Towards Electronic SMS Dictionary Construction: An Alignment-based Approach
Cédric Lopez, Reda Bestandji, Mathieu Roche, Rachel Panckhurst

To cite this version:

HAL Id: lirmm-01054899
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01054899
Submitted on 9 Aug 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards Electronic SMS Dictionary Construction:
An Alignment-based Approach

Cédric Lopez*, Reda Bestandji**, Mathieu Roche***, Rachel Panckhurst****

*Viseo Research Center, France
**LIRMM, CNRS, Université Montpellier 2, France
*** TETIS, Cirad, Irstea, AgroParisTech, France
****Praxiling UMR 5267 CNRS & Université Paul-Valéry Montpellier 3, France
clopez@objetdirect.com, reda.bestandji@hotmail.fr, mathieu.roche@cirad.fr, rachel.panckhurst@univ-montp3.fr

Abstract

In this paper, we propose a method for aligning text messages (entitled AlignSMS) in order to automatically build an SMS dictionary. An extract of 100 text messages from the 88milSMS corpus (Panckhurst et al., 2013, 2014) was used as an initial test. More than 90,000 authentic text messages in French were collected from the general public by a group of academics in the south of France in the context of the sud4science project (http://www.sud4science.org). This project is itself part of a vast international SMS data collection project, entitled sms4science (http://www.sms4science.org, Fairon et al. 2006, Cougnon, 2014). After corpus collation, pre-processing and anonymisation (Accorsi et al., 2012, Patel et al., 2013), we discuss how “raw” anonymised text messages can be transcoded into normalised text messages, using a statistical alignment method. The future objective is to set up a hybrid (symbolic/statistic) approach based on both grammar rules and our statistical AlignSMS method.

Keywords: SMS, alignment, electronic dictionaries

1. Introduction

Over the past few decades, new forms of communication have appeared with the development of various types of technology. Among these, SMS (Short Message Service) communication is constantly changing and evolving. Text messages include specific features, and can be defined as belonging to a particular form of mediated electronic discourse (Panckhurst, 2006).

As (Kobus et al., 2008) note, the characters in SMSs can be diverted from conventional use in order to encode linguistic form, emotions, feelings, and attitudes. Natural language processing tools can be used for semi-automatic processing of text messages, and may help to improve electronic dictionary construction.

In the context of the sud4science project (http://www.sud4science.org), more than 90,000 authentic text messages in French were collected (Panckhurst et al., 2013). A pre-processing phase (elimination of spurious information: text messages received twice or more from the same person; those received from abroad (since the study was limited to mainland France); advertisements; automatic SMSS received from telephone operators, etc.) and an anonymisation phase (Accorsi et al., 2012; Patel et al., 2013) were then conducted. In this paper, we present the next step: an alignment method. Alignment consists of matching textual atomic elements from an authentic anonymised “raw” SMS (including abbreviations, repetition of letters, spelling mistakes, and so forth) with a transcoded “normalised” SMS (in our case, in the French language) (see Fig. 1). Alignment techniques can be useful for real-life applications, such as SMS vocalisation for landline phones (Guimier De Neef and Fessard, 2007b).

<table>
<thead>
<tr>
<th>“Raw” SMS</th>
<th>J spr</th>
<th>k tu</th>
<th>v a</th>
<th>b ien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalised SMS</td>
<td>J’espère</td>
<td>que</td>
<td>tu</td>
<td>vas</td>
</tr>
</tbody>
</table>

Figure 1: Alignment between a “raw” and a normalised SMS (“I hope you are well”).

First, we present the sud4science project in order to situate the alignment phase within our processing chain (§ 2). Next, we present related work and introduce our alignment method applied to both authentic anonymised and normalised SMSs (§ 3). Then we evaluate our approach (§ 4) and finally present future work (§ 5).

2. The sud4science project

2.1 Context

The most recent initiative for the French language was the subsequent sud4science project. Over 90,000 authentic text messages in French were collected during a three-month period (spanning September 15th to December 15th, 2011), by academics in the Languedoc-Roussillon region of France, in the context of the sud4science project (cf. Panckhurst & Moïse, 2012; Panckhurst et al., 2013; Accorsi et al. 2012; Patel et al., 2013). All of the SMS data collections are linked to the original Belgian project, and the aim is to organise all of the anonymised data into a global database, containing authentic SMS writing in French, over a period of a decade, from various countries (cf. Cougnon, 2014). This will provide important sources and allow comparative pluridisciplinary research to take place in years to come.

