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This article tackles the multi-trip vehicule routing problem with time windows and limited duration. A trip is a timed route such that a succession of trips can be assigned to one vehicle. We provide an exact two-phase algorithm to solve it. The first phase enumerates possible ordered lists of clients which match the maximum trip duration criterion. The second phase uses a Branch and Price scheme to generate and choose a best set of trips so that all customers are visited. We propose a set covering formulation as the column generation master problem, where columns (variables) represent trips. The sub-problem selects appropriate timing for trips and has a pseudo-polynomial complexity. Computational results on Solomon's benchmarks are presented. The computational times obtained with our new algorithm are much lower than the ones recently obtained in the only two studies published on this problem to date.

Introduction

The Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) is a variant of the classical Vehicle Routing Problem with Time Windows (VRPTW) where vehicles can be scheduled for more than one trip within a workday or planning time horizon. A trip is a timed route in a context such that more than one route can be assigned to a vehicle. The multi-trip feature is needed when the vehicle fleet size is limited. In this study, we consider a special case of the MTVRPTW, called MTVRPTW-LD, where trips have a limited duration. This duration limit can be motivated by management issues, e.g. limiting the maximum driving time for drivers, or can depend on the nature of transported goods, e.g. delivering perishable goods.

Formally, the MTVRPTW-LD is defined as follows. Let G = (V, A) be a directed graph where V = {0, • • • , n} and A is the set of arcs (i, j). Vertex 0 represents the depot and vertices 1, • • • , n the customers. A cost c ij and a travel time t ij are attached to each arc (i, j) ∈ A. The fleet comprises U vehicles, all with the same load capacity Q. Let [0, T ] be the planning time horizon, and t max the duration limit of a trip. A demand d i , a service time st i and a loading time l i are defined for each customer i ∈ {1, • • • , n}. Each client must be served within a time window [a i , b i ] with a i , b i ∈ [0, T ]. However, waiting at a client is not forbidden and vehicles can arrive at a client i earlier than a i . Service times relate to handling operations at the customers. Loading of a vehicle for a trip is performed at the depot, before departure. Neither loading time, nor service time for the last customer in the trip and travel time back to the depot are comprised in the trip duration limit. It is assumed that times and costs have triangle inequality.

The problem is to find a set of trips with the lowest cost, such that not more than U vehicles are used, and such that (i) all customers are served, (ii) two trips cannot be assigned to the same vehicle if the schedules of these trips, including loading and return to the depot, overlap, (iii) loads comply with the capacity of vehicles and (iv) time constraints at the clients and depot are met.

The MTVRPTW-LD can be formulated as a MIP where the decision variables are With theses variable definitions, the MTVRPTW-LD can be formulated as follows:

x k ij , σ u k , y u kl , δ k i , S k i , α k , d start
min k∈K (i,j)∈A c ij x k ij (1) subject to {j∈V |(i,j)∈A} x k ij = δ k i , (i ∈ V \ {0}, k ∈ K), (2) 
k∈K δ k i ≥ 1, (i ∈ V \ {0}), (3) 
{j∈V |(i,j)∈A}

x k ij - {j∈V |(j,i)∈A} x k ji = 0, (i ∈ V, k ∈ K), (4) 
{i∈V |(0,i)∈A}

x k 0i ≤ 1, k ∈ K, (5) 
{i∈V \{0},(i,j)∈A}

d i x k ij ≤ Q, k ∈ K (6) α k = {i∈V \{0}} l i δ k i , k ∈ K, (7) 
S k i + st i + t ij -S k j + M x k ij ≤ M, (i, j) ∈ A, i, j = 0, k ∈ K (8) S k i + st i + t i0 -d back k + M x k i0 ≤ M, (i, 0) ∈ A, k ∈ K (9) d start k + α k + t 0i -S k i + M x k 0i ≤ M, (0, i) ∈ A, k ∈ K, (10) 
S k i ≤ d start k + α k + t max , i ∈ V, k ∈ K, (11) 
{i∈V \{0}|(0,i)∈A}

x k 0i - u∈U σ u k = 0, k ∈ K, (12) 
σ u k + σ u l -y u kl -y u lk ≤ 1, k, l ∈ K, k = l, u ∈ U , (13) 1 -y u kl -y u lk ≥ 0, k, l ∈ K, k = l, u ∈ U , (14) 
d back k -d start l + M y u kl ≤ M, k, l ∈ K, u ∈ U , (15) 
a i δ k i ≤ S k i ≤ b i δ k i , i ∈ V, k ∈ K, (16) 
a 0 ≤ d start k ≤ b 0 , k ∈ K, (17) 
a 0 ≤ d back k ≤ b 0 , k ∈ K, ( 18 
)
0 ≤ d start k ≤ T, k ∈ K, (19) 0 ≤ d back k ≤ T, k ∈ K, (20) 
x k ij ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (21)

y u kl ∈ {0, 1}, k, l ∈ K, u ∈ U , (22) 
σ u k ∈ {0, 1}, k ∈ K, u ∈ U , (23) 
δ k i ∈ {0, 1}, i ∈ V \ {0}, k ∈ K, (24) 
α k ≥ 0, k ∈ K. (25) 
Constraints ( 2) and ( 3) express that all customers must be visited at least once. The possibility to visit a client more than once is a valid relaxation since we consider routing problems with Euclidean distances (triangle inequality) which makes it not optimal to visit a customer more than once. Constraints (4)-( 5) define the trip structure and constraints (6) concern the vehicle capacity. Constraints (7) define the vehicle loading time.

Constraints ( 8)-( 10) and ( 16)-( 18) concern the compliance of trips to time window constraints. Note that in the solution, subtours are forbidden by previous inequalities. Constraints (19)-(20) concern respect of the planning horizon. Constraints (11) correspond to the deadline constraint for serving a customer. Note that Constraints (16) ensure that S k i is set at 0 when customer i is not in trip r k , and, consequently, constraints (11) are automatically satisfied in this case. Constraints (12)-(15) order the routes for available vehicles.

A close variant of this problem, where covering all customers is not mandatory, has been addressed with exact methods in two papers by [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF][START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] and in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF]. In [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], only the single vehicle case is considered. In all of these studies, the fact that the trip duration is limited allows, if the limit is short enough, for a solving strategy that enumerates all the possible client orderings that yield trips that satisfy the constraints of the problem. This makes the MTVRPTW-LD special with regards to the MTVRPTW. We found that MTVRPTW-LD was worth further investigation and propose here a specific time constraints modelling and a new exact algorithm. Our results highlight the specific advantages of our method.

This article is organized as follows. The following section is devoted to related works on the Vehicle Routing Problem with Time Windows, more specifically on the multi-trip variant problem and on strategies to solve it. In section 3, we present our new exact method for MTVRPTW-LD. In section 4, in line with the choices made in [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] and [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF], we present results for Solomon benchmark instances and compare these with the results of [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF], [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF]. The following sections are devoted to a discussion and conclusions.

