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Abstract. Degree-constrained spanning problems are well known and
are mainly used to solve capacity constrained routing problems. The
degree-constrained spanning tree problems are NP-hard and computing
the minimum cost spanning tree is not approximable. Often, applications
(such as some degree-constrained communications) do not need trees as
solutions. Recently, a more flexible, connected, graph related structure
called hierarchy was proposed to span a set of vertices under constraints.
This structure permits a new formulation of some degree-constrained
spanning problems. In this paper we show that although the newly for-
mulated problem is still NP-hard, it is approximable with a constant
ratio. In the worst case, this ratio is bounded by 3/2. We provide a sim-
ple heuristic and prove its approximation ratio is the best possible for
any algorithm based on a minimum spanning tree.
Keywords:Graph theory, Networks, Degree-Constrained Spanning Prob-
lem, Spanning Hierarchy, Approximation

1 Introduction

Solving spanning problems in a cost efficient manner is important in several
domains. For instance, implementing a minimum cost communication network
or solving the routing in micro-circuits are classic examples for optimal spanning
problems. Often in graphs, a given set of vertices should be spanned by the
minimum cost structure. In the literature, solutions are mainly considered to be
sub-graphs. For example, the structure which spans all the vertices in a graph
with minimum cost is a minimum spanning tree (MST).

In some practical cases, different additional constraints are imposed. Various
constrained spanning problems have been analyzed in graphs (cf. some examples
in [1,2,3]). Here we are interested in the degree-constrained spanning problem.
In this constrained spanning problem, a positive integer value d(v) is assigned to
each vertex v ∈ V of an undirected graph G = (V,E). This value represents the
maximum degree of the vertex in the spanning structure (usually in a tree). This
degree is potentially different from the degree dG(v) of v in G. Note that only
values 0 < d(v) ≤ dG(v) need to be considered for realistic cases. This degree
bound can express two different facts:



1. the vertex has a global ”budget” to connect neighbor vertices (this budget
approach can be found in [4])

2. because of its limited instantaneous ”capacity”, the vertex can perform a
given action (a branching) for each of its visit only for a limited number of
neighbor vertices.

The first case corresponds to the degree-constrained spanning tree problem.
It has been formulated in [5] and has been extensively studied. For a long time,
it is known that it is not always possible to span the vertices using trees with
respect of the degree constraints. Moreover, negative results are also known on
the approximability of the degree-constrained spanning tree problems [4].

In our paper we suppose that the degree bound expresses the limited capacity
of the vertex for each visit (case 2). Moreover, we suppose that the limit is the
same constant value, valid for all vertices in the graph.

For communications, the connectivity of the routes is inevitable but these
routes can correspond to non-simple graph-related structures as walks, trails,
etc. To span a set of vertices in a connected manner, a non-simple, tree-based
structure has been proposed [6]. This structure, called hierarchy, is obtained
by a homomorphic mapping of vertices between a tree and an arbitrary graph
(cf. Section 3). A new formulation of degree-constrained problems is possible
and profitable for some applications if the constraints concern each visit of the
vertices. To solve these problems, it was demonstrated that
a) it is possible to span the vertices of the graph with respect of the degree
bounds even if spanning trees satisfying the constraints do not exist
b) in some cases, a spanning hierarchy with lower cost can be found even if
spanning trees respecting the constraints exist [7].

One possible application domain of the spanning hierarchies is the broad-
cast in all-optical WDM networks where the splitting capacity of the vertices
is limited (for example in [8]). To solve the optical routing problem under the
degree constraints, a set of light trees (abusively called light forest) is usually
proposed. Let us notice that in the literature not only tree-based solutions can
be found. In [9], a special walk (a light-trail) is computed to cover the vertices
without branching. The spanning hierarchies give a good alternative to find effi-
cient spanning structures generalizing walks when branching are allowed. In this
paper we demonstrate that the optimum of the degree bounded spanning hierar-
chy problem can be approximated. We propose a simple and efficient algorithm
providing a good approximation of the optimal value.

In Section 2, we propose a quick presentation of the well-known degree-
constrained spanning tree problem. After the related definitions, the degree con-
strained minimum spanning hierarchy problem and its complexity are presented
in Section 3. The algorithm proposed in Section 5 uses the result of Section 4 to
span stars and computes polynomially a spanning hierarchy respecting a given
degree bound. The proposed algorithm guarantees a constant approximation
ratio. The presentation is closed by discussions on the performances of the algo-
rithm and on some perspectives.



