Combining C-value and Keyword Extraction Methods for Biomedical Terms Extraction
Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, Maguelonne Teisseire

To cite this version:
Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, Maguelonne Teisseire. Combining C-value and Keyword Extraction Methods for Biomedical Terms Extraction. LBM: Languages in Biology and Medicine, Dec 2013, Tokyo, Japan. lirmm-01019991

HAL Id: lirmm-01019991
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01019991
Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Combining C-value and Keyword Extraction Methods for Biomedical Terms Extraction

Juan Antonio Lossio-Ventura, Clement Jonquet
LIRMM, CNRS, Univ. Montpellier 2
Montpellier, France
fName.lName@lirmm.fr

Mathieu Roche, Maguelonne Teisseire
TETIS, Cirad, Irstea, AgroParisTech
Montpellier, France
fName.lName@teledetection.fr

Abstract
The objective of this work is to extract and to rank biomedical terms from free text. We present new extraction methods that use linguistic patterns specialized for the biomedical field, and use term extraction measures, such as C-value, and keyword extraction measures, such as Okapi BM25, and TFIDF. We propose several combinations of these measures to improve the extraction and ranking process. Our experiments show that an appropriate harmonic mean of C-value used with keyword extraction measures offers better precision results than used alone, either for the extraction of single-word and multi-words terms. We illustrate our results on the extraction of English and French biomedical terms from a corpus of laboratory tests. The results are validated by using UMLS (in English) and only MeSH (in French) as reference dictionary.

1 Introduction
Language evolves faster than our ability to formalize and catalog concepts or possible alternative terms of these concepts. This is even more true for French in which the number of terms formalized in terminologies is significantly less important than in English. That is why our motivation is to improve the precision of automatic terms extraction process. Automatic Term Recognition (ATR) is a field in language technology that involves the extraction of technical terms from domain-specific language corpora (Zhang et al., 2008). Similarly, Automatic Keyword Extraction (AKE) is the process of extracting the most relevant words or phrases in a document with the propose of automatic indexing. Keywords, which we define as a sequence of one or more words, provide a compact representation of a document’s content; two popular AKE measures are Okapi BM25 (Robertson et al., 1999) and TFIDF (also called weighting measures). These two fields are summarized in Table 1.

<table>
<thead>
<tr>
<th>ATR</th>
<th>AKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>one large corpus</td>
</tr>
<tr>
<td>Output</td>
<td>terms of a domain</td>
</tr>
<tr>
<td>Domain</td>
<td>very specific</td>
</tr>
<tr>
<td>Examples</td>
<td>C-value</td>
</tr>
</tbody>
</table>

Table 1: Differences between ATR and AKE.

In our work, we adopt as baselines an ATR method, C-value (Frantzi et al., 2000), and the best two AKE methods (Hussey et al., 2012), previously mentioned and considered state-of-the-art. Indeed, the C-value, compared to other ATR methods, often gets best precision results and specially in biomedical studies (Knoth et al., 2009), (Zhang et al., 2008), (Zhang et al., 2004). Moreover, C-value is defined for multi-word term extraction but can be easily adapted for single-word term and it has never been applied to French biomedical text, which is appealing in our case.

Our experiments present a great improvement of the precision with these new combined methods. We give priority to precision in order to focus on extraction of new valid terms (i.e., for a candidate term to be a valid biomedical term or not) rather than on missed terms (recall).

The rest of the paper is organized as follows: Section 2 describes the related work in the field of ATR, and specially the uses of the C-value; Section 3 presents our combination of measures for ranking candidate terms; Section 4 shows and discusses our experiment results; and Section 5 concludes the paper.

2 Related work
ATR studies can be divided into four main categories: (i) rule-based approaches, (ii) dictionary-based approaches, (iii) statistical approaches, and (iv) hybrid approaches. Rule-based approaches for
A preliminary step is the creation of patterns for annotating biomedical text in order to identify biomedical entities. We consider the whole corpus as an unique document. To do so, we need to perform the union of documents for each language. This combination has never been proposed and experimented in the literature. Therefore, we build a list of the most common biomedical terms using TreeTagger, which is a tool that deals with an annotation process. We also do a part-of-speech tagging of the biomedical terms using TreeTagger, then compute the frequency of syntactic structures. We finally choose the 200 highest frequencies to build the list of patterns for each language. The number of terms used to build these lists of patterns was 230000 for English and 65000 for French.

