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Abstract

This article tackles the multi-trip vehicule routing problem with time windows and limited
duration. A trip is a timed route such that a succession of trips can be assigned to one vehicle.
We provide an exact two-phase algorithm to solve it. The first phase enumerates possible
ordered lists of clients which match the maximum trip duration criterion. The second phase
uses a Branch and Price scheme to generate and choose a best set of trips so that all customers
are visited. We propose a set covering formulation as the column generation master problem,
where columns (variables) represent trips. The sub-problem selects appropriate timing for trips
and has a pseudo-polynomial complexity. Computational results on Solomon’s benchmarks
are presented. The computational times obtained with our new algorithm are much lower than
the ones recently obtained in the only two studies published on this problem to date.
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1 Introduction

The Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) is a variant of the
classical Vehicle Routing Problem with Time Windows (VRPTW) where vehicles can be scheduled
for more than one trip within a workday or planning time horizon. A trip is a timed route in a
context such that more than one route can be assigned to a vehicle. The multi-trip feature is needed
when the vehicle fleet size is limited. In this study, we consider a special case of the MTVRPTW,
called MTVRPTW-LD, where trips have a limited duration. This duration limit can be motivated
by management issues, e.g. limiting the maximum driving time for drivers, or can depend on the
nature of transported goods, e.g. delivering perishable goods.

Formally, the MTVRPTW-LD is defined as follows. Let G = (V,A) be a directed graph where
V = {0, · · · , n} and A is the set of arcs (i, j). Vertex 0 represents the depot and vertices 1, · · · , n
the customers. A cost cij and a travel time tij are attached to each arc (i, j) ∈ A. The fleet
comprises U vehicles, all with the same load capacity Q. Let [0, T ] be the planning time horizon,
and tmax the duration limit of a trip. A demand di, a service time sti and a loading time li are
defined for each customer i ∈ {1, · · · , n}. Each client must be served within a time window [ai, bi]
with ai, bi ∈ [0, T ]. However, waiting at a client is not forbidden and vehicles can arrive at a client
i earlier than ai. Service times relate to handling operations at the customers. Loading of a vehicle
for a trip is performed at the depot, before departure. Neither loading time, nor service time for
the last customer in the trip and travel time back to the depot are comprised in the trip duration
limit. It is assumed that times and costs have triangle inequality.

The problem is to find a set of trips with the lowest cost, such that not more than U vehicles
are used, and such that (i) all customers are served, (ii) two trips cannot be assigned to the same
vehicle if the schedules of these trips, including loading and return to the depot, overlap, (iii) loads
comply with the capacity of vehicles and (iv) time constraints at the clients and depot are met.

The MTVRPTW-LD can be formulated as a MIP where the decision variables are xk
ij , σ

u
k , yukl,

δki , Sk
i , αk, dstartk and dbackk . xk

ij indicates if the arc (i, j) is in trip rk or not, σu
k indicates if trip rk

is traveled by vehicle u, yukl indicates whether trip rl is traveled after trip rk by vehicle u or not,
while δki indicates if customer i is visited by trip rk. For a customer i visited by a trip rk, S

k
i is

the service starting time. αk, dstartk and dbackk are the loading time, the service starting time and
the arrival time of trip rk to the depot, respectively. We also introduce K = {1, · · · , kUB} where
kUB is an upper bound on the number of trips (e.g., kUB = n) and M is a large number.

With theses variable definitions, the MTVRPTW-LD can be formulated as follows:

min
∑

k∈K

∑

(i,j)∈A

cijx
k
ij (1)
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subject to

∑

{j∈V |(i,j)∈A}

xk
ij = δki , (i ∈ V \ {0}, k ∈ K), (2)

∑

k∈K

δki ≥ 1, (i ∈ V \ {0}), (3)

∑

{j∈V |(i,j)∈A}

xk
ij −

∑

{j∈V |(j,i)∈A}

xk
ji = 0, (i ∈ V, k ∈ K), (4)

∑

{i∈V |(0,i)∈A}

xk
0i ≤ 1, k ∈ K, (5)

∑

{i∈V \{0},(i,j)∈A}

dix
k
ij ≤ Q, k ∈ K (6)

αk =
∑

{i∈V \{0}}

liδ
k
i , k ∈ K, (7)

Sk
i + sti + tij − Sk

j +Mxk
ij ≤ M, (i, j) ∈ A, i, j 6= 0, k ∈ K (8)

Sk
i + sti + ti0 − dbackk +Mxk

i0 ≤ M, (i, 0) ∈ A, k ∈ K (9)

dstartk + αk + t0i − Sk
i +Mxk

0i ≤ M, (0, i) ∈ A, k ∈ K, (10)

Sk
i ≤ dstartk + αk + tmax, i ∈ V, k ∈ K, (11)

∑

{i∈V \{0}|(0,i)∈A}

xk
0i −

∑

u∈U

σu
k = 0, k ∈ K, (12)

σu
k + σu

l − yukl − yulk ≤ 1, k, l ∈ K, k 6= l, u ∈ U, (13)

1− yukl − yulk ≥ 0, k, l ∈ K, k 6= l, u ∈ U, (14)

dbackk − dstartl +Myukl ≤ M, k, l ∈ K,u ∈ U, (15)

aiδ
k
i ≤ Sk

i ≤ biδ
k
i , i ∈ V, k ∈ K, (16)

a0 ≤ dstartk ≤ b0, k ∈ K, (17)

a0 ≤ dbackk ≤ b0, k ∈ K, (18)

0 ≤ dstartk ≤ T, k ∈ K, (19)

0 ≤ dbackk ≤ T, k ∈ K, (20)

xk
ij ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (21)

yukl ∈ {0, 1}, k, l ∈ K,u ∈ U, (22)

σu
k ∈ {0, 1}, k ∈ K,u ∈ U, (23)

δki ∈ {0, 1}, i ∈ V \ {0}, k ∈ K, (24)

αk ≥ 0, k ∈ K. (25)

Constraints (2) and (3) express that all customers must be visited at least once. The possibility
to visit a client more than once is a valid relaxation since we consider routing problems with
Euclidean distances (triangle inequality) which makes it not optimal to visit a customer more than
once. Constraints (4)-(5) define the trip structure and constraints (6) concern the vehicle capacity.
Constraints (7) define the vehicle loading time.

Constraints (8)-(10) and (16)-(18) concern the compliance of trips to time window constraints.
Note that in the solution, subtours are forbidden by previous inequalities. Constraints (19)-(20)
concern respect of the planning horizon. Constraints (11) correspond to the deadline constraint for
serving a customer. Note that Constraints (16) ensure that Sk

i is set at 0 when customer i is not
in trip rk, and, consequently, constraints (11) are automatically satisfied in this case. Constraints
(12)-(15) order the routes for available vehicles.

A close variant of this problem, where covering all customers is not mandatory, has been
addressed with exact methods in two papers by Azi et al. (2007, 2010) and in Macedo et al.
(2011). In Azi et al. (2007), only the single vehicle case is considered. In all of these studies, the
fact that the trip duration is limited allows, if the limit is short enough, for a solving strategy
that enumerates all the possible client orderings that yield trips that satisfy the constraints of the
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problem. This makes the MTVRPTW-LD special with regards to the MTVRPTW. We found
that MTVRPTW-LD was worth further investigation and propose here a specific time constraints
modelling and a new exact algorithm. Our results highlight the specific advantages of our method.

This article is organized as follows. The following section is devoted to related works on the
Vehicle Routing Problem with Time Windows, more specifically on the multi-trip variant problem
and on strategies to solve it. In section 3, we present our new exact method for MTVRPTW-LD.
In section 4, in line with the choices made in Azi et al. (2010) and Macedo et al. (2011), we present
results for Solomon benchmark instances and compare these with the results of Azi et al. (2010),
Macedo et al. (2011). The following sections are devoted to a discussion and conclusions.