Literature review

As in [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], published papers about multi-trip VRPTW with a limited fleet, problem which we call MTVRPTW, are scarce and until that paper, most of the rare works reported so far on solving this problem involved metaheuristics. In [START_REF] Battarra | An adaptive guidance approach for the heuristic solution of a minimum multiple trip vehicle routing problem[END_REF], [START_REF] Fleischmann | The vehicle routing problem with multiple use of vehicles[END_REF] is cited as the first study including the multi-trip concept in the vehicle routing problem without time windows. The author used a savings based algorithm to construct the routes and a bin packing heuristic to combine them on vehicles. [START_REF] Sen | A survey on multiple vehicle routing problem[END_REF] provides a rather extensive survey on the solving of multi-trip problems with metaheuristics, including MTVRPTW. In [START_REF] Battarra | An adaptive guidance approach for the heuristic solution of a minimum multiple trip vehicle routing problem[END_REF], the authors breakdown the MTVRPTW into two easier problems, and create two heuristics to solve them. The first heuristic deals with the creation of routes and the second with a bin packing problem. The complete algorithm is iterative and is based on a self adaptive guidance strategy which enforces the route heuristic to compute only routes that can improve the solution. We will review only recent exact methods including the multi-trip feature.

In [START_REF] Mingozzi | An exact algorithm for the multi-trip vehicle routing problem[END_REF], the authors propose an exact method, based on the column generation principle, to solve the multi-trip vehicle routing problem. Their method builds on previous works from the same authors on different variants of the vehicle routing problem. Apparently, the method can not trivially be extended to the solution of the MTVRPTW, as time constraints complicate the packing of trips when forming vehicle routes. This assignment problem is actually the main difficulty posed by the MTVRPTW.

To our knowledge there have not yet been any published papers on solving the MTVRPTW exactly. Nevertheless, the limited duration variant MTVRPTW-LD has recently received greater attention. The first exact method on MTVRPTW-LD was proposed in [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], yet with a slightly different and more general formulation. In [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], contrary to the common convention for multi-trip and timed vehicle routing problems, covering all customers is not mandatory. To achieve full coverage whenever possible, the authors attribute an artificially high benefit per visited client in the solution. The authors considered the case of the delivery of perishable goods with a single vehicle. They created an algorithm with two dynamic programming phases. In the first phase, dynamic programming is used to generate all non-dominated routes. A graph where nodes represent the routes obtained in phase 1 is then created. Transitions of this graph represent possible successions of routes. Note that the size of the routes graph is bounded thanks to the limit on the route duration. In the second phase, dynamic programming is used to generate the working day for the vehicle from the routes graph and with the dominance rule given in [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF]. In [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF], the authors considered the same problem but with a homogeneous fleet instead of a single vehicle. The first phase is similar to the single vehicle case. As a second phase, the authors propose a branch and price algorithm to generate the working day for each vehicle. Branch-and-price is a variant of branch-and-bound, where LP-based lower bounds are computed through column generation, due to the huge number of variables. In column generation, two problems, namely the restricted master problem and the pricing problem, are solved iteratively until the pricing problem fails to find new potentially improving columns for the restricted master problem. Interested readers are referred to [START_REF] Desrochers | A new optimization algorithm for the vehicle-routing problem with time windows[END_REF], [START_REF] Barnhart | Branch-and-price: Column generation for solving huge integer programs[END_REF][START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF] for details on column generation and a description of the Branch-and-Price technique. In the Column Generation scheme given in [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF], the pricing problem is actually similar to the elementary shortest path problem with resource constraints (ESPPRC) used in the second phase of [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], besides the cost modification implied by dual variables.

In a recent paper, [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] report on their investigation of the MTVRPTW-LD, with full coverage not being mandatory as in [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF][START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF]. These authors also use a two phase approach where the first phase is similar to that of previous authors. For the second phase, they introduce a time-indexed graph, constructed from the trips obtained in the first phase. The nodes of this graph correspond to discrete time instants. The notion of discrete time instant is an abstraction on a discrete time scale of a certain continuous time duration according to a chosen 'granularity'. There are two types of arcs. The first arc type models the waiting time by one vehicle at the depot between two successive trips. The second arc type models that one specific trip is started at a specific time instant and ended at another one. The authors use several methods that help to limit the size of the graph. Once this time-indexed graph has been calculated, the second phase of the algorithm consists of solving a flow problem on this graph. One important feature of the algorithm is that, when needed, it iteratively decreases the granularity (length) of a time instant. This feature accelerates the solution.

It appeared to us that the performance of the algorithm by [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] was hindered by the complexity of explicitly handling the daily planning of vehicles. The time-indexed graph by [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] offers a convenient way to handle time precision according to actual routing needs but discrete-time granularity is still a weakness in the approach as our preliminary work suggested, [START_REF] Hernandez | Méthodes de résolution exactes pour le problème de routage de véhicules avec fenêtres de temps et routes multiples[END_REF]. Hereafter we present a new approach that is still based on two phases, as these authors suggested.

A new exact method for the MTVRPTW-LD

In practice the formulation given in (1)-( 25) is not tractable for any instances of reasonable size because its linear relaxation is very weak. Here we propose a new two-phase algorithm, which is based on a modelling that is different from those proposed by the above cited. We outline the following definitions before describing the main components of the algorithm. Definition 3.1 A structure s l is an ordered list of customers that can be visited consecutively by a vehicle between two stops at the depot, such that capacity constraints are satisfied and such that it is possible to schedule the departure from the depot in order to satisfy the time constraints of these customers and depot.

Any vehicle tour with structure s l has the same cost, which we denote c l . d min l denotes the minimal trip duration for the feasible vehicle tours with structure s l , between starting to load the vehicle and returning back to the depot after deliveries. Note that minimizing the completion time is equivalent to minimizing waiting times at customers. It follows that a time window [A l , B l ] can be associated with a structure s l , where A l (B l , respectively) is the earliest starting time for loading (latest arrival time at the depot, respectively) such that the trip duration is exactly at its minimal d min l . Please note that the actual travel time of delivered goods, which we call goods travel duration and will denote d GT , is the elapsed time between the depot departure time, after the vehicle has been loaded, and the arrival time at the last customer of the trip, before the delivery. Only the goods travel duration is subject to the duration limit t max . The trip duration is the sum of the goods travel duration and loading time plus the service time to the last customer and the time to return to the depot from this last customer. Definition 3.2 Considering a structure s l with its minimal trip duration d min l and its time window as defined above, a trip r k is a tour, following the sequence of visits defined by s l , scheduled during its time window, with a fixed departure time and a duration of exactly d min From these definitions, it can easily be seen that optimal solutions of the MTVRPTW-LD can be obtained by combining trips. The MTVRPTW-LD can thus be modeled as a set covering problem with mutual exclusion constraints, where variables represent trips, and the set to cover is the set of customer deliveries. Mutual exclusion constraints aim to enable the assignment of selected trips to U vehicles, while avoiding the assignment of two trips to the same vehicle overlap.