Before applying measures we filter out the content of our input corpus using patterns previously computed. We select only the candidate terms which syntactic structure is in the patterns list.

3.1 Part-of-Speech tagging

Part-of-speech (POS) tagging is the process of assigning each word in a text to its grammatical category (e.g., noun, adjective). This process is performed based on the recognition of the word or on the context which it appears in.

We apply part-of-speech to the whole corpus. We evaluated three tools (TreeTagger, Stanford Tagger and Brill’s rules), and finally choose TreeTagger which gave best results and is usable both for French and English.

3.2 Candidate terms extraction

As previously cited work, we supposed that biomedical terms have similar syntactic structure. Therefore, we build a list of the most common lexical patterns according to the syntactic structure of biomedical terms present in the UMLS\(^1\) (for English) and the French version of MeSH\(^2\) (for French). We also do a part-of-speech tagging of the biomedical terms using TreeTagger\(^3\), then compute the frequency of syntactic structures. We finally choose the 200 highest frequencies to build the list of patterns for each language. The number of terms used to build these lists of patterns was 230000 for English and 65000 for French.

Before applying measures we filter out the content of our input corpus using patterns previously computed. We select only the candidate terms which syntactic structure is in the patterns list.

3.3 Ranking of candidate terms

3.3.1 Using C-value

The C-value method combines linguistic and statistical information (Frantzi et al., 2000); the linguistic information is the use of a general regular expression as linguistic patterns, and the statistical information is the value assigned with the C-value measure based on frequency of terms to compute the termhood (i.e., the association strength of a term to domain concepts). The aim of the C-value method is to improve the extraction of nested terms, it was specially built for extracting multi-word terms.

A preliminary step is the creation of patterns for French and English, as described hereafter.

\[
C-value(a) = \begin{cases}
 w(a) \times f(a) & \text{if } a \notin \text{nested} \\
 w(a) \times \left(f(a) - \frac{1}{|S_a|} \sum_{b \in S_a} f(b) \right) & \text{otherwise}
\end{cases}
\]

\(1\)

2. http://mesh.inserm.fr/mesh/
3. http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger
Where \(a \) is the candidate term, \(w(a) = \log_2(|a|) \), \(|a|\) the number of words in \(a \), \(f(a) \) the frequency of \(a \) in the unique document, \(S_a \) the set of terms that contain \(a \) and \(|S_a| \) the number of terms in \(S_a \). In a nutshell, \(C\text{-value} \) either uses frequency of the term if the term is not included in other terms (first line), or decrease this frequency if the term appears in other terms, by using the frequency of those other terms (second line).

We modified the measure in order to extract all terms (single-word + multi-words terms), as suggested in (Barrón et al., 2009) in different manners: in the formula \(w(a) = \log_2(|a|) \), we use \(w(a) = \log_2(|a| + 1) \) in order to avoid null values (for single-word terms). Note that we do not use a stop word list nor a threshold for frequency as it was originally proposed.

3.3.2 Using Okapi - TFIDF

Those measures are used to associate each term of a document with a weight that represents its relevance to the meaning of the document it appears relatively to the corpus it is included in. The output is a ranked list of terms for each document, which is often used in information retrieval, to order documents by their importance given a query (Robertson et al., 1999). Okapi can be seen as an improvement of TFIDF measure, taking into account the document length.