2 Literature review

As in Azi et al. (2007), published papers about multi-trip VRPTW with a limited fleet, problem
which we call MTVRPTW, are scarce and until that paper, most of the rare works reported so far
on solving this problem involved metaheuristics. In Battarra et al. (2009), Fleischmann (1990) is
cited as the first study including the multi-trip concept in the vehicle routing problem without time
windows. The author used a savings based algorithm to construct the routes and a bin packing
heuristic to combine them on vehicles. Sen and Bülbül (2008) provides a rather extensive survey
on the solving of multi-trip problems with metaheuristics, including MTVRPTW. In Battarra
et al. (2009), the authors breakdown the MTVRPTW into two easier problems, and create two
heuristics to solve them. The first heuristic deals with the creation of routes and the second with a
bin packing problem. The complete algorithm is iterative and is based on a self adaptive guidance
strategy which enforces the route heuristic to compute only routes that can improve the solution.
We will review only recent exact methods including the multi-trip feature.

In Mingozzi et al. (2012), the authors propose an exact method, based on the column generation
principle, to solve the multi-trip vehicle routing problem. Their method builds on previous works
from the same authors on different variants of the vehicle routing problem. Apparently, the method
can not trivially be extended to the solution of the MTVRPTW, as time constraints complicate
the packing of trips when forming vehicle routes. This assignment problem is actually the main
difficulty posed by the MTVRPTW.

To our knowledge there have not yet been any published papers on solving the MTVRPTW
exactly. Nevertheless, the limited duration variant MTVRPTW-LD has recently received greater
attention. The first exact method on MTVRPTW-LD was proposed in Azi et al. (2007), yet
with a slightly different and more general formulation. In Azi et al. (2007), contrary to the
common convention for multi-trip and timed vehicle routing problems, covering all customers is
not mandatory. To achieve full coverage whenever possible, the authors attribute an artificially
high benefit per visited client in the solution. The authors considered the case of the delivery of
perishable goods with a single vehicle. They created an algorithm with two dynamic programming
phases. In the first phase, dynamic programming is used to generate all non-dominated routes. A
graph where nodes represent the routes obtained in phase 1 is then created. Transitions of this
graph represent possible successions of routes. Note that the size of the routes graph is bounded
thanks to the limit on the route duration. In the second phase, dynamic programming is used to
generate the working day for the vehicle from the routes graph and with the dominance rule given
in Feillet et al. (2004). In Azi et al. (2010), the authors considered the same problem but with a
homogeneous fleet instead of a single vehicle. The first phase is similar to the single vehicle case. As
a second phase, the authors propose a branch and price algorithm to generate the working day for
each vehicle. Branch-and-price is a variant of branch-and-bound, where LP-based lower bounds are
computed through column generation, due to the huge number of variables. In column generation,
two problems, namely the restricted master problem and the pricing problem, are solved iteratively
until the pricing problem fails to find new potentially improving columns for the restricted master
problem. Interested readers are referred to Desrochers et al. (1992), Barnhart et al. (1996), Feillet
(2010) for details on column generation and a description of the Branch-and-Price technique. In
the Column Generation scheme given in Azi et al. (2010), the pricing problem is actually similar
to the elementary shortest path problem with resource constraints (ESPPRC) used in the second
phase of Azi et al. (2007), besides the cost modification implied by dual variables.

In a recent paper, Macedo et al. (2011) report on their investigation of the MTVRPTW-LD,
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with full coverage not being mandatory as in Azi et al. (2007, 2010). These authors also use a two
phase approach where the first phase is similar to that of previous authors. For the second phase,
they introduce a time-indexed graph, constructed from the trips obtained in the first phase. The
nodes of this graph correspond to discrete time instants. The notion of discrete time instant is an
abstraction on a discrete time scale of a certain continuous time duration according to a chosen
’granularity’. There are two types of arcs. The first arc type models the waiting time by one vehicle
at the depot between two successive trips. The second arc type models that one specific trip is
started at a specific time instant and ended at another one. The authors use several methods that
help to limit the size of the graph. Once this time-indexed graph has been calculated, the second
phase of the algorithm consists of solving a flow problem on this graph. One important feature
of the algorithm is that, when needed, it iteratively decreases the granularity (length) of a time
instant. This feature accelerates the solution.

It appeared to us that the performance of the algorithm by Azi et al. (2010) was hindered by
the complexity of explicitly handling the daily planning of vehicles. The time-indexed graph by
Macedo et al. (2011) offers a convenient way to handle time precision according to actual routing
needs but discrete-time granularity is still a weakness in the approach as our preliminary work
suggested, Hernandez (2010). Hereafter we present a new approach that is still based on two
phases, as these authors suggested.

3 A new exact method for the MTVRPTW-LD

In practice the formulation given in (1)-(25) is not tractable for any instances of reasonable size
because its linear relaxation is very weak. Here we propose a new two-phase algorithm, which is
based on a modelling that is different from those proposed by the above cited. We outline the
following definitions before describing the main components of the algorithm.

Definition 3.1 A structure sl is an ordered list of customers that can be visited consecutively by
a vehicle between two stops at the depot, such that capacity constraints are satisfied and such that
it is possible to schedule the departure from the depot in order to satisfy the time constraints of
these customers and depot.

Any vehicle tour with structure sl has the same cost, which we denote cl. dmin
l denotes the

minimal trip duration for the feasible vehicle tours with structure sl, between starting to load the
vehicle and returning back to the depot after deliveries. Note that minimizing the completion time
is equivalent to minimizing waiting times at customers. It follows that a time window [Al,Bl]
can be associated with a structure sl, where Al (Bl, respectively) is the earliest starting time for
loading (latest arrival time at the depot, respectively) such that the trip duration is exactly at its
minimal dmin

l .
Please note that the actual travel time of delivered goods, which we call goods travel duration

and will denote dGT , is the elapsed time between the depot departure time, after the vehicle has
been loaded, and the arrival time at the last customer of the trip, before the delivery. Only the
goods travel duration is subject to the duration limit tmax. The trip duration is the sum of the
goods travel duration and loading time plus the service time to the last customer and the time to
return to the depot from this last customer.

Definition 3.2 Considering a structure sl with its minimal trip duration dmin
l and its time win-

dow as defined above, a trip rk is a tour, following the sequence of visits defined by sl, scheduled
during its time window, with a fixed departure time and a duration of exactly dmin

l .

dstartk denotes the starting time of a trip. For a trip rk with structure sl, we have dstartk ≥ Al

and the arrival time of the trip is dstartk + dmin
l ≤ Bl. ck = cl also denotes the cost of the trip. The

set of trips is denoted Ω.
From these definitions, it can easily be seen that optimal solutions of the MTVRPTW-LD

can be obtained by combining trips. The MTVRPTW-LD can thus be modeled as a set covering
problem with mutual exclusion constraints, where variables represent trips, and the set to cover
is the set of customer deliveries. Mutual exclusion constraints aim to enable the assignment of
selected trips to U vehicles, while avoiding the assignment of two trips to the same vehicle overlap.
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As we already stated, for short enough duration limits, it is possible to generate all non-dominated
structures. Thus, we shall follow the principle set by previous authors and divide the algorithm
into two phases. The first phase enumerates the set S of possible structures. The second phase uses
a branch and price scheme to pick-up candidate structures generated in the first phase, schedule
them so that they become candidate trips, and then choose the best set of trips to cover deliveries
at the customers.

