
RegExpMiner: Automatically discovering

frequently matching regular expressions

Julien Rabatel1, Jérôme Azé1, Pascal Poncelet1, and Mathieu Roche1,2

1 LIRMM, CNRS UMR 5506, Univ. Montpellier 2, 34095 Montpellier, France
2 UMR TETIS - Cirad, Irstea, AgroParisTech, 34093 Montpellier, France

Regular expressions (REs) are a very powerful and popular tool to manipu-
late string data in a variety of applications. They are used as search templates
to look for the occurrences of a given piece of text in a document, or to define
how a given piece of text should be formatted in order to be valid (e.g., to check
that the value entered in an email field of a Web form is correctly formatted),
or even to help solving more complex NLP tasks [NS07]. Their popularity in
those various application domains arises from several reasons. First, they are
easy to understand and manipulate for common usages, despite their wide ex-
pressiveness and power of abstraction. Second, they are natively usable within
a large variety of programming languages, hence making them suitable to be
integrated into every project addressing text processing tasks. Their usage of-
ten relies on a very limited amount of hand-crafted REs. It is indeed di�cult
to automatically obtain the REs matching with a given set of strings for which
no a priori knowledge about their underlying formatting rules is given. Such
an automatic discovery of REs would nonetheless o↵er some very interesting
prospects. Regular expressions indeed have an interesting abstraction power as
they are able to provide information about how textual content is formatted,
rather than focusing on the actual sequences of characters. Having a more ab-
stract description space for describing textual content then o↵ers new insights.
For instance, an application scenario consists in data cleaning problems. Given a
database containing some textual content about entities (e.g., addresses, names,
phone numbers, etc.), one may be interested in finding values contained in the
database that are mistakes from the people who entered them. Such typos and
formatting mistakes can easily be highlighted if they result in strings that do
not match the same regular expressions as the majority of the other strings.

While regular expressions can be seen as interesting descriptors of textual
data for various NLP and machine learning tasks, they are hard to obtain. The
literature does not o↵er fully relevant solutions when one wishes to enumer-
ate some REs to describe a given set of strings. Regular Expression learning
[Fer05], for instance, consists in building a single regular expression matching
with a given set of positive string examples. Such approaches typically do not
allow exceptions w.r.t. the set of strings to be matched, hence losing their in-
terest as soon as input data are noisy. Additionally, only one RE is learned
while one can expect to obtain several REs reflecting the di↵erent templates
that co-exist in the data. E.g., one cannot expect all the values of a list of inter-
national ZIP codes to respond to only one template, as each country may use
a di↵erent one. Constructing one single RE matching with all of them will of-



ten lead to an over-generalization of the underlying templates that would make
the obtained RE irrelevant in practical applications. On the other hand, the
sequence mining literature, when applied to string data, o↵ers the possibility
to discover more various templates via frequent patterns, i.e., data fragments
occurring in a su�cient amount of strings. While this general principle answers
the problems above-mentioned for RE learning approaches, the type of extracted
patterns (e.g., sequential patterns [AS95], episodes [MTV97]) is typically much
less expressive than REs. Some e↵orts have however been put in allowing the
generalization of sequence elements [PLL+10] but extracted sequential patterns
have little commonality with REs, as they only aim at discovering sequence
elements that are frequently found in the same order.

We propose an approach for extracting regular expressions under the form of
frequent patterns in textual data. To this end, we define a relevant pattern lan-
guage that o↵ers some interesting algorithmic properties. While we do not aim at
exploiting all the characteristics and expressiveness of the RE language, we focus
on providing a preliminary approach by keeping some of its main features. In
particular, we fully consider the problem of allowing the generalization of charac-
ters via the use of predefined character classes, commonly used in REs3. Another
aspect that this approach takes into account is the repetition of some charac-
ters in strings. For instance, we assume that the strings “012” and “9876543”,
should both be generalizable to the RE /[0�9]+/, i.e., a list of consecutive digit
characters, even if they do not contain the same digits nor the same amount
of digits. We define the frequent regular expression pattern mining problem by
providing a theoretical framework linking together the RE and sequence mining
worlds, and highlight some properties that, while inspired from known properties
in sequence mining, are specific to the problem we consider study and employs
them to design the RegExpMiner algorithm to mine such patterns.

References

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In
Data Engineering, 1995. Proceedings of the Eleventh International Confer-

ence on, pages 3–14. IEEE, 1995.
[Fer05] Henning Fernau. Algorithms for learning regular expressions. In Algorithmic

Learning Theory, pages 297–311. Springer, 2005.
[MTV97] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of fre-

quent episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289, 1997.

[NS07] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[PLL+10] Marc Plantevit, Anne Laurent, Dominique Laurent, Maguelonne Teisseire,
and Yeow Wei Choong. Mining multidimensional and multilevel sequential
patterns. ACM Transactions on Knowledge Discovery from Data, 4(1), 2010.

3 Character classes are sets of characters. When tested against a string, a character
class matches with any of the characters it contains. For instance, the character
class [0�9] contains all the digit characters 0, 1, · · · , 9, which allows it to match with
strings such as “3” or “8”, but not with “A”.