As we already stated, for short enough duration limits, it is possible to generate all non-dominated structures. Thus, we shall follow the principle set by previous authors and divide the algorithm into two phases. The first phase enumerates the set S of possible structures. The second phase uses a branch and price scheme to pick-up candidate structures generated in the first phase, schedule them so that they become candidate trips, and then choose the best set of trips to cover deliveries at the customers.

Phase 1: Enumeration phase

The structure generation problem is addressed via an approach that uses an algorithm to solve the elementary shortest path problem with resource constraints (ESPPRC), given in [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF]. While we basically apply the same strategy as that described in [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF] for the enumeration phase, we detected a flaw in the dominance relation in this work that needs to be corrected, and we therefore provide here, for further reference, full details and proof for the required dynamic programming. It should be noted that the enumeration phase is not detailed in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF].

The ESPPRC is defined over a graph G ′ = (N ∪ {o, d}, E), where N ∪ {o, d} and E are the sets of nodes and arcs, respectively. N = V \ {0} is the set of nodes for each customer in V \ {0}. The nodes o and d correspond to the depot 0 at the beginning and at the end of structures, respectively. The set E contains arcs (o, j), ∀j ∈ N ; arcs (i, d), ∀i ∈ N ; and arcs (i, j), ∀i, j ∈ N such that customer j can be visited after customer i and arc (i, j) ∈ A (where A is the set of arcs of graph G). A cost c ij is associated with each arc (i, j) ∈ E.

Each feasible structure is represented by a path in G ′ . The following |N |+3 resource constraints are needed on the ESPPRC, so that time windows are encountered, while the duration limit is met and vehicle capacity is not exceeded: the time t, the minimal goods travel duration d GT , the vehicle load q, and V i for each customer i ∈ N indicating if customer i has been visited along the path. The resource intervals are the customer time windows for t, [0, t max ] for d GT , [0, Q] for q, and {0, 1} for each V i . This set of resources is denoted by

R = {t, d GT , q, V 1 , • • • , V |N | }.
The ESPPRC on a graph G ′ is usually solved by dynamic programming, as in [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF]. This algorithm involves extending labels from one node to another. Each label represents a partial feasible path from the depot to one customer. To initialize the labelling process, one label is created on node o. This label is then extended to all successors of node o. Nodes are iteratively treated until no new labels are created. When a node is treated, all of its new labels are extended towards every possible successor node. Once a label has been extended, its resource intervals are verified and the label is rejected if infeasible.

This basic method generates many labels. In order to decrease their number, a label dominance relation is applied during the solution process on the generated labels which are associated with the same node.

For the classic VRPTW, a path k from node o to node j is labeled L k . L k is defined by |N | + 4 parameters represented by the vector

L k = {c k , j, T t k , T q k , V 1 k , • • • , V |N | k }
, where c k is the cost of this partial path, j is the node to which the label is attached, T t k and T q k are the accumulated values of time and load, respectively, and

V i k = 1 if node i is unreachable, 0 otherwise. The dominance relation for VRPTW is as follows: If k and k ′ are two different paths from node o to node j with labels L k and L k ′ , respectively, then path k dominates k ′ if and only if c k ≤ c k ′ , T t k ≤ T t k ′ , T q k ≤ T q k ′ and V i k ≤ V i k ′ , ∀i. That is, path k dominates k ′ if
its cost c k is not greater, does not consume more resources for every resource considered, and every unreachable node is also unreachable for k ′ . As stated in [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF], it is guaranteed that no potential optimal solution can be eliminated by this dominance relation.

In our case, an additional resource d GT needs to be handled. Moreover, the problem is no longer to find the shortest elementary path within the whole graph G ′ as the case for the VRPTW. Instead, it is essential to find the shortest elementary path that starts and ends at the depot (node 0), for each subset of customers that can be visited without violating constraints. This is why our dynamic programming algorithm differs from that of [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF]. The modified resources and dominance rules are explained hereafter.

Resources and dominance rule:

First, like in [START_REF] Azi | An exact algorithm for a single-vehicle routing problem with time windows and multiple routes[END_REF], the cost c ij on each arc is replaced by c ij -(max (i,j)∈A c ij + 1). This transformation makes the visit at a customer's always beneficial. The aim is to generate all feasible non-dominated structures. In order to do this, we define the labels as follows:

Definition 3.3 Label.
A path p from the origin o to node j is labeled

L p = {c p , j, h p , q p , d min p , d GT p , A p , B p , W 1 p , • • • , W n p }
, where c p is the cost of this path, h p and q p are the values of time and load resources, respectively, accumulated along this path; d min p and d GT p are respectively the minimal trip duration and the goods travel duration of the path represented by L p ; A p and B p are the start and end of the label time window as specified in definition 3.1; and W i p = 1 if node i is visited by L p , 0 otherwise.

Each resource used in the labelling has a validity interval. For a label that represents a path from o to j, the resource interval for h is the time windows of j . Other intervals are: [0, Q] for q, R + for d min and [0, t max ] for d GT . If the value of one resource is not valid with regard to its validity interval, the label is rejected.

During the extension of label L p from a node i to j, to obtain L p ′ , the label resources are updated as follows:

• c p ′ = c p + c ij where c ij is the cost of arc (i, j)
• h p ′ is calculated by adding all loading, service and travel times along the path from o to j.

If h p ′ < a j , then h p ′ is set at a j (waiting is allowed).

• W j p ′ = 1 and W g p ′ = W g p , ∀g ∈ V ′ \ {j}
• In order to compute the minimal trip duration d min p ′ of L p ′ , the waiting time is reduced as much as possible by delaying the departure time from the depot to the latest possible date.

• In the case j = d (d is the index for the depot when returning), then the goods travel duration

d GT p ′ of L p ′ is d GT p ′ = d GT p
• For other values of j (customers)

d GT p ′ = d min p ′ -k∈V ′ l k W k p ′ , i.e.
the goods travel duration is equal to the minimal trip duration minus the total loading time of the customers that are visited by the path p ′ .

• In order to compute the updated time window of label L p ′ , the maximum advancement and the maximum delay of the label are calculated such that no time constraints at customers are violated.

As stated above, when extending to a client, the minimal trip duration of label L p is the sum of the goods travel duration of this label d GT p and of the total loading time corresponding to the visited customers. d GT p can then be easily retrieved from d min p and compared to t max . Since the total loading time is fixed for a given customer set, minimising the trip duration for a set of customers is equivalent to minimising the goods travel duration. So, if the minimal trip duration minus the total loading time does not respect the duration limit, then the minimal goods travel duration does not respect it either. When the label is extended to the depot, as the depot can be visited any time, if the minimal goods travel duration is lower than the duration limit before the extension to the depot, then it still is after the extension.