3.1 Phase 1: Enumeration phase

The structure generation problem is addressed via an approach that uses an algorithm to solve
the elementary shortest path problem with resource constraints (ESPPRC), given in Feillet et al.
(2004). While we basically apply the same strategy as that described in Azi et al. (2007) for
the enumeration phase, we detected a flaw in the dominance relation in this work that needs to
be corrected, and we therefore provide here, for further reference, full details and proof for the
required dynamic programming. It should be noted that the enumeration phase is not detailed in
Macedo et al. (2011).

The ESPPRC is defined over a graph G′ = (N ∪{o, d}, E), where N ∪{o, d} and E are the sets
of nodes and arcs, respectively. N = V \ {0} is the set of nodes for each customer in V \ {0}. The
nodes o and d correspond to the depot 0 at the beginning and at the end of structures, respectively.
The set E contains arcs (o, j), ∀j ∈ N ; arcs (i, d), ∀i ∈ N ; and arcs (i, j), ∀i, j ∈ N such that
customer j can be visited after customer i and arc (i, j) ∈ A (where A is the set of arcs of graph
G). A cost cij is associated with each arc (i, j) ∈ E.

Each feasible structure is represented by a path in G′. The following |N |+3 resource constraints
are needed on the ESPPRC, so that time windows are encountered, while the duration limit is
met and vehicle capacity is not exceeded: the time t, the minimal goods travel duration dGT , the
vehicle load q, and V i for each customer i ∈ N indicating if customer i has been visited along the
path. The resource intervals are the customer time windows for t, [0, tmax] for dGT , [0, Q] for q,
and {0, 1} for each V i. This set of resources is denoted by R = {t, dGT , q, V 1, · · · , V |N |}.

The ESPPRC on a graph G′ is usually solved by dynamic programming, as in Feillet et al.
(2004). This algorithm involves extending labels from one node to another. Each label represents
a partial feasible path from the depot to one customer. To initialize the labelling process, one label
is created on node o. This label is then extended to all successors of node o. Nodes are iteratively
treated until no new labels are created. When a node is treated, all of its new labels are extended
towards every possible successor node. Once a label has been extended, its resource intervals are
verified and the label is rejected if infeasible.

This basic method generates many labels. In order to decrease their number, a label dominance
relation is applied during the solution process on the generated labels which are associated with
the same node.

For the classic VRPTW, a path k from node o to node j is labeled Lk. Lk is defined by |N |+4

parameters represented by the vector Lk = {ck, j, T t
k, T

q
k , V

1
k , · · · , V

|N |
k }, where ck is the cost of this

partial path, j is the node to which the label is attached, T t
k and T

q
k are the accumulated values

of time and load, respectively, and V i
k = 1 if node i is unreachable, 0 otherwise.

The dominance relation for VRPTW is as follows: If k and k′ are two different paths from node
o to node j with labels Lk and Lk′ , respectively, then path k dominates k′ if and only if ck ≤ ck′ ,
T t
k ≤ T t

k′ , T
q
k ≤ T

q
k′ and V i

k ≤ V i
k′ , ∀i. That is, path k dominates k′ if its cost ck is not greater,

does not consume more resources for every resource considered, and every unreachable node is also
unreachable for k′. As stated in Feillet et al. (2004), it is guaranteed that no potential optimal
solution can be eliminated by this dominance relation.

In our case, an additional resource dGT needs to be handled. Moreover, the problem is no
longer to find the shortest elementary path within the whole graph G′ as the case for the VRPTW.
Instead, it is essential to find the shortest elementary path that starts and ends at the depot (node
0), for each subset of customers that can be visited without violating constraints. This is why our
dynamic programming algorithm differs from that of Feillet et al. (2004). The modified resources
and dominance rules are explained hereafter.
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Resources and dominance rule:

First, like in Azi et al. (2007), the cost cij on each arc is replaced by cij − (max(i,j)∈Acij + 1).
This transformation makes the visit at a customer’s always beneficial. The aim is to generate all
feasible non-dominated structures. In order to do this, we define the labels as follows:

Definition 3.3 Label.
A path p from the origin o to node j is labeled Lp = {cp, j, hp, qp, dmin

p , dGT
p , Ap, Bp,

W 1
p , · · · ,Wn

p }, where cp is the cost of this path, hp and qp are the values of time and load resources,

respectively, accumulated along this path; dmin
p and dGT

p are respectively the minimal trip duration
and the goods travel duration of the path represented by Lp; Ap and Bp are the start and end of the
label time window as specified in definition 3.1; and W i

p = 1 if node i is visited by Lp, 0 otherwise.

Each resource used in the labelling has a validity interval. For a label that represents a path
from o to j, the resource interval for h is the time windows of j . Other intervals are: [0, Q] for
q, R+ for dmin and [0, tmax] for dGT . If the value of one resource is not valid with regard to its
validity interval, the label is rejected.

During the extension of label Lp from a node i to j, to obtain Lp′ , the label resources are
updated as follows:

• cp′ = cp + cij where cij is the cost of arc (i, j)

• hp′ is calculated by adding all loading, service and travel times along the path from o to j.
If hp′ < aj , then hp′ is set at aj (waiting is allowed).

• W
j
p′ = 1 and W

g
p′ = W g

p , ∀g ∈ V ′ \ {j}

• In order to compute the minimal trip duration dmin
p′ of Lp′ , the waiting time is reduced as

much as possible by delaying the departure time from the depot to the latest possible date.

• In the case j = d (d is the index for the depot when returning), then the goods travel duration
dGT
p′ of Lp′ is dGT

p′ = dGT
p

• For other values of j (customers) dGT
p′ = dmin

p′ −∑
k∈V ′ lkW

k
p′ , i.e. the goods travel duration

is equal to the minimal trip duration minus the total loading time of the customers that are
visited by the path p′.

• In order to compute the updated time window of label Lp′ , the maximum advancement and
the maximum delay of the label are calculated such that no time constraints at customers
are violated.

As stated above, when extending to a client, the minimal trip duration of label Lp is the sum
of the goods travel duration of this label dGT

p and of the total loading time corresponding to the

visited customers. dGT
p can then be easily retrieved from dmin

p and compared to tmax. Since
the total loading time is fixed for a given customer set, minimising the trip duration for a set of
customers is equivalent to minimising the goods travel duration. So, if the minimal trip duration
minus the total loading time does not respect the duration limit, then the minimal goods travel
duration does not respect it either. When the label is extended to the depot, as the depot can be
visited any time, if the minimal goods travel duration is lower than the duration limit before the
extension to the depot, then it still is after the extension.

As for dominance, we use the following relation:

Definition 3.4 Dominance relation.
If p and p′ are two different paths from origin o to node j with labels Lp and Lp′ , respectively,

then p dominates p′ if and only if the nodes visited by p and by p′ are the same (W i
p = W i

p′ for every
customer i), the time window of Lp includes the time window of Lp′ (Ap ≤ Ap′ and Bp ≥ Bp′),
and cp ≤ cp′ , hp ≤ hp′ , qp ≤ qp′ , dmin

p ≤ dmin
p′ .
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Figure 1: Illustration of the dominance relation

Hence a path p dominates a path p′ if (i) its cost cp is not greater, (ii) it does not consume
more resources for every resource considered, (iii) it visits the same customers, and (iv) it has at
least the same temporal positions.

Lemma 3.1 If label L1 dominates label L2 then for all labels L4 extended from L2 there is a label
L3 which dominates label L4.

Proof:
Let L1 dominate L2 at node j. Necessarily, these two labels visit the same customers, and the time
window of L1 includes the time window of L2, c1 ≤ c2, h1 ≤ h2, q1 ≤ q2 and dmin

1 ≤ dmin
2 . For

every feasible label L4 arriving at node g at time h extended from L2, consider label L3 arriving
at node g at time h extended from L1, such that the nodes visited by L3 after the node j are the
same, and are visited in the same order as nodes visited by L4 after node j. Condition h1 ≤ h2

and dmin
1 ≤ dmin

2 trivially imply that L3 is feasible. Let path the partial path between j and g.
The resource consumptions on this partial path are the same for L3 and L4. Thus h3 ≤ h4, q3 ≤ q4
and L3 and L4 visit the same customers.