2 Related works

The Degree-Constrained Minimum Spanning Tree DCMST problem was firstly
introduced and investigated in [5] (it is also briefly mentioned in [10]). Let us
suppose that the maximal degree of any vertices in the spanning tree must be
at most B ≥ 2. The authors justified the fact that this problem is NP-hard by
stating that solving the DCMST problem with the degree bound B equal to two
is equivalent to solve the minimum Hamiltonian path problem. Otherwise, by
reducing the DCMST problem to an equivalent symmetric traveling salesman
problem (TSP), Garey and Johnson [11] showed that this problem is NP-hard
for any fixed constant 2 ≤ B ≤ |V − 1|. Ravi showed that approximate the
DCMST problem within a constant factor of the cost of the optimal tree is NP-
hard [12]. In unweighted graphs, Furer and Raghavachari [13] gave an elegant
algorithm that returns a spanning tree in which the degree of each vertex is at
most B+1, or returns a witness certifying that the degree bounds are infeasible.
Goemans proved in [14] that this result can be generalized to weighted graphs. In
polynomial time, we can find a spanning tree of maximum degree at most B+1
whose cost is no more than the cost of a minimum cost tree with maximum degree
at most B. Note that these results are formulated for homogeneous degree bound.
When the degree bounds depend on the vertices, Goemans proved that one can
find in polynomial time a spanning tree of maximum degree at most B+2 whose
cost is no more than the cost of a minimum cost tree with maximum degree at
most B. The best result was presented by Singh and Lau in [15]. Their algorithm
computes a spanning tree of minimum cost which violates the degree upper-
bounds by at most one. Since it is not possible to obtain any approximation
algorithm for the original problem, insisting on the satisfaction of all the degree
upper bounds, this result is the best possible.

To solve spanning problems with different constraints, the hierarchy concept
was proposed in [6].

3 Problem definition

Our objective is to find a minimum cost spanning structure without the hypoth-
esis that this structure must be a sub-graph. For instance, it may be an arbitrary
route connecting vertices.

Let G = (V,E) be an undirected connected graph with vertex set V and
edge set E. The graph G is valuated by a strictly positive cost c(e) associated to
every edge e ∈ E. We are searching for routes in this graph. We suppose that the
logical scheme of a route (the adjacency relation of nodes, vertices in the route,
the succession of operations, etc.) is given by a connected graph F = (W,D). For
instance, F can be a path (a sequence of adjacent vertices and edges), it can be
a cycle (if the vertices and operations have to be repeated in a cyclical manner),
or an other graph. The association between the logical route F and the physical
topology G can be given by a homomorphic mapping h and this ”structure” can
then be given by a triplet (F, h,G). Trivially, the resulting structure (route) is not



necessarily a sub-graph in G. For instance, a walk or a traversal are connected
routes, which may contain vertices and edges in G several times.

Definition 1 (Hierarchy) If F is a tree, the connected structure defined by
H = (F, h,G) is called a hierarchy (cf. an example in Figure 1).
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Fig. 1. Homomorphic mapping of vertices to define a hierarchy

To formulate the optimal spanning problem under capacity-like constraints,
some simple definitions are needed. The cost of a structure H = (F, h,G) is the
sum of the costs of the edges used in H: c(H) =

∑
e′∈D c(e), where e ∈ E is the

edge associated with e′ ∈ D.
If an edge in G is used several times (it is associated to several edges in F ),

its cost is summarized several times. Since a hierarchy H in a graph G is given
by a triplet (F, h,G), and F is a tree, we talk about a leaf of the hierarchy when
the concerned vertex is a leaf in F . Similarly, we talk about internal vertices
concerning the non-leaf vertices in F . Several vertices of F may correspond to
the same vertex v of G. These different occurrences will be labeled v1, v2, . . . if
needed.

Our analysis deals with the minimum cost spanning problem of a graph G,
where a positive integer B is given to bound the degree of vertices in the op-
timal route.1 That is, the degree of each vertex in F (and not in G) is limited
by B. Trivially, in interesting cases 2 ≤ B < maxv∈V dG(v). The minimum cost,
connected structure spanning the vertex set of G and respecting the degree con-
straints is always a hierarchy. With these considerations, we define our spanning
problem as follows.