The phases of the sud4science project are indicated in Fig. 2 acquisition of our SMS corpus (entitled 88milSMS), 2) pre-processing and anonymisation (cf. Accorsi et al., 2012; Patel et al., 2013), 3) transcoding and normalisation, 4) alignment.

![Figure 2: Overall process of the sud4science project](http://www.alpes4science.org/).

2.2 Anonymisation

The anonymisation of our 88milSMS corpus was conducted in two phases (Accorsi et al., 2012, Patel et al., 2013): an automatic phase and a manual one, in order to minimise computer errors. Researchers are legally required to eradicate traces of identification from text messages, given that they contain personal, therefore potentially sensitive, information. Not only first names, nicknames, surnames need to be rendered anonymous, but also any information which can help recognise an SMS donor, the recipient, or a third party (postal addresses, emails, URLs, codes, places, telephone numbers, brand names, firms, etc.).

The main purpose of the automatic approach was to process our corpus using a wide set of dictionaries (country names, cities, first names, etc.) and anti-dictionaries (containing words that do not require anonymisation, such as common nouns, adjectives, verbs, adverbs, prepositions, articles, etc.) in order to identify and hide words that must be anonymised.

When a word is anonymised, it is replaced by a code conforming with the following format:

`<[Tag]_[#characters]>` where "Tag" indicates the type of the word (e.g. First name, Last name) and “#characters” indicates the number of characters in the word. For instance, the following SMS:

"Coucou Patrice, ça va?" (Hi Patrice, how are you?)

becomes:

"Coucou <PRE_7>, ça va?"

Thus, "Patrice" is replaced by `< PRE_7>` where:

- PRE: First name (prénom)
- #7: number of characters in "Patrice"

Once the words of the corpus are identified (thanks to dictionaries and anti-dictionaries), the corpus is processed according to the labels and the words are either (a) anonymised, (b) ignored, or (c) highlighted so that the human linguist expert annotators can then manually process the data, owing to non-identification of a word in a dictionary, or ambiguous identification in both types of dictionaries. Words that only appear in the dictionary are automatically anonymised. Words that only appear in the anti-dictionary are not anonymised. Other words become candidates for the semi-automatic anonymisation (since they are considered as ambiguous or unknown).

SMS writing is often very creative, rendering the anonymisation process even more difficult: first names may (or may not) be capitalised (Cédric/cédric); characters may be repeated (Cééééédric); diminutive/abbreviated forms appear (Nico for Nicolas, Nicholas), words may contain spelling ‘mistakes’ (surment, instead of sûrement, most likely), no accents (désolé, instead of désolé, sorry), incorrect accents (désolé, instead of désolé, sorry), onomatopoeia (mouhahaha, ha ha ha), elision without apostrophes (jexplique, I explain), agglutination (jtaime, I love you), etc. So, in order to take into account the specific nature of SMS data, we added different heuristics to solve some of the above problems.

The software successfully anonymised over 70% of the corpus. The remaining 30% was then retained for the semi-automatic phase, requiring human expert linguist annotators. The following tags were used for the anonymisation process: PRE (First Name), NOM (Last Name), SUR (Nickname), ADR (Address), LIE (Place), TEL (Telephone Number), COD (Code), URL (URL), MAR (Brand Name), MEL (Email), Other. In order to improve the system and to reduce the workload in the manual validation phase, we decided to implement a second technique, based on supervised machine learning. This method learns from annotated training data, and is able to make predictions on new test data. Our objective is to label at message level (not at word level).

Here is the list of features extracted from each SMS:

- The number of words from the SMS that are in the
dictionary of abbreviated forms specific to text messages (anti-dictionary).
- The number of words that are in the LEFFE dictionary of French (anti-dictionary).
- The number of words that are in the dictionary of first names. This is particularly useful for the types of messages to be anonymised.
- The number of words that are in the dictionary of country names.
- The length of the SMS.
- The number of words in upper case in the text.
- The average word length of the SMS.
- The number of pronouns in the text message.
- The number of numbers.
- The number of punctuation marks.
- The number of words with repeated characters.