The cost cpath and the minimal trip duration added to the trip dmin
path along the path from j to

g are the same for L3 and L4 because the nodes are visited in same order and at the same times.
It follows that the cost of L3 and the cost of L4 are equal to c1 + cpath and c2 + cpath, respectively.
Consequently, we have c3 ≤ c4.

The minimal trip duration of L3 and L4 can be decomposed to dmin
1 + dmin

path + dmin
wait3

and

dmin
2 + dmin

path + dmin
wait4

, respectively. dmin
wait3

and dmin
wait4

) are the minimal waiting times necessary to
connect the path represented by L1, respectively L2, and the path path in order to obtain L3 and
L4, respectively.

Due to the dominance, dmin
1 +dmin

path ≤ dmin
2 +dmin

path. The question is to know if dmin
wait3

≤ dmin
wait4

.
Let us recall that the time window of L1 includes the time window of L2. Thus, the arrival time
to node j of L1 can be delayed until the arrival time to node j of L2. Consequently, the arrival
time to node j of L3 can be delayed until the arrival time to node j of L4 and it follows that
dmin
wait3

≤ dmin
wait4

and dmin
1 + dmin

path + dmin
wait3

≤ dmin
2 + dmin

path + dmin
wait4

.
Once the cost and trip duration have been checked, time windows are the last concern to obtain

proof of the dominance relation lemma.
From the hypothesis that L1 dominates L2 at node j, it follows that dmin

1 ≤ dmin
2 and [A2,B2] ⊆

[A1,B1]. The worst case would be that [A1,B1] = [A2,B2]. In this worst case, if the same partial
path path was added to L2 and L1 with this time window, it would follow that time windows for
L3 and L4 would be the same, [A3,B3] = [A4,B4]. It follows that in the case [A2,B2] ⊆ [A1,B1],
then [A4,B4] ⊆ [A3,B3].

Thus we have c3 ≤ c4, h3 ≤ h4, q3 ≤ q4 and dmin
3 ≤ dmin

4 and the time window of L3 includes
the time window of L4 and then label L3 dominates L4.

⋄⋄⋄

The labeling and dominance process can be illustrated with the example given in Figure 1. In
this exemple, node D represents the depot and nodes 1,2,3,4 the customers. α is equal to 3 and
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the costs marked on arcs take this value into account. The demand and the service time at each
customer are set at 0.

Let us compare two labels L1 and L2, with the following values (see definition 3.3): L1 =
{−5,3,6,0,4,2,8,1,1,1,0},L2 = {−5,3,6,0,4,2,6,1,1,1,0}. L1 and L2 respectively visit nodes 2,1,3 and
nodes 1,2,3, in these orders. Thanks to our dominance relation, L1 dominates L2 at node 3. In this
example, if we extend L2 to node 4, we obtain a label L4 such that L4 = {−7,4,7,0,5,2,7,1,1,1,1}
and L4 visits nodes 1,2,3,4 in this order. If we extend L1 to node 4, we obtain a label L3 such
that L3 = {−7,4,7,0,5,2,9,1,1,1,1} and which visits nodes 2,1,3,4 in this order. L3 visits the same
nodes as L4, it has the same cost, time, load and minimal trip duration as L4 but its time window
includes the time window of L4. Thus L3 dominates L4.

Lemma 3.1 ensures that the dominance relation, defined in Definition 3.4, does not delete labels
that could potentially contribute to the optimal solution.

Note that the attainability of clients is implicitly included in our definitions, thanks to the
combination of explicit resources.

3.2 Phase 2: Column Generation

The second phase of the algorithm is based on Column Generation and Branch and Price. We
propose a set covering formulation where columns (variables) represent trips (see Definition 3.2).

Master problem formulation:

The second phase of our algorithm deals with choosing and scheduling the best set of trips to
serve all customers. This phase can be modeled as a set covering problem with mutual exclusion
constraints, where variables are trips. Indeed, mutual exclusion constraints are needed to enable
the assignment of selected trips to the U vehicles, while making sure that two trips assigned to the
same vehicle do not overlap. We propose to model these constraints by stipulating that at most
U vehicles are used at every time instant. One solution to achieve this would be to discretize time
and to define a boolean indicator utk that would state if trip rk includes instant t in its schedule.
At each time instant, the sum

∑
rk∈Ω utk should then not be greater than the number of available

vehicles.
The set covering problem can then be written:

z(Ω) = minimize
∑

rk∈Ω

ckθk (26)

subject to

∑

rk∈Ω

aikθk ≥ 1 (i ∈ V \ {0}), (27)

∑

rk∈Ω

utkθk ≤ U (t ∈ {0, · · · , T ∗ 10nb}), (28)

θk ≥ 0 (rk ∈ Ω), (29)

θk integer (rk ∈ Ω), (30)

where aik indicates whether customer i is visited by trip rk or not, nb is the number of decimal
places that define the instance precision and θk are decision variables. Constraints (27) require
that every customer be visited at least once. Constraints (28) require that at most U vehicles be
used during any time interval.

Yet, in order to cope with the precision of instances at hand, the discretization should be fine-
grained and the number of these mutual exclusion constraints may lead to combinatorial explosion.
To avoid this, we propose to solve a relaxed problem with coarser time intervals. If the obtained
solution is feasible then it is an optimal solution, otherwise finer time discretization is required. For
this, we propose to partition the planning horizon [0, T ] in the following way. Let lmin be a small
value guaranteeing that the duration of any feasible trip is greater than lmin. We can then partition
[0, T ] into a set of time intervals ∆t, ∆t = [lmin × t, lmin × (t + 1)[ for t ∈ {0, · · · , ⌊ T

lmin

⌋ − 1},
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∆⌊ T

lmin
⌋ = [⌊ T

lmin
⌋lmin, T ]. With this planning horizon partition, we replace the constraints (28)

by the following constraints :

∑

rk∈Ω

btkθk ≤ U (t ∈ {0, · · · , ⌊ T

lmin

⌋}), (31)

where btk ∈ [0, 1] is a proportion of occupation of ∆t by trip k. According to the hypothesis that
lmin is smaller than any possible trip (in practice, the shortest travel time between two vertices in
the set A), the definition of btk allows us to calculate the starting time of any trip without relying
on a time granularity that would limit the precision of instances to solve.

Once the time instant relaxation is solved, if the optimal solution is not feasible, i.e. does not
satisfy constraints (28), lmin is divided by two and the process is repeated. In what follows, we
explain how the time instant relaxation is solved. Due to the multitude of possible time positions
for a trip, the size of set Ω is huge. We therefore use column generation to compute the linear
relaxation (26)-(27), (29), (31), of the set covering formulation (26)-(27), (29)-(30), (31). As will
be seen in Section 4, we never met in our experiments the situation where the solution of the time
instant relaxation was not feasible and lmin had to be divided.

The subproblem:

The subproblem consists of finding trips (structure fixed in time) with a negative reduced cost
ck −∑

i∈V \{0} aikλi+
∑

t∈{0,··· ,⌊ T

lmin
⌋} btkΨt where λi and Ψt are dual variables respectively cor-

responding to primal constraints (27) and (31).
Among the set of trips that correspond to one given structure, only the time position varies

and affects the reduced cost. Every non-dominated structure has been previously enumerated (set
S). Thus, the subproblem consists of finding, for every structure sl, new trips, which are generated
by selecting a time position in the time window [Ak,Bk]. Only new trips with negative reduced
cost are kept as new columns. In fact, for a given structure, only the trip with the lowest negative
reduced cost is kept as a new column.