Definition 2 (Degree Constrained Minimum Spanning Hierarchy problem)
Given a connected graph G = (V,E), a cost c(e) for each e ∈ E and an integer
B ≥ 2, the problem consists in finding a hierarchy H = (F, h,G) where h is a
homomorphism from a tree F = (W,D) to G = (V,E) such that:

1 In DCMST problems, the degree bound expresses the overall capacity or budget of
a vertex, but in our problem this bound corresponds to the maximal degree of each
occurrence of the vertex in the spanning structure



– Each vertex v ∈ V is associated with at least one vertex v′ ∈ W .
– The degree constraints are respected in F : dF (v

′) ≤ B, ∀v′ ∈ W .
– The cost c(H) is minimal.

In the following, we will call the optimal solution ”Degree Constrained Min-
imum Spanning Hierarchy” abbreviated by DCMSH.

Lemma 1. For any degree bound B ≥ 2 , the DCMSH problem always has a
solution.

Proof. A traversal is a particular spanning hierarchy, in which the degree of each
vertex occurrence is at most 2. Since a connected graph always has traversals,
there are always hierarchies spanning the graph and respecting any degree con-
straint B ≥ 2.

The problem of the degree constrained minimum spanning hierarchy is NP-hard
as it is demonstrated in the following.

Lemma 2. If among all the Minimum Spanning Trees (MST) of a graph G
there exists one satisfying the degree constraint, it is an optimal solution for the
DCMSH problem and all the optimal solutions are trees in G.

Proof. Obvious. The minimum cost spanning structure to connect all the vertices
without any constraint is the MST, which is connected and does not contain any
redundancy. So if one of the MSTs, for instance a tree T ∗ respects the degree
constraint, it is optimal for the spanning problem and also for the DCMSH
problem.

Now suppose that an optimal hierarchy H = (T, h,G) exists and it is not a
tree in G. Because the MST T ∗ is an optimal solution of our problem, the cost
c(H) of the optimal hierarchy must be the same that the cost c(T ∗) of the MST
solution. Trivially, the cost of a hierarchy is greater than or equal to the cost of
its image in G: c(I) ≤ c(H), where I is the image (the sub-graph generated by
H in G). Then, it contains at least a cycle in G (a duplicated edge is considered
as a cycle). I covers the vertex set V . Two possibilities can arise.
1. I is a tree and its cost is lower bounded by the cost of the MST: c(T ∗) ≤ c(I).
In this case, there is at least one duplicated edge in H (remember that H is not
a simple tree) and c(I) < c(H). Finally: c(T ∗) < c(H) and consequently H can
not be optimal.
2. I is not a tree. By eliminating some redundancies with non-zero length, a
tree T ′ spanning V is obtained. Trivially, c(T ′) < c(I) and c(I) < c(H). Finally:
c(T ∗) ≤ c(T ′) < c(H).

Remark 1: The cost of the MST is therefore a lower bound for the DCMSH
problem.
Remark 2: The result is not true if we only consider the spanning trees (and not
the MSTs) satisfying the degree constraint.



Theorem 1. The DCMSH problem is NP-hard for all B ≥ 2.

Proof. Let G = (V,E) be a graph with c(e) = 1, ∀e ∈ E. Let G′ = (V ′, E′) be
the graph obtained by adding B − 2 leaves connected by edges of cost 1 to each
vertex of V . In G′, |V ′| = |V |+ |V |(B − 2) = (B − 1)|V |. Any spanning tree of
G′ has a cost equal to (B − 1)|V | − 1. There is a degree-constrained spanning
hierarchy of cost (B − 1)|V | − 1 in G′ if and only if there is a Hamiltonian path
in G (remember, that the Hamiltonian path contains |V | − 1 edges).

Suppose that there is a degree-constrained spanning hierarchy H = (T, h,G′)
of cost (B − 1)|V | − 1 in G′. Regarding its cost, H is a tree of G′. If we remove
all the (B− 2)|V | vertices of V ′ \ V from H, we obtain a connected subgraph in
which all vertices have a degree lower or equal to two, which is a Hamiltonian
path of G.

Reciprocally, adding B − 2 leaves to each vertices of a Hamiltonian path of
G gives a tree satisfying the degree constraint, which is a DCMSH in G′ because
of Lemma 2.

Since the problem is NP-hard, guaranteed approximation algorithms are inter-
esting to solve it in practical cases. To obtain an approximation of the DCMSH
in an arbitrary connected graph, our approach is based on two elements:

– We consider the MST of the graph (which cost is a lower bound for every
spanning hierarchy) as a start point.