As for dominance, we use the following relation:

Definition 3.4 Dominance relation.
If p and p ′ are two different paths from origin o to node j with labels L p and L p ′ , respectively, then p dominates p ′ if and only if the nodes visited by p and by p ′ are the same (W i p = W i p ′ for every customer i), the time window of L p includes the time window of L p ′ (A p ≤ A p ′ and B p ≥ B p ′ ), and

c p ≤ c p ′ , h p ≤ h p ′ , q p ≤ q p ′ , d min p ≤ d min p ′ . 1 2 3 D 4 [0 , 10] [0 , 5] [0 , 20] [6 , 10] [10 , 20] -2 -2 -1 -1 -2 -2 L1 , L2 L3 , L4 -2
Figure 1: Illustration of the dominance relation Hence a path p dominates a path p ′ if (i) its cost c p is not greater, (ii) it does not consume more resources for every resource considered, (iii) it visits the same customers, and (iv) it has at least the same temporal positions.

Lemma 3.1 If label L 1 dominates label L 2 then for all labels L 4 extended from L 2 there is a label L 3 which dominates label L 4 .

Proof:

Let L 1 dominate L 2 at node j. Necessarily, these two labels visit the same customers, and the time window of L 1 includes the time window of

L 2 , c 1 ≤ c 2 , h 1 ≤ h 2 , q 1 ≤ q 2 and d min 1 ≤ d min 2
. For every feasible label L 4 arriving at node g at time h extended from L 2 , consider label L 3 arriving at node g at time h extended from L 1 , such that the nodes visited by L 3 after the node j are the same, and are visited in the same order as nodes visited by L 4 after node j. Condition h 1 ≤ h 2 and d min 1 ≤ d min 2 trivially imply that L 3 is feasible. Let path the partial path between j and g. The resource consumptions on this partial path are the same for L 3 and L 4 . Thus h 3 ≤ h 4 , q 3 ≤ q 4 and L 3 and L 4 visit the same customers.

The cost c path and the minimal trip duration added to the trip d min path along the path from j to g are the same for L 3 and L 4 because the nodes are visited in same order and at the same times. It follows that the cost of L 3 and the cost of L 4 are equal to c 1 + c path and c 2 + c path , respectively. Consequently, we have c 3 ≤ c 4 .

The minimal trip duration of L 3 and L 4 can be decomposed to d . Let us recall that the time window of L 1 includes the time window of L 2 . Thus, the arrival time to node j of L 1 can be delayed until the arrival time to node j of L 2 . Consequently, the arrival time to node j of L 3 can be delayed until the arrival time to node j of L 4 and it follows that From the hypothesis that L 1 dominates L 2 at node j, it follows that d min

1 ≤ d min 2 and [A 2 , B 2 ] ⊆ [A 1 , B 1 ]. The worst case would be that [A 1 , B 1 ] = [A 2 , B 2 ].
In this worst case, if the same partial path path was added to L 2 and L 1 with this time window, it would follow that time windows for L 3 and L 4 would be the same,

[A 3 , B 3 ] = [A 4 , B 4 ]. It follows that in the case [A 2 , B 2 ] ⊆ [A 1 , B 1 ], then [A 4 , B 4 ] ⊆ [A 3 , B 3 ].
Thus we have c 3 ≤ c 4 , h 3 ≤ h 4 , q 3 ≤ q 4 and d min 

⋄⋄⋄

The labeling and dominance process can be illustrated with the example given in Figure 1. In this exemple, node D represents the depot and nodes 1,2,3,4 the customers. α is equal to 3 and the costs marked on arcs take this value into account. The demand and the service time at each customer are set at 0.

Let us compare two labels L 1 and L 2 , with the following values (see definition 3.3): L 1 = {-5,3,6,0,4,2,8,1,1,1,0}, L 2 = {-5,3,6,0,4,2,6,1,1,1,0}. L 1 and L 2 respectively visit nodes 2,1,3 and nodes 1,2,3, in these orders. Thanks to our dominance relation, L 1 dominates L 2 at node 3. In this example, if we extend L 2 to node 4, we obtain a label L 4 such that L 4 = {-7,4,7,0,5,2,7,1,1,1,1} and L 4 visits nodes 1,2,3,4 in this order. If we extend L 1 to node 4, we obtain a label L 3 such that L 3 = {-7,4,7,0,5,2,9,1,1,1,1} and which visits nodes 2,1,3,4 in this order. L 3 visits the same nodes as L 4 , it has the same cost, time, load and minimal trip duration as L 4 but its time window includes the time window of L 4 . Thus L 3 dominates L 4 . Lemma 3.1 ensures that the dominance relation, defined in Definition 3.4, does not delete labels that could potentially contribute to the optimal solution.

Note that the attainability of clients is implicitly included in our definitions, thanks to the combination of explicit resources.

Phase 2: Column Generation

The second phase of the algorithm is based on Column Generation and Branch and Price. We propose a set covering formulation where columns (variables) represent trips (see Definition 3.2).

Master problem formulation:

The second phase of our algorithm deals with choosing and scheduling the best set of trips to serve all customers. This phase can be modeled as a set covering problem with mutual exclusion constraints, where variables are trips. Indeed, mutual exclusion constraints are needed to enable the assignment of selected trips to the U vehicles, while making sure that two trips assigned to the same vehicle do not overlap. We propose to model these constraints by stipulating that at most U vehicles are used at every time instant. One solution to achieve this would be to discretize time and to define a boolean indicator u tk that would state if trip r k includes instant t in its schedule. At each time instant, the sum r k ∈Ω u tk should then not be greater than the number of available vehicles.

The set covering problem can then be written:

z(Ω) = minimize r k ∈Ω c k θ k (26) subject to r k ∈Ω a ik θ k ≥ 1 (i ∈ V \ {0}), (27) 
r k ∈Ω u tk θ k ≤ U (t ∈ {0, • • • , T * 10 nb }), (28) 
θ k ≥ 0 (r k ∈ Ω), (29) 
θ k integer (r k ∈ Ω), (30) 
where a ik indicates whether customer i is visited by trip r k or not, nb is the number of decimal places that define the instance precision and θ k are decision variables. Constraints (27) require that every customer be visited at least once. Constraints (28) require that at most U vehicles be used during any time interval. Yet, in order to cope with the precision of instances at hand, the discretization should be finegrained and the number of these mutual exclusion constraints may lead to combinatorial explosion. To avoid this, we propose to solve a relaxed problem with coarser time intervals. If the obtained solution is feasible then it is an optimal solution, otherwise finer time discretization is required. For this, we propose to partition the planning horizon [0, T ] in the following way. Let l min be a small value guaranteeing that the duration of any feasible trip is greater than l min . We can then partition

[0, T ] into a set of time intervals ∆ t , ∆ t = [l min × t, l min × (t + 1)[ for t ∈ {0, • • • , ⌊ T lmin ⌋ -1}, ∆ ⌊ T l min ⌋ = [⌊ T lmin ⌋l min , T ].
With this planning horizon partition, we replace the constraints (28) by the following constraints :

r k ∈Ω b tk θ k ≤ U (t ∈ {0, • • • , ⌊ T l min ⌋}), (31) 
where b tk ∈ [0, 1] is a proportion of occupation of ∆ t by trip k. According to the hypothesis that l min is smaller than any possible trip (in practice, the shortest travel time between two vertices in the set A), the definition of b tk allows us to calculate the starting time of any trip without relying on a time granularity that would limit the precision of instances to solve.