In order to find this time position, we have created a scheduling sub-algorithm. For each
structure sl in S, our algorithm translates sl in its time window by unit time steps and computes
the reduced cost of the associated trip. Note that the length of a unit time step corresponds to
the time granularity of the instance and should not be confused with the length of a time interval.
The translation stops when all possible temporal positions within the time windows of sl have been
tried. This algorithm has polynomial-time complexity with respect to the size of S.

When no new columns can be found, the Column Generation process stops.

Initialization process:

An initial solution is required in order to start the Column Generation process. Finding an initial
solution might not be trivial or may even be impossible since the fleet is limited. We thus created
an artificial variable, corresponding to an artificial trip r∗. r∗ is defined as follows:

Definition 3.5 Let r∗ be the trip with cost c∗ = 2
∑

sl∈S cl. r∗ contains all the customers, its
time windows are equal to the depot time windows and all btk are equal to the number of vehicles
allowed U .

The properties of r∗ make it possible to state that:

Lemma 3.2 If r∗ is part of the optimal solution, then there is no integer optimal solution where
the artificial variable is null.

Quickly put, the reason for this latter property is as follows. Let us consider that the optimum
solution of the linear relaxation contains the artificial variable with a certain value σ that is not
null. If there is an integer solution that does not contain the artificial trip, then the artificial
variable can be set at 0 and the values of all other variables in the integer solution should be
incremented by σ. This would improve the solution, which is absurd if it is optimal. An analytical
proof of this statement can be found in Hernandez (2010).
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Figure 2: Example of the non-existence of a feasible integer solution from a feasible fractional
solution

3.3 Branch and Price scheme

The column generation scheme described above is embedded into a Branch and Price, i.e. a Branch
and Bound algorithm is applied and, at each node of the search tree, column generation is carried
out to compute a lower bound.

Two branching strategies are defined and used as follows. The first strategy is very common.
An arc (i, j) with a fractional flow is selected (with the flow being the sum of the different flows
generated by the path variables covering this arc). Two branches are created: one branch where
the flow on arc (i, j) is forced to 1, one branch where it is forced to 0. The selection rule for the
arc is to select the arc whose fractional quantity of flow multiplied by its cost is maximized. Once
finished, the two new nodes are added to the list of pending nodes, a new node is selected, column
generation is applied and the branch-and-price scheme continues. New constraints (flows forced
to 0 or 1) can be easily handled at the pricing and master problem levels by adequately removing
arcs and variables.

Nevertheless, in our case, because of temporal constraints, having all arcs with an integer flow
does not imply that the primal solution (set of θk variables) is an integer solution. It is indeed
possible that trips with identical structures but different timestamps are simultaneously selected
in the solution (see Figure 2). When this situation occurs, the above branching strategy cannot
be applied. We may thus adopt the second branching strategy, which is divided into two steps.

The first step is an attempt to obtain an integer solution that covers the set of arcs having
a non-zero flow in the current primal solution. For this step, we introduce the so-called repair
procedure detailed below. If an integer solution is found, it has the same cost as the current primal
solution (the same arcs are covered with the same quantity of flow) and the search continues
normally. Otherwise, that is when the repair procedure fails, no integer solution exists covering
these arcs. We can thus deduce that at least one of these arcs is absent in the optimal solution.
The second step then consists in successively searching for the best integer solution with one of
the arcs forbidden. This step is carried out with the branching strategy detailed below.

Repair procedure (first step)

With a simple example, let us first show that constructing an integer solution from a fractional
solution with integer flows on arcs is not always possible. Consider the fractional solution given in
Figure 2, where:

• three structures s1, s2 and s3 are selected, with, for each structure, two trips of coefficient
0.5 each,

• the durations of the structures (including loading) are 2, 2 and 6 respectively,

• the time windows of the three structures are [6, 10], [1, 5] and [0, 11] respectively,

• a single vehicle is allowed.

This example clearly shows that no integer solution exists: none of the 6 possible sequences
{s1, s2, s3}, {s1, s3, s2}, {s2, s1, s3}, {s2, s3, s1}, {s3, s1, s2}, {s3, s2, s1} admits a feasible schedule.

Actually, in this case (one vehicle), the problem of searching for a feasible solution is exactly
1|pi, ri, d̃i|− where tasks of duration pi with release dates ri and due dates d̃i have to be scheduled
on a single machine. As this problem is NP−complete, see Lenstra et al. (1977), then the problem
addressed with the repair procedure is also NP−complete.
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Figure 3: Branching strategy

This problem can however be simply shaped as a VRPTW where the set of "customers" is
the set of structures present in the current fractional solution (s1, s2, s3 on the above example).
Time windows associated with "customers" sl are then set at [Al,Bl−dmin

l ]; service times, loading
times and demands are set at 0; and travel times on ongoing arcs from sl are set at dmin

l . The
repair procedure then consists in searching for a feasible solution for this VRPTW instance. If a
solution is found, we update the incumbent solution and prune the node; otherwise, the second
step is called for. We tackle the solution of this VRPTW with the branch-and-price algorithm
described in Feillet et al. (2004). Note that repairing can be performed very quickly due to the
size and characteristics of the VRPTW instance.

Branching strategy (second step)

When the repair procedure fails, it proves that finding an integer solution from the structures of
the current primal solution is impossible. One can easily deduce that at least one of the arcs of
these structures is not in the optimal solution. Indeed, otherwise, all arcs would be present in the
optimal solution and, as these arcs are sufficient to cover the demand, the optimal solution would
exactly match these arcs, which is impossible as shown by the repair procedure.

In order to forbid one of the arcs, we apply the standard branching rule for one of these arcs
which has not been subject to any constraint yet: create two branches where the flow on the arc
is forced to 0 and 1, respectively. Note that the effect of the branching will be nil on the branch
where the flow is forced to 1. Hence, the branching will be repeated on this branch until pruning
is activated or all arcs with flow 1 are forced. In the latter case, the pending node can simply be
removed as, from the repair procedure, we already know that no feasible solution can be obtained
from this node.

Overall branching scheme

Figure 3 illustrates the overall branching scheme.

Remark about pruning:

The way we have defined the initial solution of the master problem, using an artificial variable
defined above, allows us to prune some branches during the Branch and Price process thanks to
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lemma 3.5. To make pruning even more efficient, the cost of this variable is set at the best known
integer solution. This pruning condition proved effective during tests on Solomon’s instances,
especially when there is no solution to cover the whole set of customers.

4 Results

4.1 Presentation

In this section, many results obtained with our exact algorithm are reported and compared to
previous studies. First, the test instances of Solomon are presented. Then, we analyse the per-
formance of our algorithm. The impact of the duration limit is also investigated. The computing
platform is an Intel Core 2 duo 2.10 GHz with 2 GB of RAM using GLPK to solve the master
problem. The computation time limit was set at 2 hours.

4.2 Test instances

Our tests were performed using the well-known VRPTW benchmark instances created by Solomon
(1987). These instances are divided into six classes that are a combination of two criteria. The
first criterion concerns the spatial position of customers. There are three different spatial layouts:
customers in clusters ("C" type), customers randomly located ("R" type), and an intermediate
case with part of the customers clustered and the rest randomly located ("RC" type). The second
criterion concerns the tightness of time constraints at customers. There are two types: tight time
windows in a short planning time horizon (type "1") and large time windows in a long planning
time horizon (type "2"). By combining these two criteria, there are six basic classes which are
denoted: "C1", "C2", "R1", "R2", "RC1" and "RC2". Overall, there are 56 instances with 100
customers. Please note that for a given class, there are several instances with different customer
time windows, but the spatial layout of customers is the same for the whole class. Instances are
denoted as in the following example: C201-25 corresponds to the first instances of class "C2"
where only the first 25 customers are considered. In this study, instances with a tight planning
time horizon were discarded. In fact, the short horizon does not allow a significant number of
routes to be assigned to the same vehicle.

