximum forces in each actuator.

The workspace is explored with joint ranges that avoid mechanism singularity

and loss of tensegrity configuration. A singularity occurs when ρ1 = ρ2 = L/2,

i.e. BD is vertical. The lower bounds of ρ1 and ρ2 are therefore chosen equal to

75 mm. The strut BD must remain in compression to keep the mechanism in a

tensegrity configuration. As a result, the upper bound of the joint variables is such

that ρ2
1 + ρ2

2 < 5L2/2. A 5-mm step for each joint variable is considered for the

computation. The area A is computed by extracting the edge of the discrete set of

positions obtained after the exploration of the joint space. With such joint ranges,

and thanks to the mechanism symmetry, F and Fmax are the same for both actuators.

3.3 Results and discussion

Similarly to section 2, the influence of the spring stiffness k on the analysis criteria

is simple. It does not affect the equilibrium configurations, and linearly impacts the

required actuators forces and the stiffnesses.

The variation of Ky is represented in Figure 4, for a spring stiffness k = 3 N/mm.

For such a mechanism, an end-effector position can sometimes be obtained with

two different configurations and hence two different stiffness values. The map is

therefore plotted in the joint space. Figure 5 depicts the corresponding reachable

workspace. The l0 value modifies the shape of the workspace boundaries, and the

workspace area. In addition, tension losses can occur that limit the workspace, as

it can be observed between the middle and right plots of Figure 5. Further analysis

shows that the first tension loss takes place when D is at the middle of AC, and
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Fig. 4 Variation of the stiffness Ky in N/mm in the joint space for l0=20, 50 and 80 mm. In red

circles: unreachable configurations because of tension loss.
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Fig. 6 Evolution of the analysis criteria according to l0.

that l0 = l0 loss = L/2 ≃ 70 mm. The l0 value also affects the mean value and the

variation of the stiffness over the workspace (left and middle plots of Figure 4).

Figure 6 shows the evolution of the analysis criteria according to l0. This evolu-

tion of the criteria is notably affected by choosing l0 > l0 loss, with in particular a fast

reduction of the workspace area A. If l0 < l0 loss, Kx, Ky, F and Fmax decrease when

l0 increases. Although ∆Kx is also decreasing monotonously with respect to l0, the

evolution of ∆Ky is more complex (as it can be seen on Figure 4). The lowest value

of ∆Kx is indeed obtained for a nonzero value of l0. The evolution of the workspace

area A is also non uniform. Increasing l0 does not necessarily decrease the size of

the workspace.
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The criteria sensitivity to the free length value is different from the one observed

for the 1-DOF mechanism. Increasing l0 can lead to tension losses, which is quite

logical, and affects stiffness and workspace properties. However, the free length can

be used to lower the required actuator forces and an adequate choice of l0 can help

increasing the workspace size.

4 Conclusions

In this paper, influence of the spring characteristics on tensegrity mechanisms was

considered. Using analysis criteria related to the mechanism properties and the ac-

tuator requirements, two planar mechanisms were analyzed. The first major remark

is that increasing the free length of the springs can have a beneficial impact on the

mechanism or the selection of an adequate mechanism. Whereas the spring stiff-

ness influence can be easily assessed, relationships between the selected criteria and

the free length is much more complex. The determination of the spring free length

during a mechanism synthesis will need to be performed simultaneously with other

design parameters related to the mechanism geometry. The observed significant non-

linearities of the sensitivity curves outline also that the selection of the optimization

strategy will be delicate, and will be investigated as the next step of this work as

well as the generalization for other tensegrity mechanisms.
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