Once the time instant relaxation is solved, if the optimal solution is not feasible, i.e. does not satisfy constraints (28), l min is divided by two and the process is repeated. In what follows, we explain how the time instant relaxation is solved. Due to the multitude of possible time positions for a trip, the size of set Ω is huge. We therefore use column generation to compute the linear relaxation ( 26)-( 27), ( 29), (31), of the set covering formulation ( 26)-( 27), ( 29)-( 30), ( 31). As will be seen in Section 4, we never met in our experiments the situation where the solution of the time instant relaxation was not feasible and l min had to be divided.

The subproblem:

The subproblem consists of finding trips (structure fixed in time) with a negative reduced cost

c k -i∈V \{0} a ik λ i + t∈{0,••• ,⌊ T l min
⌋} b tk Ψ t where λ i and Ψ t are dual variables respectively corresponding to primal constraints ( 27) and (31).

Among the set of trips that correspond to one given structure, only the time position varies and affects the reduced cost. Every non-dominated structure has been previously enumerated (set S). Thus, the subproblem consists of finding, for every structure s l , new trips, which are generated by selecting a time position in the time window [A k , B k ]. Only new trips with negative reduced cost are kept as new columns. In fact, for a given structure, only the trip with the lowest negative reduced cost is kept as a new column.

In order to find this time position, we have created a scheduling sub-algorithm. For each structure s l in S, our algorithm translates s l in its time window by unit time steps and computes the reduced cost of the associated trip. Note that the length of a unit time step corresponds to the time granularity of the instance and should not be confused with the length of a time interval. The translation stops when all possible temporal positions within the time windows of s l have been tried. This algorithm has polynomial-time complexity with respect to the size of S.

When no new columns can be found, the Column Generation process stops.

Initialization process:

An initial solution is required in order to start the Column Generation process. Finding an initial solution might not be trivial or may even be impossible since the fleet is limited. We thus created an artificial variable, corresponding to an artificial trip r * . r * is defined as follows:

Definition 3.5 Let r * be the trip with cost c * = 2 s l ∈S c l . r * contains all the customers, its time windows are equal to the depot time windows and all b tk are equal to the number of vehicles allowed U .

The properties of r * make it possible to state that:

Lemma 3.2 If r * is part of the optimal solution, then there is no integer optimal solution where the artificial variable is null.

Quickly put, the reason for this latter property is as follows. Let us consider that the optimum solution of the linear relaxation contains the artificial variable with a certain value σ that is not null. If there is an integer solution that does not contain the artificial trip, then the artificial variable can be set at 0 and the values of all other variables in the integer solution should be incremented by σ. This would improve the solution, which is absurd if it is optimal. An analytical proof of this statement can be found in Hernandez (2010). 

Branch and Price scheme

The column generation scheme described above is embedded into a Branch and Price, i.e. a Branch and Bound algorithm is applied and, at each node of the search tree, column generation is carried out to compute a lower bound.

Two branching strategies are defined and used as follows. The first strategy is very common. An arc (i, j) with a fractional flow is selected (with the flow being the sum of the different flows generated by the path variables covering this arc). Two branches are created: one branch where the flow on arc (i, j) is forced to 1, one branch where it is forced to 0. The selection rule for the arc is to select the arc whose fractional quantity of flow multiplied by its cost is maximized. Once finished, the two new nodes are added to the list of pending nodes, a new node is selected, column generation is applied and the branch-and-price scheme continues. New constraints (flows forced to 0 or 1) can be easily handled at the pricing and master problem levels by adequately removing arcs and variables.

Nevertheless, in our case, because of temporal constraints, having all arcs with an integer flow does not imply that the primal solution (set of θ k variables) is an integer solution. It is indeed possible that trips with identical structures but different timestamps are simultaneously selected in the solution (see Figure 2). When this situation occurs, the above branching strategy cannot be applied. We may thus adopt the second branching strategy, which is divided into two steps.

The first step is an attempt to obtain an integer solution that covers the set of arcs having a non-zero flow in the current primal solution. For this step, we introduce the so-called repair procedure detailed below. If an integer solution is found, it has the same cost as the current primal solution (the same arcs are covered with the same quantity of flow) and the search continues normally. Otherwise, that is when the repair procedure fails, no integer solution exists covering these arcs. We can thus deduce that at least one of these arcs is absent in the optimal solution. The second step then consists in successively searching for the best integer solution with one of the arcs forbidden. This step is carried out with the branching strategy detailed below.

Repair procedure (first step)

With a simple example, let us first show that constructing an integer solution from a fractional solution with integer flows on arcs is not always possible. Consider the fractional solution given in Figure 2, where:

• three structures s 1 , s 2 and s 3 are selected, with, for each structure, two trips of coefficient 0.5 each,

• the durations of the structures (including loading) are 2, 2 and 6 respectively,

• the time windows of the three structures are [6, 10], [1, 5] and [0, 11] respectively,

• a single vehicle is allowed.

This example clearly shows that no integer solution exists: none of the 6 possible sequences {s 1 , s 2 , s 3 }, {s 1 , s 3 , s 2 }, {s 2 , s 1 , s 3 }, {s 2 , s 3 , s 1 }, {s 3 , s 1 , s 2 }, {s 3 , s 2 , s 1 } admits a feasible schedule.

Actually, in this case (one vehicle), the problem of searching for a feasible solution is exactly 1|p i , r i , di |where tasks of duration p i with release dates r i and due dates di have to be scheduled on a single machine. As this problem is N P-complete, see [START_REF] Lenstra | Complexity of scheduling machine problems[END_REF], then the problem addressed with the repair procedure is also N P-complete. This problem can however be simply shaped as a VRPTW where the set of "customers" is the set of structures present in the current fractional solution (s 1 , s 2 , s 3 on the above example). Time windows associated with "customers" s l are then set at [A l , B ld min l ]; service times, loading times and demands are set at 0; and travel times on ongoing arcs from s l are set at d min l . The repair procedure then consists in searching for a feasible solution for this VRPTW instance. If a solution is found, we update the incumbent solution and prune the node; otherwise, the second step is called for. We tackle the solution of this VRPTW with the branch-and-price algorithm described in [START_REF] Feillet | An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems[END_REF]. Note that repairing can be performed very quickly due to the size and characteristics of the VRPTW instance.