We tested several algorithms from Weka (Hall et al., 2009). The most appropriate algorithm (which we use) for this task seems to be the Decision Trees algorithm (DT). Other classifiers, such as SVM (Support Vector Machine) and Naïve Bayes, use separation planes or probabilities, and these numbers are not understandable for a human examiner.

Finally, we combined the learnt model with the symbolic system, according to the following idea: the manual analysis by an expert is useful only if there is a disagreement between the two automatic methods.

After anonymisation of the SMS corpus (for further details, cf. Patel et al., 2013), and normalisation, in this paper, we propose an initial approach for aligning SMSs (entitled AlignSMS), in order to automatically build an SMS dictionary.

3. The AlignSMS approach

3.1 Related work

In the literature, there are two types of SMS alignment approaches: symbolic or statistical. (Guimier De Neef and Fessard, 2007a) deal with the normalisation issue in the same way that automatic spelling correction is applied, using a symbolic approach based on phonetic, morphosyntactic cutting, and taking into account repetition of letters. In all, 2,000 grammatical rules are used. (Kobus et al., 2008) use phonetic non-determinist contextual rules describing grapheme/phoneme correspondences (140 rules are used, supplemented by a dictionary containing 23,000 words). Nevertheless, numerous spellings are distinct from the phonetic form (e.g., consonant contractions/clippings and abbreviations: bcp (beaucoup, many), dc (donc, therefore), pr (pour, for), ds (dans, in); double consonants: ele (elle, she), poura (pourra, will be able to); semantic abbreviations/initials (abbreviations reduced to initials): t (te/tu, you) p (peux/pas, can, not) but they are modelled with basic dictionaries. In these approaches, transcoding techniques from “raw” to normalised text messages are not resolved. Aw et al. (2007) view the SMS normalisation task as a ‘translation’ problem from the SMS form to the standard English language form and suggest adapting a phrase-based statistical MT model. Choudhury et al. (2007) prefer implementing the noisy channel metaphor (Shannon, 1948). The algorithm for aligning is based on the concept of pivots. The unaligned words appearing between two consecutive pivots are then recursively aligned by searching for more pivots between them. Beaufort et al. (2008) highlight that traditional alignment methods based on edition distance are unusable within the context of SMS alignment. Indeed, the phenomenon of agglutination and the sequential character of traditional implementation (for example with Viterbi’s algorithm (Viterbi, 1967)) infer that such an approach is unsatisfactory for our problem solving. His approach consists of identifying the distance of minimal edition between the “raw” SMS and the normalised SMS, using finite-state machines. The objective is to select the best alignment candidate among all of the possible alignments between the “raw” SMS and the normalised SMS.

3.2 Linguistic transcoding

Once the anonymisation processing has taken place, the “raw” SMS data are ready to be transcoded into "standardised" French to allow for prospective computational linguistic applications (including syntactical parsers). The idea is to rectify spelling and grammar, yet not “inject” more than is necessary for clear understanding. Many problems arise with the transcoding phase, from a linguistic point of view, and are not necessarily easy to resolve, since linguists working from different perspectives may have differing opinions on just how to conduct the shift from “raw” text messages to standardised French. In our research, we have applied several general rules: a) modified words are transcoded to standardised French (this includes any type of substitution: ‘o’ (eau, water); reduction: ‘ordi’ (ordinateur, computer), ‘zou’ (bisou, kiss); suppression: ca (ca, that), voila (voilà, there), addition (suumupppeerrrr!!!! (super!)), etc. appearing within a text message); b) if an item appears in the Petit Robert 2014 (PR14) dictionary, it is retained as is when transcoded: e.g. ‘frérot’ is a popular form of ‘brother’ in French, but is not modified to ‘frère’ since the entry exists in the PR14; c) if it appears in the French inverted ‘verlan’ form exists in the PR14 so is transcoded as is; an English acronym, ‘lol’ is in PR14, but the French equivalent, ‘mdr’ (mort de rire, laughing out loud) is not; the latter is transcoded but the former is not; c) certain syntactical forms are transcoded in order for automatic parsers to be able to process them correctly: a missing ‘ne’ (in the French, ne…pas) will not be indicated, however an ellipsis will be: ‘suis arrivé’ with ‘suis arrivé’ with an “‘missing’ pronoun (je suis arrivé, I have arrived), or an