The service time of the instances of class C2 (90) is much longer than the service time of
instances of classes R2 and RC2(10). Therefore, tmax was set to 75 for R2 and RC2 classes and
was set to 220 for the C2 class. These settings are consistent with the ones used in Azi et al.
(2010). In order to check for the influence of a longer tmax than (75;220) on the comparison of
performances, algorithms are also tested for tmax set to (100;250).

Finally, for all instances, the customer loading time li was set at 20% of its service time sti,
and the fleet size was set to 2 vehicles.

Note that, in the benchmark instances, only the customer and depot geolocalisations are given.
Implicitly, the induced graph is considered complete and each edge receives a travel time that
corresponds to the Euclidian distance between the corresponding nodes. In previous studies to
which we compare our work, their respective authors used different numerical settings for the
distances. In Azi et al. (2010) and Azi (2010), the authors truncated the distances at two decimal
places. It appears that no truncation at all was applied to distances in Macedo et al. (2011).
Yet, the authors rounded the distances of their solutions to two decimal places. The difference
in truncating distances in the graph does not only change the results, it also affects the practical
difficulty of each instance. Thus, in order to compare our algorithm with these two previous studies,
we ran it with each of the two above-mentioned distance calculations. The results and comparison
are given in two distinct sections and separate tables.

Note that our computing platform is an Intel Core 2 duo 2.10 GHz with 2 GB of RAM using
GLPK to solve the linear relaxation of the restricted master problem. The computing platform
used in Azi (2010) is an AMD Opteron 3.1 GHz with 16 GB of RAM using ILOG CPLEX 10.0
to solve the linear relaxation of the restricted master problem. The computing platform used in
Macedo et al. (2011) 2.66 GHz Quad Core processor with 4 GB of RAM. Clearly, our machine is
the least powerful of the three. For all instances, the computation time limit was set at 2 hours.
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Instance LB UB % GAP ∆ Total Time
TAGP Tnew Rnew

c201-25 646.51 659.02 1.90
√

40361.2 1.3 31507.57
c202-25 634.772 653.37 2.85

√
49.3

c203-25 626.017 646.4 3.15
√

265.0
c204-25 592.06 602.46 1.73

√
248.0

c205-25 607.913 636.39 4.47
√

38.1
c206-25 603.333 636.39 5.19

√
692.4

c207-25 588.783 603.22 2.39
√

104.7
c208-25 597.348 613.2 2.59

√
41.4

r201-25 757.79 762.43 0.61
√

68.3 0.1 546.40
r202-25 645.78 645.78 0.00

√
205.2 0.6 346.04

r203-25 620.177 621.97 0.29
√

1333.2 2.0 656.43
r204-25 575.655 579.68 0.69

√
30983.3 4.9 6255.46

r205-25 626.48 634.09 1.20
√

354.1 1.0 359.86
r206-25 596.74 596.74 0.00

√
318.4 0.8 416.21

r207-25 583.658 585.74 0.36
√

2853.5 3.5 822.81
r208-25 575.616 579.68 0.70

√
9270.3 7.2 1284.33

r209-25 598.107 602.39 0.71
√

262.6 1.7 150.06
r210-25 620.293 636.15 2.49

√
5094.1 8.5 602.64

r211-25 568.54 575.91 1.28
√

5648.6 27.6 204.36
rc201-25 984.438 988.05 0.37

√
3.1 0.9 3.37

rc202-25 837.557 881.49 4.98
√

24.5
rc203-25 705.217 749.15 5.86

√
62.3

rc205-25 808.579 840.35 3.78
√

28.8 3.7 7.71
rc206-25 726.097 761.03 4.59

√
7156.8 35.7 200.19

Solved : 24 SolvedAGP : 15 Average Rnew : 2282.29

Table 1: Comparison of our results with Azi (2010) on Solomon’s benchmark (25 customers) with
tmax value set (75;220)

4.3 Results and comparison with Azi et al. (2010)

Tables 1, 2, 3 and 4 provide results with precision in distances in the graph set at two decimal
places.

Tables 1 and 2 provide results for tmax set at (75; 220), for all instances with 25 and 40 cus-
tomers, respectively. Each table provides the lower bound (LB), the cost of the optimal solution
(UB) that is found, the gap between these two values and the total solving time, in the subcolumn
named Tnew. A "

√
" in column ∆ indicates that the time instant relaxation provides a feasible

solution with the initial time granularity. A comparison of performances with (Azi (2010)) is pro-
vided in the subcolumn named TAGP which is the processing time obtained in the study by Azi
(2010), and in the column named Rnew which is the ratio defined by the processing time in Azi
(2010) divided by the processing time of our method. Note that the results in Azi et al. (2010) were
corrected in Azi (2010), which explains why we only compare with the latter. A "NoSol" in a table
indicates that, with two vehicles, there is no solution covering all customers for the corresponding
instance. A processing time in italics in the TAGP column indicates that the authors have found
a solution that does not cover all customers. When TAGP or Tnew is left blank, the instance could
not be solved by the respective authors of the studies compared here. When none of the authors
was able to find a solution, the instance is excluded from the table.

Our algorithm solves 47 of the 54 instances and the GAP between the lower and upper bounds
ranges from 0.00% to 5.86%. In all cases, the time instant relaxation was able to obtain feasible
solutions with the initial time granularity. Only 22 were solved in Azi (2010). If we consider the
instances for a which a coverage exists and which are solved by both methods, our algorithm gets
significantly faster results, from 3 to 31000 times faster, and 2000 times faster on average.

Tables 3 and 4 provide similar data as in the previous table, in the case of a longer tmax, with
tmax = (100; 250). The definition of columns provided for tables 1 and 2 also holds here.
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Instance LB UB % GAP ∆ Total Time
TAGP Tnew Rnew

c201-40 1124.31 1168.83 3.81
√

19978.9 31.3 639.02
c202-40 1097.7 1111.15 1.21

√
67.4

c203-40 1077.08 1088.55 1.05
√

186.5
c204-40 1034.33 1039.16 0.46

√
145.3

c205-40 1076.62 1083.81 0.66
√

34.1
c206-40 1073.91 1081.37 0.69

√
184.0

c207-40 1042.6 1055.04 1.18
√

1491.5
c208-40 1063.72 1071.99 0.77

√
3221.7 52.6 61.24

r201-40 NoSol NoSol
√

2979.5 0.5
r204-40 839.697 858.22 2.16

√
4049.2

r205-40 991.896 1017.84 2.55
√

244494.0 1193.4 204.87
r206-40 920.094 927.22 0.77

√
171.5

r207-40 882.223 886.22 0.45
√

68.9
r208-40 839.697 858.22 2.16

√
4954.8

r209-40 926.303 935.81 1.02
√

198.2
r210-40 937.597 952.92 1.61

√
246.5

r211-40 849.855 869.75 2.29
√

5093.9
rc201-40 NoSol NoSol

√
14.6 0.328

rc202-40 NoSol NoSol
√

6823.2 2.421
rc203-40 NoSol NoSol

√
5.8

rc205-40 NoSol NoSol
√

1904.2 0.859
rc206-40 NoSol NoSol

√
1.7

rc207-40 NoSol NoSol
√

4.1

Solved : 23 SolvedAGP : 7 Average Rnew : 301.71

Table 2: Comparison of our results with Azi (2010) on Solomon’s benchmark (40 customers) with
tmax value set (75;220)
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Instance LB UB % GAP ∆ Total Time
TAGP Tnew Rnew