The outputs of Okapi and TFIDF are calculated with a variable number of data so their values are heterogeneous. To manipulate these lists, the weights obtained from each document must be normalized. Once values normalized we have to merge the terms into a single list unique for the whole corpus to compare the results. Clearly the precision will depend on the method used to perform such merging. We merged following three functions, which calculate respectively the sum(\(S \)), \(\max(\Sigma M) \) and average(\(A \)) of the measures values of the term in whole the corpus. At the end of this task we have three lists from Okapi and three lists from TFIDF. The notation for these lists are \(\text{Okapi}_X(a) \) and \(\text{TFIDF}_X(a) \), where \(a \) is the term, \(X \) the factor \(\in \{M, S, A\} \). For example, \(\text{Okapi}_M(a) \) is the value obtained by taking the maximum Okapi value for a term \(a \) in the whole corpus.

3.4 Computing the New Combined Measures

With the goal of improving the precision of terms extraction we have conceived two new combined measures schemes, described hereafter, taking into account the values obtained in the above steps.

3.4.1 F-OCapi and F-TFIDF-C

Considered as the harmonic mean of the two used values, this method has the advantage of using all the values of the distribution.

\[
F-\text{OCapi}_X(a) = 2 \times \frac{\text{Okapi}_X(a) \times C\text{-value}(a)}{\text{Okapi}_X(a) + C\text{-value}(a)}
\]

\[
F-\text{TFIDF-C}_X(a) = 2 \times \frac{\text{TFIDF}_X(a) \times C\text{-value}(a)}{\text{TFIDF}_X(a) + C\text{-value}(a)}
\]

3.4.2 C-Okapi and C-TFIDF

Our assumption is that \(C\text{-value} \) can be more representative if the frequency, in Equation (1), of the terms is replaced with a more significant value, in this case the Okapi’s or TFIDF’s values of the terms (over the whole corpus).

\[
C\text{-value}_X(a) = \begin{cases}
 w(a) \times m_X(a) & \text{if } a \notin \text{nested} \\
 w(a) \times \left(m_X(a) - \frac{1}{|S_a|} \sum_{b \in S_a} m_X(b) \right) & \text{otherwise}
\end{cases}
\]

Where \(m_X(a) = \{\text{Okapi}_X|\text{TFIDF}_X\} \), and \(X \in \{M, S, A\} \).

4 Experiments and Results

4.1 Data and Experimental Protocol

We used biological laboratory tests, Labtestonline.org, as \textit{corpus}. This site provides information in several languages to patient or family caregiver on clinical lab tests. Each test which forms a document in our corpus, includes the \textit{formal lab test name}, some \textit{synonyms} and possible \textit{alternate names} as well as a description of the test. Our extracted corpus contains 235 clinical tests (about 400 000 words) for English and 137 (about 210 000 words) for French.

To automatically validate our candidate terms we compute a validation dictionary that include the \textit{official name}, the \textit{synonyms} and \textit{alternate names} of the labtestonline tests plus all UMLS terms for English and the MeSH terms for French. These terminologies are references in the domain therefore each extracted term found in those is validated as a true term. Note that as a consequence we obtain 100% \textit{Recall} with the whole list of extracted terms.
4.2 Experiments and results

Results are evaluated in terms of Precision obtained over the top k terms at different steps of our work presented in previous section. Okapi and TFIDF provided three lists of ranked candidate terms (M, S, A). For each combined measure using Okapi or TFIDF, the experiments are done with the three lists. Therefore, the number of ranked list to compare is C-value(1) + Okapi(3) + TFIDF(3) + F-OCapi(3) + F-TFIDF-C(3)+C-Okapi(3)+C-TFIDF(3) = 19. In addition we experimented either for all (single and multi) or multi terms which finally give 38 ranked lists. Then, we select all terms (single and multi) or only multi-terms (19 x 2 = 38 experiments for each language).

The following lines show part of the experiment results done all or multi terms, only and considering the top 60, 300 and 900 extracted terms, because it is appropriate and easier for an expert to evaluate the first best extracted terms. Table 2 and Table 3 compare the precision between the best baselines measures and the best combined measures. Best results were obtained in general with F-TFIDF-CM for English and F-OCapiM for French. These tables prove that the combined measures based on the harmonic mean are better than the baselines measures, and specially for multi word terms, for which the gain in precision reaches 16%. This result is particularly positive because in the biomedical domain it is often more interesting to extract multi-word terms than single-word terms. However, one can notice that results obtained to extract all terms with C-OkapiS and C-TFIDFS are not better than OkapiX or TFIDFX used directly. The reason is because the performance of those new combined measures is affected when single word terms are extracted. Definitively, the new combined measures are really performing for multi word term.