2 From a linguistic perspective, the term ‘standardisation’ is preferable to ‘normalisation’, the latter being often used in natural language processing references. In the computational paragraphs of this paper we use ‘normalisation’.
abbreviated ‘oral’ form with elision, ‘t’as’ (you have) will be transcoded into ‘tu as’, to allow for automatic processing.

Both the original text message and the transcoded one are available after the process has been completed. This phase is useful for the general public, or those working on SMS analysis and who want to be able to read and compare “raw” and/or processed SMS quickly.

3.2 Our alignment method

The algorithm we propose is based on the pivot principle (Choudhury et al., 2007) and uses the results of a normalisation method (Beaufort et al., 2010). We align “raw” anonymised SMSs (called RS) with normalised SMSs (called NS) according to the following steps:

1. Identification of textual blocks to be aligned,
2. Identification and alignment of invariant blocks (i.e. pivot blocks),
3. Deducting alignments based on step 2,
4. Identification of non-aligned blocks and subsequent processing with manual alignments.

In our study, three cases of alignment are highlighted with associated examples:

- **Case 1**: A word in the RS aligned with a single word in the NS (“often as possible”).

<table>
<thead>
<tr>
<th>RS</th>
<th>plus</th>
<th>svt</th>
<th>possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>plus</td>
<td>souvent</td>
<td>possible</td>
</tr>
</tbody>
</table>

- **Case 2**: Two or more words in the RS are aligned with a single word in the NS (“come on leave me alone”).

<table>
<thead>
<tr>
<th>RS</th>
<th>Vasi</th>
<th>lâche</th>
<th>moi</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Vas-y</td>
<td>lâche-moi</td>
<td></td>
</tr>
</tbody>
</table>

- **Case 3**: One word within the RS is aligned with two or more words in the NS (“you had”).

<table>
<thead>
<tr>
<th>RS</th>
<th>‘T’as</th>
<th>eu</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Tu</td>
<td>as</td>
</tr>
</tbody>
</table>

Case 1 is the easiest to handle, since each original word corresponds to a single normalised word. In case 2, we assume that a couple (RS, NS) might be normalised when an aggregation of RS appears. Finally, case 3 needs original processing because one or more couples (RS, NS) are possible (e.g. (T’ => Tu), (T’ => T, as in ‘Tu t’es trompé’, you made a mistake), etc.). In order to tackle this issue, we propose an approach that generates different candidate couples. These are built by taking into account characters of an RS word one by one in order to form blocks of characters. Similarity between blocks and NS is computed. This similarity is based on the Jaccard measure (Geng and Hamilton, 2006). The aim is to select the candidate couple with the highest score.

Let us consider an example.

<table>
<thead>
<tr>
<th>RS</th>
<th>Jmexquz</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Je</td>
</tr>
</tbody>
</table>

The following comparisons are conducted, one by one, on each character, moving from right to left, according to Fig. 3 below:

- a. “z” (last character of RS) is compared to “m’excuse” (NS),
- b. “uz” (second-to-last character of RS) is compared to “m’excuse” (NS),
- c. “quz” (third-to-last character of RS) is compared to “m’excuse” (NS),
- d. “xquz” (fourth-to-last character of RS) is compared to “m’excuse” (NS),
- e. “exquz” (fifth-to-last character of RS) is compared to “m’excuse” (NS),
- f. “mexquz” (sixth-to-last character of RS) is compared to “m’excuse” (NS),
- g. “Jmexquz” (seventh-to-last character of RS) is compared to “m’excuse” (NS).

Fig. 3: Comparison function between “Jmexquz” and “Je m’excuse” (in English I apologise).

The maximum value is obtained with mexquz (f). This enables to select the candidate (“mexquz”, “m'excuse”). This alignment of words enables to construct a specific SMS dictionary presented in the following section.

