G. Forman and I. Cohen, Learning from little: comparison of classifiers given little training, Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases. PKDD '04, pp.161-172, 2004.

H. J. Zeng, X. H. Wang, Z. Chen, H. Lu, and W. Y. Ma, Cbc: Clustering based text classification requiring minimal labeled data, Proceedings of the Third IEEE International Conference on Data Mining. ICDM '03, p.443, 2003.

F. Lin and W. W. Cohen, Semi-supervised classification of network data using very few labels, Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining. ASONAM '10, pp.192-199, 2010.

G. Salton and M. J. Mcgill, Introduction to Modern Information Retrieval, 1986.

H. Guan, J. Zhou, and M. Guo, A class-feature-centroid classifier for text categorization, Proceedings of the 18th international conference on World wide web. WWW '09, pp.201-210, 2009.

X. Zhang, T. Wang, X. Liang, F. Ao, and Y. Li, A class-based feature weighting method for text classification, Journal of Computational Information Systems, vol.8, issue.3, pp.965-972, 2012.

S. B. Kim, K. S. Han, H. C. Rim, and S. H. Myaeng, Some effective techniques for naive bayes text classification. Knowledge and Data Engineering, IEEE Transactions on, vol.18, issue.11, pp.1457-1466, 2006.

T. Joachims, A statistical learning learning model of text classification for support vector machines, Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. SIGIR '01, pp.128-136, 2001.

D. D. Lewis, Naive (bayes) at forty: The independence assumption in information retrieval, pp.4-15, 1998.

J. C. Platt, Advances in kernel methods, pp.185-208, 1999.

C. C. Chang and C. J. Lin, Libsvm: A library for support vector machines, ACM Trans. Intell. Syst. Technol, vol.2, issue.3, p.27, 2011.

J. Su, H. Zhang, C. X. Ling, and S. Matwin, Discriminative parameter learning for bayesian networks, Proceedings of the 25th international conference on Machine learning, pp.1016-1023, 2008.

G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, Multiclass alternating decision trees, Proceedings of the 13th European Conference on Machine Learning. ECML '02, pp.161-172, 2002.

G. H. John and P. Langley, Estimating continuous distributions in bayesian classifiers, Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pp.338-345, 1995.

A. Mccallum and K. Nigam, A comparison of event models for naive bayes text classification, AAAI-98 workshop on learning for text categorization, pp.41-48, 1998.

J. R. Quinlan, C4.5: programs for machine learning, 1993.