– We decompose this tree into a set of connected stars. Each star is spanned by
hierarchies with guarantee of cost and with respect to the degree constraint.

4 Degree constrained span of a star with hierarchies

Let Sk be a star with k edges, c its central vertex, and c(Sk) the sum of its edges
costs. Suppose that B < k. Then the minimum spanning hierarchy respecting the
degree constraint contains several times the central vertex. Some leaves may also
be duplicated. Since all edges of Sk must appear at least once in the hierarchy
to ensure the spanning of all vertices, the computation of the DCMSH in a star
is equivalent to the minimization of the length of the duplicated edges.

In the following, we propose a simple hierarchy computation to span stars
with respect to the degree constraint B. The proposed algorithm does not guar-
antee the optimality of the hierarchy spanning the star, but it is enough to
guarantee a good approximation ratio.

In our proposition, when edge duplications are needed, the less cost edges
are used in an increasing order of edge costs. Moreover, these selected edges are
duplicated at most once. Formally, let us make a partition of the edges of the star
as follows. Let us create ⌊k/(B−1)⌋+1 sets in the partition. Each set, except one
(the last), contains B−1 edges (if k mod (B−1) = 0, the last edge set is empty).
The ⌊k/(B−1)⌋ less cost edges are distributed in the partition: each of them is in
a separated set (if the last edge set is empty, there is no less cost edge in this set).



Each edge set corresponds to a ”sub-star”, which respects the degree constraint
(with at most B − 1 edges). To obtain a connected hierarchy HSk

spanning all
the leaves, the sub-stars should be connected by the duplication of some edges.
The less cost edge of each set is duplicated to make these connections. The
central vertex is present in the final hierarchy as many times as there are sets in
the partition. So, each central vertex occurrence respects the degree constraint
B and the obtained structure is a hierarchy. Figure 2 illustrates the spanning
hierarchy for B = 4 with k mod (B − 1) = 0 (the interest of the last occurrence
of vertex c will be justified in the following).
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Fig. 2. Spanning hierarchy of a star computed by the proposed heuristic

Lemma 3. The spanning hierarchy HSk
computed by the proposed algorithm

contains Nc = ⌊k/(B − 1)⌋ + 1 times the central vertex c s.t. each occurrence
respects the degree constraint. If Nc ≥ 2, the first and the last occurrences have
a degree strictly lower than B. The cost ratio r = c(HSk

)/c(S) is bounded by
B/(B − 1).

Proof. By construction, each occurrence of c in HSk
have a degree at most B.

In each sub-star of the partition, there is an occurrence of c and the number
of exclusively spanned leaves is at most equal to B − 12. It is B − 1 for all
occurrences of c except eventually one (the last occurrence has not obligatory
B−1 adjacent vertices). There are at most ⌊k/(B−1)⌋ duplicated edges. Let D
be the set of these duplicated edges. By choosing the less cost edges to duplicate,
the cost of the duplicated part c(D) =

∑
e∈D(c(e)) of the star is limited by

c(D) ≤
⌊k/(B − 1)⌋

k
c(S) ≤

k/(B − 1)

k
c(S) =

1

B − 1
c(S)

2 a leave is spanned exclusively, if it belong to only one sub-star of the partition



An upper bound of the cost ratio is given by:

r =
c(HS)

c(S)
=

c(S) + c(D)

c(S)
≤

B

B − 1

Remark: If Nc = 1 (case of k < B − 1), the central vertex has a degree strictly
lower than B − 1.

The spanning hierarchyHSk
corresponds to a caterpillar (tree in which all the

vertices are within distance 1 of a central path), each vertex in this central path
has a degree at most B. Moreover, it ensures that the central vertex occurrences
in the first and in the last sub-stars have a degree less than B (if there is only
one star, deg(c) < B − 1, cf. Remark).

5 An approximation algorithm for the DCMSH problem

Since the cost of an MST gives a lower bound for the DCMSH problem, up-
per bounds for approximation algorithm can be computed regarding the MST
instead of the optimal spanning hierarchy. In the following, we propose an ap-
proximation algorithm based on a decomposition of the MST in the graph.