4. Evaluation

In our study, we randomly extracted 100 SMS (totalising 2,148 words) from the 88milSMS corpus. For this task, we manually evaluated each normalised word. In our experiment, we obtained: 2836
- 1,814 words that did not require normalisation,

- 186 relevant normalisations (i.e., normalisations which were correctly conducted by the automatic system, e.g. *pr => pour “for”),

- 127 irrelevant normalisations (i.e., normalisations which were incorrectly conducted by the automatic system, e.g. *chambre u (“University residence room”) => chambre tu (past form of verb “to be quiet”, as initialisms can be ambiguous, and are not necessarily known by the automatic system or the dictionaries),

- 21 words which were “ignored” by the automatic system (because a contextual clue is necessary, e.g., “2” exists as a number but in the following text message is used phonetically in French as a substitution for “off” (“bcp 2 cour”, “beaucoup de cours” (lots of lectures).

We use Precision and Recall, which are classic methods of evaluation in text mining. Precision corresponds to the ratio of the number of words correctly normalised by the system (in this case, 186) and the total number of words annotated by the system (in this case, 313). Recall corresponds to the ratio of the number of words correctly normalised by the system and the total number of words the system should have normalised (in this case, 334).

In these experiments, with the basic algorithm, Precision and Recall are respectively 0.59 (i.e. 186/313) and 0.55 (i.e. 186/334). These weak results justify the necessity to improve the method with several alignment heuristics summarised in this paper. After their application only 6 alignment errors were identified.

These initial experiments with the extract of 100 text messages from the 88milSMS corpus allow to build a dictionary with 728 words. For each word, different variations are found with the AlignSMS method (e.g., *travail → taff, taf (“work”); Montpellier → Mtp, Montpel, montpel, montpellier).

5. Conclusion

In this paper, we have presented an automatic approach for SMS alignment. Based on a comparison function, our algorithms allow splitting “raw” SMSs into sequences in order to align them with normalised SMSs. Using this approach, we generate a freely available specific resource for SMS analysis tasks.

We plan to outline special treatment for punctuation and specific SMS features such as repetition of characters (“ll caaaaaile” *il caille, colloquial, “it’s cold”) and cross-language code-switchings which are not easy to normalise (“aujourd’hui” can appear as “today” in text messages). The final objective is to set up a hybrid (symbolic/statistical approach), based on both grammar rules and our statistical AlignSMS method.

6. Acknowledgements

The SMS data described in this paper was collected within the framework of the sud4science project (http://www.sud4science.org). It is part of a vast international SMS data collection project, entitled sms4science (http://www.sms4science.org), and was initiated at the CENTAL (Centre for Natural Language Processing, Université Catholique de Louvain, Belgium) in 2004. Our work is supported by the MSH-M (Maison des Sciences de l’Homme de Montpellier, France, http://www.msh-m.fr/), the DGLFLF (Délegation générale à la langue française et aux langues de France, http://www.dglflf-culture.gouv.fr/) and PEPS CNRS ECOMESS (HuMaIn). Many thanks to our colleagues, Catherine Détérie, Claudine Moïse, Bertrand Verine, and to our students (Pierre Accorsi, Frédéric André, Yosra Ghliess, Camille Lagarde-Belleville, Ahmed Loudah, Aghiles Lounes, Michel Otell, Zakaria Mokrani, Namrata Patel, Takfarinas Sider, Anthony Stifani, Tariq Zaknoun), who conducted internships or specific research tasks at various stages of the project.

7. References

Panckhurst R., Détrie C., Lopez C., Moïse C., Roche M., Verine B. (forthcoming, 2014), 88milSMS. A corpus of authentic text messages in French, produit par l’Université Paul-Valéry Montpellier III et le CNRS, avec l’autorisation de l’Université catholique de Louvain, financé grâce au soutien de la MSH-M et du Ministère de la Culture (Délégation générale à la langue française et aux langues de France) et avec la participation de Praxiling, Lirmm, Lidilem, Tetis, Viseo.

In *Computational Linguistics and Intelligent Text Processing* (pp. 77-88). Springer Berlin Heidelberg.