Branching strategy (second step)

When the repair procedure fails, it proves that finding an integer solution from the structures of the current primal solution is impossible. One can easily deduce that at least one of the arcs of these structures is not in the optimal solution. Indeed, otherwise, all arcs would be present in the optimal solution and, as these arcs are sufficient to cover the demand, the optimal solution would exactly match these arcs, which is impossible as shown by the repair procedure.

In order to forbid one of the arcs, we apply the standard branching rule for one of these arcs which has not been subject to any constraint yet: create two branches where the flow on the arc is forced to 0 and 1, respectively. Note that the effect of the branching will be nil on the branch where the flow is forced to 1. Hence, the branching will be repeated on this branch until pruning is activated or all arcs with flow 1 are forced. In the latter case, the pending node can simply be removed as, from the repair procedure, we already know that no feasible solution can be obtained from this node.

Overall branching scheme

Figure 3 illustrates the overall branching scheme.

Remark about pruning:

The way we have defined the initial solution of the master problem, using an artificial variable defined above, allows us to prune some branches during the Branch and Price process thanks to lemma 3.5. To make pruning even more efficient, the cost of this variable is set at the best known integer solution. This pruning condition proved effective during tests on Solomon's instances, especially when there is no solution to cover the whole set of customers.

Results

Presentation

In this section, many results obtained with our exact algorithm are reported and compared to previous studies. First, the test instances of Solomon are presented. Then, we analyse the performance of our algorithm. The impact of the duration limit is also investigated. The computing platform is an Intel Core 2 duo 2.10 GHz with 2 GB of RAM using GLPK to solve the master problem. The computation time limit was set at 2 hours.

Test instances

Our tests were performed using the well-known VRPTW benchmark instances created by [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problem with time window constraints[END_REF]. These instances are divided into six classes that are a combination of two criteria. The first criterion concerns the spatial position of customers. There are three different spatial layouts: customers in clusters ("C" type), customers randomly located ("R" type), and an intermediate case with part of the customers clustered and the rest randomly located ("RC" type). The second criterion concerns the tightness of time constraints at customers. There are two types: tight time windows in a short planning time horizon (type "1") and large time windows in a long planning time horizon (type "2"). By combining these two criteria, there are six basic classes which are denoted: "C1", "C2", "R1", "R2", "RC1" and "RC2". Overall, there are 56 instances with 100 customers. Please note that for a given class, there are several instances with different customer time windows, but the spatial layout of customers is the same for the whole class. Instances are denoted as in the following example: C201-25 corresponds to the first instances of class "C2" where only the first 25 customers are considered. In this study, instances with a tight planning time horizon were discarded. In fact, the short horizon does not allow a significant number of routes to be assigned to the same vehicle.

The service time of the instances of class C2 (90) is much longer than the service time of instances of classes R2 and RC2(10). Therefore, t max was set to 75 for R2 and RC2 classes and was set to 220 for the C2 class. These settings are consistent with the ones used in [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF]. In order to check for the influence of a longer t max than (75;220) on the comparison of performances, algorithms are also tested for t max set to (100;250).

Finally, for all instances, the customer loading time l i was set at 20% of its service time st i , and the fleet size was set to 2 vehicles.

Note that, in the benchmark instances, only the customer and depot geolocalisations are given. Implicitly, the induced graph is considered complete and each edge receives a travel time that corresponds to the Euclidian distance between the corresponding nodes. In previous studies to which we compare our work, their respective authors used different numerical settings for the distances. In [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] and [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF], the authors truncated the distances at two decimal places. It appears that no truncation at all was applied to distances in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF]. Yet, the authors rounded the distances of their solutions to two decimal places. The difference in truncating distances in the graph does not only change the results, it also affects the practical difficulty of each instance. Thus, in order to compare our algorithm with these two previous studies, we ran it with each of the two above-mentioned distance calculations. The results and comparison are given in two distinct sections and separate tables.

Note that our computing platform is an Intel Core 2 duo 2.10 GHz with 2 GB of RAM using GLPK to solve the linear relaxation of the restricted master problem. The computing platform used in Azi ( 2010) is an AMD Opteron 3.1 GHz with 16 GB of RAM using ILOG CPLEX 10.0 to solve the linear relaxation of the restricted master problem. The computing platform used in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] 2.66 GHz Quad Core processor with 4 GB of RAM. Clearly, our machine is the least powerful of the three. For all instances, the computation time limit was set at 2 hours. 

Results and comparison with Azi et al. (2010)

Tables 1, 2, 3 and 4 provide results with precision in distances in the graph set at two decimal places.

Tables 1 and2 provide results for t max set at (75; 220), for all instances with 25 and 40 customers, respectively. Each table provides the lower bound (LB), the cost of the optimal solution (UB) that is found, the gap between these two values and the total solving time, in the subcolumn named T new . A "

√ " in column ∆ indicates that the time instant relaxation provides a feasible solution with the initial time granularity. A comparison of performances with [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF]) is provided in the subcolumn named T AGP which is the processing time obtained in the study by [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF], and in the column named R new which is the ratio defined by the processing time in [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF] divided by the processing time of our method. Note that the results in [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] were corrected in [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF], which explains why we only compare with the latter. A "NoSol" in a table indicates that, with two vehicles, there is no solution covering all customers for the corresponding instance. A processing time in italics in the T AGP column indicates that the authors have found a solution that does not cover all customers. When T AGP or T new is left blank, the instance could not be solved by the respective authors of the studies compared here. When none of the authors was able to find a solution, the instance is excluded from the table.

Our algorithm solves 47 of the 54 instances and the GAP between the lower and upper bounds ranges from 0.00% to 5.86%. In all cases, the time instant relaxation was able to obtain feasible solutions with the initial time granularity. Only 22 were solved in [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF]. If we consider the instances for a which a coverage exists and which are solved by both methods, our algorithm gets significantly faster results, from 3 to 31000 times faster, and 2000 times faster on average.

Tables 3 and4 provide similar data as in the previous table, in the case of a longer t max , with t max = (100; 250). The definition of columns provided for tables 1 and 2 also holds here. Our algorithm solves 38 of 54 instances with a GAP that ranges from 0.00% to 4.15% and all solutions are found during the first resolution, whereas in Azi (2010) only 18 are solved. As for the smaller t max case, if we consider instances where there is complete coverage for instances solved by both methods, our algorithm is 2000 times faster on average for these instances than the one given in [START_REF] Azi | Méthodes exactes et heuristiques pour le problème de tournées avec fenêtres de temps et réutilisation de véhicules[END_REF], and the ratio ranges from 5 times faster to 10000 times faster. [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] Following the results and comparison with the first published algorithm on MTVRPTW-LD, we provide here a comparison with the results given in the second and very recent work of [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF]. As already explained, separate comparison could not be avoided due to the different numerical settings for distance calculations.