c201-25 540.9 540.9 0.00
√

1.3 0.1 10.40
c202-25 525.19 533.43 1.54

√
51.4

c203-25 523.735 532.77 1.70
√

335.7
c204-25 513.45 525.46 2.29

√
4734.4

c205-25 522.05 529.94 1.49
√

116.6 0.9 131.01
c206-25 516.162 527.84 2.21

√
1987.2 123.9 16.04

c207-25 515.673 525.46 1.86
√

31.1
c208-25 515.673 525.46 1.86

√
4.7

r201-25 691.291 698.18 0.99
√

43.6 0.8 55.83
r202-25 616.68 617.53 0.14

√
25249.9 4.1 6216.13

r203-25 577.097 577.74 0.11
√

75729.3 11.6 6523.33
r204-25 480.714 483.3 0.54

√
33.6

r205-25 555.563 559.14 0.64
√

1202.3 3.7 327.51
r206-25 523.64 523.64 0.00

√
28498.1 5.7 4983.93

r207-25 497.421 512 2.85
√

418.9
r208-25 477.029 483.3 1.30

√
97.8

r209-25 511.943 517.69 1.11
√

11173.9 14.1 791.97
r210-25 547.23 547.23 0.00

√
26690.0 2.6 10167.62

r211-25 470.088 474.49 0.93
√

80.4
rc201-25 814.062 849.33 4.15

√
16.06 3.6 4.51

rc202-25 679.86 679.86 0.00
√

1096.3 3.5 314.67
rc203-25 592.978 593.56 0.10

√
13.1

rc205-25 698.723 702.49 0.54
√

262.8 2.6 100.73
rc206-25 600.168 604.12 0.65

√
222.7 2.9 77.46

rc207-25 510.509 514.81 0.84
√

45.5

Solved : 25 SolvedAGP : 14 Average Rnew : 2122.94

Table 3: Comparison of our results with Azi (2010) on Solomon’s benchmark (25 customers) with
tmax value set (100;250)

Instance LB UB % GAP ∆ Total Time
TAGP Tnew Rnew

c201-40 934.564 966.7 3.32
√

659.2 90.4 7.29
c202-40 914.099 919.85 0.63

√
84.2

c205-40 911.751 921.19 1.02
√

66.3
c206-40 911.027 919.05 0.87

√
1539.1

c208-40 908.713 915.41 0.73
√

2673.7
r201-40 NoSol NoSol

√
127424.0 15.5

r203-40 807.77 816.51 1.07
√

2429.0
r205-40 852.379 872 2.25

√
926.4

r206-40 803.272 812.31 1.11
√

1511.4
r209-40 760.234 768.84 1.12

√
479.8

rc201-40 NoSol NoSol
√

77.8 0.6
rc202-40 NoSol NoSol

√
10.3

rc205-40 NoSol NoSol
√

4733.3 4.2

Solved : 13 SolvedAGP : 4 Average Rnew : 7.29

Table 4: Comparison results with Azi (2010) on the Solomon’s benchmark (40 customers) with
tmax value set (100;250)
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Instance LB UB % GAP ∆ Total Time
TMAVC Tnew RMAV C Rnew

c201-25 646.64 659.15 1.9
√

10.6 1.4 7.71
c202-25 634.9 653.5 2.85

√
212.4 49.9 4.26

c203-25 626.14 646.51 3.15
√

233.9 265.9 1.14
c204-25 592.18 602.58 1.73

√
423 257.1 1.65

c205-25 608.04 636.52 4.47
√

34.7 44.9 1.29
c206-25 603.46 636.52 5.19

√
40.2 699.7 17.41

c207-25 588.9 603.34 2.39
√

29.5 92.3 3.13
c208-25 597.48 613.34 2.59

√
12.9 42.6 3.3

r201-25 757.89 762.53 0.61
√

0.5 0.1 3.57
r202-25 645.86 645.86 0

√
3.1 0.6 5.09

r203-25 620.25 622.04 0.29
√

10.6 2.2 4.81
r204-25 575.73 579.75 0.69

√
106.2 5 21.24

r205-25 628.85 634.17 0.84
√

1.5 0.8 1.92
r206-25 596.82 596.81 0

√
4.7 0.9 4.93

r207-25 584.77 585.81 0.18
√

19.4 4.7 4.14
r208-25 575.73 579.75 0.69

√
66 7.4 8.91

r209-25 598.44 602.47 0.67
√

4.9 1.6 2.99
r210-25 620.38 636.24 2.49

√
11.8 8 1.48

r211-25 569.11 575.97 1.19
√

64.5 25.9 2.49
rc201-25 984.59 988.2 0.37

√
0.3 1.1 3.67

rc202-25 837.66 881.6 4.98
√

37.2 24.8 1.5
rc203-25 705.32 749.26 5.86

√
54.2 64 1.18

rc204-25 744.83 171 +∞
rc205-25 808.7 840.47 3.78

√
1.6 3.4 2.13

rc206-25 726.2 761.14 4.59
√

2 34.4 17.2

Solved : 24 SolvedMAVC : 25

Table 5: Comparison of our results with Macedo et al. (2011) on Solomon’s benchmark (25 cus-
tomers) with tmax value set (75;220)

Our algorithm solves 38 of 54 instances with a GAP that ranges from 0.00% to 4.15% and all
solutions are found during the first resolution, whereas in Azi (2010) only 18 are solved. As for the
smaller tmax case, if we consider instances where there is complete coverage for instances solved
by both methods, our algorithm is 2000 times faster on average for these instances than the one
given in Azi (2010), and the ratio ranges from 5 times faster to 10000 times faster.

4.4 Results and comparison with Macedo et al. (2011)

Following the results and comparison with the first published algorithm on MTVRPTW-LD, we
provide here a comparison with the results given in the second and very recent work of Macedo
et al. (2011). As already explained, separate comparison could not be avoided due to the different
numerical settings for distance calculations.

Tables 5, 6, 7 and 8 provide results based on distance calculations that do not include any
rounding.

Tables 5, 6, 7 and 8 provide results for tmax set at (75; 220) and (100; 250), for every instance
with 25 and 40 customers. The columns are defined as in the previous section, except for the
"Total Time" column that is decomposed into four subcolumns: TMAV C , Tnew, RMAV C and
Rnew . TMAVC and Tnew indicate the processing time of the algorithm published in Macedo et al.
(2011) and the processing time of our algorithm, respectively. RMAV C and Rnew give ratios of
the computing times of the slowest method divided by the fastest; depending on which method is
the fastest, the ratio is reported in one column or in the other. A value +∞ is reported when a
single method solves the instance. A "NoSol" in a table indicates that, with two vehicles, there is
no solution covering all customers for the corresponding instance. A "

√
" in column ∆ indicates

that the time instant relaxation provides a feasible solution with the initial time granularity. A

17

Author-produced version of the article published in 4OR-A Quarterly Journal of Operations Research, 2014, N°12(3), p. 235-259 
The original publication is available at http://link.springer.com/article/10.1007%2Fs10288-013-0238-z 
Doi: 10.1007/s10288-013-0238-z