Results of AKE methods for English show that TFIDFX obtains better results than OkapiX. The main reason for this, is because the size of the English corpus is larger than the French one, and Okapi is known to perform better when the corpus size is smaller (Lv et al., 2011).

In addition, Table 3 shows that C-value can be used to extract French biomedical terms with a better precision than what has been obtained in previous cited works with different languages. The precision of C-value for the previous work was between 26% and 31%.

<table>
<thead>
<tr>
<th>All terms</th>
<th>Multi terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>OkapiM</td>
<td>0.90</td>
</tr>
<tr>
<td>OkapiS</td>
<td>0.30</td>
</tr>
<tr>
<td>OkapiA</td>
<td>0.52</td>
</tr>
<tr>
<td>TFIDFM</td>
<td>0.75</td>
</tr>
<tr>
<td>TFIDFS</td>
<td>0.68</td>
</tr>
<tr>
<td>TFIDFX</td>
<td>0.12</td>
</tr>
<tr>
<td>C-value</td>
<td>0.43</td>
</tr>
<tr>
<td>F-OCapiM</td>
<td>0.73</td>
</tr>
<tr>
<td>F-TFIDF-CM</td>
<td>0.85</td>
</tr>
<tr>
<td>C-OkapiS</td>
<td>0.28</td>
</tr>
<tr>
<td>C-TFIDFS</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 2: Extract of precision comparison for term extraction for English.

<table>
<thead>
<tr>
<th>All terms</th>
<th>Multi terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>C-OkapiS</td>
<td>0.96</td>
</tr>
<tr>
<td>OkapiS</td>
<td>0.83</td>
</tr>
<tr>
<td>OkapiA</td>
<td>0.72</td>
</tr>
<tr>
<td>TFIDFM</td>
<td>0.97</td>
</tr>
<tr>
<td>TFIDFS</td>
<td>0.96</td>
</tr>
<tr>
<td>TFIDFX</td>
<td>0.78</td>
</tr>
<tr>
<td>C-value</td>
<td>0.88</td>
</tr>
<tr>
<td>F-OCapiM</td>
<td>0.73</td>
</tr>
<tr>
<td>F-TFIDF-CM</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 3: Extract of precision comparison for term extraction for French.

We also have done experiments with two more corpus: (i) the Drugs data from MedlinePlus\(^4\) in English and, (ii) PubMed\(^5\) citations' titles in English and French, we have verified that the new combined measures are performing better, particularly these based on the harmonic mean, F-TFIDF-CM and F-OCapiM.

5 Conclusions and Perspectives

This work present a methodology for term extraction and ranking for two languages, French and English. We have adapted C-value to extract French biomedical terms, which was not proposed in the literature before. We presented and evaluated two new measures thanks to the combination of three existing methods. The best results were obtained by combining C-value with the best results from AKE methods, i.e., F-TFIDF-CM for English and F-OCapiM for French.

For our future evaluations, we will enrich our dictionaries with BioPortal’s\(^6\) terms for English and CISMeF’s\(^7\) terms for French. Our next task will be the extraction of relations between these new terms and already known terms, to help in ontology population. In addition, we are currently implementing a web application that implements these measures for the community.

\(^4\) http://www.nlm.nih.gov/medlineplus/

\(^5\) http://www.ncbi.nlm.nih.gov/pubmed

\(^6\) http://bioportal.bioontology.org/

\(^7\) http://www.chu-rouen.fr/cismef/
Acknowledgments

This work was supported in part by the French National Research Agency under JCJC program, grant ANR-12-JS02-01001, as well as by University Montpellier 2 and CNRS.

References