Results and comparison with

Tables 5,6, 7 and 8 provide results based on distance calculations that do not include any rounding.

Tables 5,6, 7 and 8 provide results for t max set at (75; 220) and (100; 250), for every instance with 25 and 40 customers. The columns are defined as in the previous section, except for the "Total Time" column that is decomposed into four subcolumns: T MAV C , T new , R MAV C and R new . T MAV C and T new indicate the processing time of the algorithm published in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] and the processing time of our algorithm, respectively. R MAV C and R new give ratios of the computing times of the slowest method divided by the fastest; depending on which method is the fastest, the ratio is reported in one column or in the other. A value +∞ is reported when a single method solves the instance. A "NoSol" in a table indicates that, with two vehicles, there is no solution covering all customers for the corresponding instance. processing time in italics in column T MAV C (tables 6 and 8) indicates that the authors found a solution that does not cover all customers. When T MAV C or T new is left blank, the instance could not be solved by the respective authors of the studies compared here. When none of the authors was able to find a solution, the instance is excluded from the table.

Our algorithm closes 86 of the 108 instances and the GAP between the lower and upper bounds ranges from 0.00% to 5.86%. As for the comparaison with Azi (2010), all solutions found during the resolution of the relaxed time instant case are optimal. In [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF], only 67 instances of this set were solved.

Our algorithm clearly performed better than that of [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF], particulary for instances of the R class. The new algorithm solves all R instances for 25 customers for short and longer t max . The algorithm in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] does not solve 4 of these, which have a longer t max . For R instances commonly solved and for which there is complete client coverage, the total solving time of our algorithm is approximately 97 seconds whereas the total for that in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] is approximately 547 seconds. Solving is faster by an average factor of 5. When it comes to instances of the R class and 40 customers, our algorithm closes 15 instances whereas that of [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] only closes 6. The difference is highest for the longest t max .

A comparison of the two algorithms for the C class does not exhibit significant advantages of one algorithm. Our algorithm closes more instances (29 compared to 25), but the fastest algorithm depends much on a particular instance.

The situation for the RC class is also closely dependent on a given instance for the comparison of solving times. For the 11 commonly solved instances with complete coverage our algorithm performs better in 6 cases. Among the three algorithms compared in this paper, the algorithm published in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] is the only one that closes the instance RC204 -25 for the shorter t max .

Finally, our algorithm clearly performs better than that of [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] when the number of customers or the limit duration t max are increased.

Conclusions

Our algorithm compares very favorably with the first algorithm published on the MTVRPTW-LD, [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF]. It also outperforms the more recent one, [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF], on instances of the R class. There are instances in the R and RC classes in which the algorithm given in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] has the best performance to date. Compared to [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF], a main advantage of our approach lies in the efficiency of the Column Generation subproblem, which is solved with a fast pseudo-polynomial algorithm. The time-indexed graph introduced in [START_REF] Macedo | Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model[END_REF] seems to have some advantages for some clustered clients layouts. It follows that this feature might be combined with our own approach to further improve exact solution of MTVRPTW-LD. Our approach is more robust with respect to longer t max and the number of customers than previous works.

With the instances considered, all solutions found when solving the time instant relaxation of the problem happen to be feasible in the unrelaxed problem. This indicates that this relaxation is very efficient.

The solving time is extremely variable between instances of the same class. In order to allow precise comparisons and design faster techniques, a successor to the classic [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problem with time window constraints[END_REF] 

  ij indicates if the arc (i, j) is in trip r k or not, σ u k indicates if trip r k is traveled by vehicle u, y u kl indicates whether trip r l is traveled after trip r k by vehicle u or not, while δ k i indicates if customer i is visited by trip r k . For a customer i visited by a trip r k , S k i is the service starting time. α k , d start k and d back k are the loading time, the service starting time and the arrival time of trip r k to the depot, respectively. We also introduce K = {1, • • • , k U B } where k U B is an upper bound on the number of trips (e.g., k U B = n) and M is a large number.

  time of a trip. For a trip r k with structure s l , we have d start k ≥ A l and the arrival time of the trip is d start k + d min l ≤ B l . c k = c l also denotes the cost of the trip. The set of trips is denoted Ω.
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  window of L 3 includes the time window of L 4 and then label L 3 dominates L 4 .

Figure 2 :
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Table 1 :

 1 Comparison of our results with Azi (2010) on Solomon's benchmark (25 customers) with t max value set (75;220)

	Instance	LB	UB	% GAP ∆	Total Time
	c201-25 c202-25 634.772 653.37 646.51 659.02 c203-25 626.017 646.4 c204-25 592.06 602.46 c205-25 607.913 636.39 c206-25 603.333 636.39 c207-25 588.783 603.22 c208-25 597.348 613.2 r201-25 757.79 762.43 r202-25 645.78 645.78 r203-25 620.177 621.97 r204-25 575.655 579.68 r205-25 626.48 634.09 r206-25 596.74 596.74 r207-25 583.658 585.74 r208-25 575.616 579.68 r209-25 598.107 602.39 r210-25 620.293 636.15 r211-25 568.54 575.91 rc201-25 984.438 988.05 rc202-25 837.557 881.49 rc203-25 705.217 749.15 rc205-25 808.579 840.35 rc206-25 726.097 761.03	1.90 2.85 3.15 1.73 4.47 5.19 2.39 2.59 0.61 0.00 0.29 0.69 1.20 0.00 0.36 0.70 0.71 2.49 1.28 0.37 4.98 5.86 3.78 4.59	T AGP √ 40361.2 √ √ √ √ √ √ √ √ 68.3 √ 205.2 √ 1333.2 √ 30983.3 √ 354.1 √ 318.4 √ 2853.5 √ 9270.3 √ 262.6 √ 5094.1 √ 5648.6 √ 3.1 √ √ √ 28.8 √ 7156.8	T new 1.3 49.3 265.0 248.0 38.1 692.4 104.7 41.4 0.1 0.6 2.0 4.9 1.0 0.8 3.5 7.2 1.7 8.5 27.6 0.9 24.5 62.3 3.7 35.7	R new 31507.57 546.40 346.04 656.43 6255.46 359.86 416.21 822.81 1284.33 150.06 602.64 204.36 3.37 7.71 200.19
	Solved : 24	Solved AGP : 15	Average R new : 2282.29

Table 5 :

 5 Comparison of our results with Macedo et al. (2011) on Solomon's benchmark (25 customers) with t max value set (75;220)