Instance LB UB % GAP ∆ Total Time
TMAV C Tnew RMAV C Rnew

c201-40 1124.52 1169.04 3.81
√

25.5 32.8 1.29
c202-40 1097.9 1111.34 1.21

√
79.4 70.3 1.13

c203-40 1077.26 1089.24 1.1
√

342.3 135.5 2.53
c204-40 1034.51 1039.35 0.47

√
112.9 +∞

c205-40 1076.83 1084.02 0.66
√

63.6 34 1.87
c206-40 1074.12 1081.57 0.69

√
109.3 173.5 1.59

c207-40 1042.79 1055.24 1.18
√

659 1700.3 2.58
c208-40 1063.93 1072.22 0.77

√
112.7 52.3 2.15

r201-40 NoSol NoSol
√

2358.8 0.4
r203-40 962.42 436.0 +∞
r204-40 839.82 858.35 2.16

√
3811.2 +∞

r205-40 992.62 1019.89 2.67
√

3263.7 2902.3 1.12
r206-40 924.61 931.94 0.79

√
209.9 190.9 1.1

r207-40 882.76 890.93 0.92
√

276.2 +∞
r208-40 839.82 858.35 2.16

√
4328 +∞

r209-40 926.44 935.95 1.02
√

771.3 227.2 3.4
r210-40 943.54 963.45 2.07

√
1803.9 1297.1 1.39

r211-40 850.78 869.88 2.2
√

4187.5 +∞
rc201-40 NoSol NoSol

√
29.4 0.4

rc202-40 NoSol NoSol
√

40.2 2.4
rc203-40 NoSol NoSol

√
5.6

rc205-40 NoSol NoSol
√

6992.6 0.9
rc206-40 NoSol NoSol

√
1.9

rc207-40 NoSol NoSol
√

4.5

Solved : 23 SolvedMAVC : 16

Table 6: Comparison of our results with Macedo et al. (2011) on Solomon’s benchmark (40 cus-
tomers) with tmax value set (75;220)

18

Author-produced version of the article published in 4OR-A Quarterly Journal of Operations Research, 2014, N°12(3), p. 235-259 
The original publication is available at http://link.springer.com/article/10.1007%2Fs10288-013-0238-z 
Doi: 10.1007/s10288-013-0238-z



processing time in italics in column TMAV C (tables 6 and 8) indicates that the authors found a
solution that does not cover all customers. When TMAVC or Tnew is left blank, the instance could
not be solved by the respective authors of the studies compared here. When none of the authors
was able to find a solution, the instance is excluded from the table.

Our algorithm closes 86 of the 108 instances and the GAP between the lower and upper bounds
ranges from 0.00% to 5.86%. As for the comparaison with Azi (2010), all solutions found during the
resolution of the relaxed time instant case are optimal. In Macedo et al. (2011), only 67 instances
of this set were solved.

Our algorithm clearly performed better than that of Macedo et al. (2011), particulary for
instances of the R class. The new algorithm solves all R instances for 25 customers for short and
longer tmax. The algorithm in Macedo et al. (2011) does not solve 4 of these, which have a longer
tmax. For R instances commonly solved and for which there is complete client coverage, the total
solving time of our algorithm is approximately 97 seconds whereas the total for that in Macedo
et al. (2011) is approximately 547 seconds. Solving is faster by an average factor of 5. When it
comes to instances of the R class and 40 customers, our algorithm closes 15 instances whereas that
of Macedo et al. (2011) only closes 6. The difference is highest for the longest tmax.

A comparison of the two algorithms for the C class does not exhibit significant advantages of
one algorithm. Our algorithm closes more instances (29 compared to 25), but the fastest algorithm
depends much on a particular instance.

The situation for the RC class is also closely dependent on a given instance for the comparison
of solving times. For the 11 commonly solved instances with complete coverage our algorithm
performs better in 6 cases. Among the three algorithms compared in this paper, the algorithm
published in Macedo et al. (2011) is the only one that closes the instance RC204 − 25 for the
shorter tmax.

Finally, our algorithm clearly performs better than that of Macedo et al. (2011) when the
number of customers or the limit duration tmax are increased.

5 Conclusions

Our algorithm compares very favorably with the first algorithm published on the MTVRPTW-LD,
Azi et al. (2010). It also outperforms the more recent one, Macedo et al. (2011), on instances of
the R class. There are instances in the R and RC classes in which the algorithm given in Macedo
et al. (2011) has the best performance to date. Compared to Azi et al. (2010), a main advantage
of our approach lies in the efficiency of the Column Generation subproblem, which is solved with
a fast pseudo-polynomial algorithm. The time-indexed graph introduced in Macedo et al. (2011)
seems to have some advantages for some clustered clients layouts. It follows that this feature might
be combined with our own approach to further improve exact solution of MTVRPTW-LD. Our
approach is more robust with respect to longer tmax and the number of customers than previous
works.

With the instances considered, all solutions found when solving the time instant relaxation of
the problem happen to be feasible in the unrelaxed problem. This indicates that this relaxation is
very efficient.

The solving time is extremely variable between instances of the same class. In order to allow
precise comparisons and design faster techniques, a successor to the classic Solomon (1987) bench-
mark would benefit the community. Future research should address exact solution of MTVRPTW
for cases without limited trip duration.
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Instance LB UB % GAP ∆ Total Time
TMAVC Tnew RMAV C Rnew

c201-25 541.02 541.02 0
√

0.4 0.1 2.86
c202-25 525.3 533.55 1.55

√
167.9 41 4.09

c203-25 523.83 532.88 1.7
√

298.4 +∞
c204-25 513.56 525.57 2.29

√
4711.6 +∞

c205-25 522.16 530.05 1.49
√

3.7 0.9 4.16
c206-25 516.27 527.95 2.21

√
20.7 129.3 6.25

c207-25 515.78 525.57 1.86
√

44.2 25.8 1.71
c208-25 515.78 525.57 1.86

√
63.2 114.1 1.81

r201-25 691.38 698.26 0.99
√

1.3 0.8 1.7
r202-25 616.75 617.6 0.14

√
32.6 4.5 7.24

r203-25 577.16 577.8 0.11
√

64.1 10.5 6.08
r204-25 480.77 483.37 0.54

√
29.9 +∞

r205-25 555.62 559.21 0.64
√

9.4 3.3 2.88
r206-25 523.7 523.7 0

√
40 6.4 6.24

r207-25 497.48 512.04 2.85
√

425.6 +∞
r208-25 477.08 483.37 1.3

√
82.3 +∞

r209-25 512 517.74 1.11
√

47.7 12.3 3.89
r210-25 547.29 547.29 0

√
58.9 2.4 24.97

r211-25 470.15 474.54 0.93
√

59.1 +∞
rc201-25 814.19 849.45 4.15

√
2 3.2 1.6

rc202-25 679.95 679.95 0
√

11.6 2.9 3.97
rc203-25 593.06 593.63 0.1

√
47 12.9 3.64

rc205-25 698.83 702.61 0.54
√

8.2 2.2 3.67
rc206-25 600.28 604.23 0.65

√
8 3.8 2.12

rc207-25 510.6 514.9 0.83
√

91.7 48.1 1.91

Solved : 25 SolvedMAVC : 19

Table 7: Comparison of our results with Macedo et al. (2011) on Solomon’s benchmark (25 cus-
tomers) with tmax value set (100;250)

Instance LB UB % GAP ∆ Total Time
TMAVC Tnew RMAV C Rnew

c201-40 934.76 966.89 3.32
√

6.4 85.4 13.34
c202-40 914.28 920.05 0.63

√
81.1 +∞

c205-40 911.93 921.37 1.02
√

88.5 54.8 1.62
c206-40 911.21 919.24 0.87

√
290.5 1522.2 5.24

c208-40 908.89 915.61 0.73
√

491.5 2582.7 5.25
r201-40 NoSol NoSol

√
13.2

r203-40 807.91 816.65 1.07
√

2469.1 +∞
r205-40 852.51 873.36 2.39

√
1200.4 +∞

r206-40 803.4 812.42 1.11
√

1514.2 +∞
r207-40 752.33 764.52 1.59

√
7029.8 +∞

r209-40 760.38 768.99 1.12
√

454 +∞
rc201-40 NoSol NoSol

√
3.6 0.8

rc202-40 NoSol NoSol
√

1013.8 10.4
rc205-40 NoSol NoSol

√
35.7 3.9

Solved : 14 SolvedMAVC : 7

Table 8: Comparison of our results with Macedo et al. (2011) on Solomon’s benchmark (40 cus-
tomers) with tmax value set (100;250)
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