5.1 A star decomposition of the MST

The MST, can be decomposed into a set of stars in the following way. Let
T = (VT , ET ) be an MST with |VT | > 2 and v1 an arbitrary vertex in T . Then v1
can be considered as the central vertex of a star S1. Some neighbor vertices of v1
in S1 are leaves in T while some others may be branching vertices. The branching
vertices can be considered as central vertices of following stars. Recursively, the
entire tree can be covered by stars which are edge disjoint. Figure 3 illustrates
the decomposition.

v1

v2 v3
v4 v5

v6S1

S2
S3

S4

S5

S6

Fig. 3. A star decomposition of a tree

Since the stars are edge disjoint and cover all edges of T , trivially: c(T ) =∑k

i=1 c(Si), where Si, i = 1, . . . , k indicate the stars in the decomposition.



5.2 The proposed algorithm to approximate the DCMSH

To compute an approximation of the DCMSH in a given graph, we propose the
following algorithm.

1. Compute an MST of the graph.
2. Decompose this MST using stars S1, S2, ..., Sk.
3. For each star Si, compute a spanning hierarchy Hi as proposed in the pre-

vious section.
4. ”Re-connect” the spanning sub-hierarchies Hi to form a connected spanning

hierarchy HA. A connection is needed, if a leaf in a star coincides with
the central vertex of another one. For example, between two neighbor sub-
hierarchies spanning stars Si and Sj , a leaf of Si corresponds to the central
vertex in Sj . In Hi, the leaves of Si are not duplicated and have a degree 1 or
2. Let us indicate by li a leaf in Si, which corresponds to the central vertex
cj of Sj associated to a vertex vk in the original graph. Remember that cj
can be repeated in Hj but in this case its first occurrence has a degree B−1.
(a) If li has a degree 1 in Hi, it can be aggregated with the first occurrence

of cj in Hj and only one vertex can represent this vertex in the final
hierarchy (this vertex in HA corresponding to vk respects the degree
constraint B). It is the case of the vertex v3 in our figure.

(b) If li has a degree 2 in Hi (it is not a leaf), the connection can be made
as follows.
(b.a) If the corresponding central vertex cj has only one occurrence inHj ,
than this occurrence is of degree strictly less than B − 1. Consequently,
li and cj can be aggregated in the final hierarchy and the aggregated
vertex respects the degree constraint (cf. vertex v2 in the figure).
(b.b) If there are several occurrences of cj in Hj , the first and the last
occurrences have a degree at most B − 1 and the two adjacent edges of
li can be attached to these two occurrences without the violation of the
degree constraint by the different vertices (li can be duplicated and each
occurrence of li can be aggregated by one occurrence of cj with degree
less than B in Hj).

5. The hierarchy HA can contain useless return edges (edges returning to a
central vertex occurrence of a star s.t. the degree of this occurrence is equal
to one). The useless edges can be deleted.

Theorem 2. The previous algorithm offers an R ≤ B
B−1 approximation of the

optimal solution.

Proof. The algorithm is based on a decomposition of the MST T ∗ into a set
of edge disjoint stars. Let c(Si) be the cost of the star Si, i = 1, . . . , k in the

decomposition. Trivially c(T ∗) =
∑k

i=1 c(Si).
Using the result of Lemma 3, the obtained spanning hierarchy length is

bounded by

c(H) =

k∑

i=1

c(HSi) ≤

k∑

i=1

B

B − 1
c(Si) =

B

B − 1
c(T ∗)



The approximation ratio is immediately.

R =
c(H)

c(H∗)
≤

c(H)

c(T ∗)
≤

B

B − 1

Remark 1: If deg(c) < B for all vertices c ∈ VT∗ , then the algorithm returns
the MST, which is the optimum in this case.

Remark 2: If B = 2, the algorithm performs a deep-first search type traversal
in the MST.

Moreover, we propose to discuss the fact that our computation is not directly
related to the optimal spanning hierarchy but to the MST of the graph.

5.3 Discussion about the heuristic

Since the proposed algorithm only uses the edges of an MST, the resulting hi-
erarchy may be of poor quality for small values of B but the following theorem
shows that its cost is the best which can be obtained when computing based on
an MST.
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Fig. 4. A wheel graph used in Theorem 3

Theorem 3. No constant approximation ratio lower than B/(B − 1) can be
achieved for any heuristic only based on an MST.

Proof. Let G = (V,E) be a wheel graph with a central vertex y (see Figure 4).
Suppose that c(y, xi) = 1 for i = 1, ..., n, c(xi, xi+1) = 1 + ǫ for i = 1, ..., n − 1,
and c(xn, x1) = 1 + ǫ.

Trivially, the path P = (y, x1, x2, x3, ..., xn−1, xn) is a spanning hierarchy of
G, which respects the degree constraint for any B ≥ 1 and with a cost c(P ) =
1 + (n− 1)(1 + ǫ).