	Instance	LB	UB	% GAP ∆	Total Time
	c201-40 1124.31 1168.83 c202-40 1097.7 1111.15 c203-40 1077.08 1088.55 c204-40 1034.33 1039.16 c205-40 1076.62 1083.81 c206-40 1073.91 1081.37 c207-40 1042.6 1055.04 c208-40 1063.72 1071.99 r201-40 NoSol NoSol r204-40 839.697 858.22 r205-40 991.896 1017.84 r206-40 920.094 927.22 r207-40 882.223 886.22 r208-40 839.697 858.22 r209-40 926.303 935.81 r210-40 937.597 952.92 r211-40 849.855 869.75 rc201-40 NoSol NoSol rc202-40 NoSol NoSol rc203-40 NoSol NoSol rc205-40 NoSol NoSol rc206-40 NoSol NoSol rc207-40 NoSol NoSol	3.81 1.21 1.05 0.46 0.66 0.69 1.18 0.77 2.16 2.55 0.77 0.45 2.16 1.02 1.61 2.29	T AGP √ 19978.9 √ √ √ √ √ √ √ 3221.7 √ 2979.5 √ √ 244494.0 1193.4 204.87 T new R new 31.3 639.02 67.4 186.5 145.3 34.1 184.0 1491.5 52.6 61.24 0.5 4049.2 √ 171.5 √ 68.9 √ 4954.8 √ 198.2 √ 246.5 √ 5093.9 √ 14.6 0.328 √ 6823.2 2.421 √ 5.8 √ 1904.2 0.859 √ 1.7 √ 4.1
	Solved : 23	Solved AGP : 7		Average R new : 301.71
	Table 2: Comparison of our results with Azi (2010) on Solomon's benchmark (40 customers) with
	t max value set (75;220)				

Table 6 :

 6 Comparison of our results with Macedo et al. (2011) on Solomon's benchmark (40 customers) with t max value set (75;220)

	Instance	LB	UB	% GAP ∆	Total Time
	c201-40 1124.52 1169.04 c202-40 1097.9 1111.34 c203-40 1077.26 1089.24 c204-40 1034.51 1039.35 c205-40 1076.83 1084.02 c206-40 1074.12 1081.57 c207-40 1042.79 1055.24 c208-40 1063.93 1072.22 r201-40 NoSol NoSol	3.81 1.21 1.1 0.47 0.66 0.69 1.18 0.77	T MAV C 25.5 79.4 342.3 63.6 109.3 659 112.7 √ 2358.8 √ √ √ √ √ √ √ √	T new 32.8 70.3 135.5 112.9 34 173.5 1700.3 52.3 0.4	R MAV C R new 1.29 1.13 2.53 +∞ 1.87 1.59 2.58 2.15
	r203-40 r204-40 r205-40 r206-40 r207-40 r208-40 r209-40 r210-40 r211-40 rc201-40 rc202-40 rc203-40 rc205-40 rc206-40 rc207-40	962.42 858.35 992.62 1019.89 839.82 924.61 931.94 882.76 890.93 839.82 858.35 926.44 935.95 943.54 963.45 850.78 869.88 NoSol NoSol NoSol NoSol NoSol NoSol NoSol NoSol NoSol NoSol NoSol NoSol	2.16 2.67 0.79 0.92 2.16 1.02 2.07 2.2	436.0 √ 3263.7 2902.3 √ 3811.2 √ 209.9 190.9 √ 276.2 √ 4328 √ 771.3 227.2 √ 1803.9 1297.1 √ 4187.5 √ 29.4 0.4 √ 40.2 2.4 √ 5.6 √ 6992.6 0.9 √ 1.9 √ 4.5	+∞	+∞ 1.12 1.1 +∞ +∞ 3.4 1.39 +∞
	Solved : 23	Solved MAV C : 16		

A " √ " in column ∆ indicates that the time instant relaxation provides a feasible solution with the initial time granularity. A

Table 7 :

 7 benchmark would benefit the community. Future research should address exact solution of MTVRPTW for cases without limited trip duration. Comparison of our results with Macedo et al. (2011) on Solomon's benchmark (25 customers) with t max value set (100;250)

	Instance	LB	UB	% GAP ∆		Total Time
	c201-25 541.02 541.02 c202-25 525.3 533.55 c203-25 523.83 532.88 c204-25 513.56 525.57 c205-25 522.16 530.05 c206-25 516.27 527.95 c207-25 515.78 525.57 c208-25 515.78 525.57 r201-25 691.38 698.26 r202-25 616.75 617.6 r203-25 577.16 577.8 r204-25 480.77 483.37 r205-25 555.62 559.21 r206-25 523.7 523.7 r207-25 497.48 512.04 r208-25 477.08 483.37 r209-25 512 517.74 r210-25 547.29 547.29 r211-25 470.15 474.54 rc201-25 814.19 849.45 rc202-25 679.95 679.95 rc203-25 593.06 593.63 rc205-25 698.83 702.61 rc206-25 600.28 604.23 rc207-25 510.6 514.9	0 1.55 1.7 2.29 1.49 2.21 1.86 1.86 0.99 0.14 0.11 0.54 0.64 0 2.85 1.3 1.11 0 0.93 4.15 0 0.1 0.54 0.65 0.83	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	T MAV C 0.4 167.9 3.7 20.7 44.2 63.2 1.3 32.6 64.1 9.4 40 47.7 58.9 2 11.6 47 8.2 8 91.7	T new 0.1 41 298.4 4711.6 0.9 129.3 25.8 114.1 0.8 4.5 10.5 29.9 3.3 6.4 425.6 82.3 12.3 2.4 59.1 3.2 2.9 12.9 2.2 3.8 48.1	R MAV C R new 2.86 4.09 +∞ +∞ 4.16 6.25 1.71 1.81 1.7 7.24 6.08 +∞ 2.88 6.24 +∞ +∞ 3.89 24.97 +∞ 1.6 3.97 3.64 3.67 2.12 1.91
	Solved : 25	Solved MAV C : 19	
	Instance	LB	UB	% GAP ∆		Total Time
	c201-40 934.76 966.89 c202-40 914.28 920.05 c205-40 911.93 921.37 c206-40 911.21 919.24 c208-40 908.89 915.61 r201-40 NoSol NoSol r203-40 807.91 816.65 r205-40 852.51 873.36 r206-40 803.4 812.42 r207-40 752.33 764.52 r209-40 760.38 768.99 rc201-40 NoSol NoSol rc202-40 NoSol NoSol rc205-40 NoSol NoSol	3.32 0.63 1.02 0.87 0.73 1.07 2.39 1.11 1.59 1.12	T MAV C 6.4 88.5 290.5 491.5 3.6 √ 1013.8 √ √ √ √ √ √ √ √ √ √ √ √ √ 35.7	T new 85.4 81.1 54.8 1522.2 2582.7 13.2 2469.1 1200.4 1514.2 7029.8 454 0.8 10.4 3.9	R MAV C R new 13.34 +∞ 1.62 5.24 5.25 +∞ +∞ +∞ +∞ +∞
	Solved : 14	Solved MAV C : 7		

Table 8 :

 8 Comparison of our results with Macedo et al. (2011) on Solomon's benchmark (40 customers) with t max value set (100;250)
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