The Minimum Spanning Tree of G is the star S of center y with n leaves. Let
H∗ = (T ∗, h∗, S) be an optimal hierarchy spanning the star S and respecting
the degree constraint.



In T ∗, there can be only one occurrence of every vertex corresponding to a
leaf of S. If a leaf xi of S has at least two occurrences in T ∗

– If one of them is a leaf of T ∗, it can be removed from T ∗ leading to a hierarchy
spanning the same set of vertices with a smaller cost.

– Else, all occurrences are internal vertices of T ∗. Let x1
i and x2

i be two oc-

currences. Let xj be a leaf of T ∗ and T ∗
′

be the tree constructed from T ∗

by deleting the leaf xj and replacing the label x1
i by xj . Since all the neigh-

bors of x1
i in T ∗ are occurrences of y, there still exists a homomorphism h∗

′

between T ∗
′

and S leading to the same contradiction.

So, T ∗ is a particular bipartite graph where the partition of the vertices
can be made as follows: one vertex set with the ny occurrences of y and the
other with the n vertices corresponding to the leaves of S. Since T ∗ is a tree,
its number of edges is equal to its number of vertices minus 1. Consequently,
c(H∗) = n+ ny − 1. Any occurrence of y has at most B neighbors in T ∗. So the
number of edges of H∗ is at most ny ∗B and we have n+ny − 1 ≤ ny ∗B which

implies n−1
B−1 ≤ ny. The cost of H

∗ is then at least c(H∗) ≥ n+ n−1
B−1−1 = B(n−1)

B−1 .

Hence, the approximation ratio of any heuristic only based on an MST is

greater or equal to c(H∗)
c(P ) =

B(n−1)
B−1

1+(n−1)(1+ǫ) and (n−1)
1+(n−1)(1+ǫ) can be as close to 1

as wanted for n large enough and ǫ small enough.

When the computation of the spanning hierarchy is not based on the MST,
more interesting results can be obtained. For example, let the minimum Hamil-
tonian walk problem (case of ) rapidly be reviewed. When B = 2, our approx-
imation ratio is equal to 2, which is the worth case. Nevertheless, in this case,
the problem is equivalent to find a minimum hamiltonian path in the metrical
closure of G. It can thus be approximated with a ratio of 3/2 using for example
the remarks of [16].

6 Conclusion

In this paper, we consider the problem of finding a minimum cost spanning
structure when the degree of the vertices is bounded by an integer B. When this
bound is due to a limited capacity each time the vertex is visited, the optimal
structure is a hierarchy. We show that the problem is still NP-hard, but we
provide an approximation algorithm to compute a degree constrained minimum
spanning hierarchy with a ratio B/(B − 1). Since the problem is equivalent to
find a minimum hamiltonian path when B = 2, a ratio of 3/2 can always be
assured. We also proved that the proposed approximation is the best possible
with a heuristic based only on a minimum spanning tree. Future work will consist
in an improvement of the ratio and showing that the problem is APX-complete
(or to find a PTAS).



References

1. Papadimitriou, C.H., Yannakakis, M.: The Complexity of Restricted Minimum
Spanning Tree Problems (Extended Abstract). In Maurer, H.A., ed.: ICALP.
Volume 71 of Lecture Notes in Computer Science., Springer (1979) 460–470

2. Cieslik, D.: The vertex degrees of minimum spanning trees. European Journal of
Operational Research 125 (2000) 278–282

3. Ruzika, S., Hamacher, H.W.: A Survey on Multiple Objective Minimum Spanning
Tree Problems. In Lerner, J., Wagner, D., Zweig, K., eds.: Algorithmics of Large
and Complex Networks: Design, Analysis, and Simulation, LNCS 5515. Springer-
Verlag, Berlin, Heidelberg (2009) 104–116

4. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Iii, H.B.H.: Approxi-
mation algorithms for degree-constrained minimum-cost network-design problems.
Algorithmica 31 (2001) 58–78

5. Deo, N., Hakimi, S.: The shortest generalized Hamiltonian tree. In: Sixth Annual
Allerton Conference. (1968) 879–888

6. Molnár, M.: Hierarchies to Solve Constrained Connected Spanning Problems. Tech-
nical Report 11029, LIRMM (2011)

7. Merabet, M., Durand, S., Molnar, M.: Exact solution for bounded degree con-
nected spanning problems. Technical Report 12027, Laboratoire d’Informatique
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