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We propose to tackle in this paper the problem of controlling whole-body humanoid

robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the

perspective of mapping human motor control strategies to human-like mechanical avatar.

Our solution is based on the adequate reduction of the controllable dimensionality

of a high-DOF humanoid motion in line with the state-of-the-art possibilities of

non-invasive BMI technologies, leaving the complement subspace part of the motion

to be planned and executed by an autonomous humanoid whole-body motion planning

and control framework. The results are shown in full physics-based simulation of a

36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain

signals generated with motor imagery task.

Keywords: humanoid whole-body control, brain-machine interfacing, motor imagery, motion planning, semi-

autonomous humanoid, contact support planning

1. INTRODUCTION

Due to their design that allows them to be readily used in an

environment that was initially arranged to accommodate the

human morphology, that makes them more acceptable to the

users, and easier to interact with, it is generally admitted that

humanoid robots are an appropriate choice as living assistants for

the everyday tasks, for instance for the elderly and/or reduced-

mobility people. The problem that naturally arises is that of

the control of such an assistant and how to communicate the

wills and intentions of the user to the robot. This problem is of

course general but becomes more challenging when addressing

the above-mentioned category of users for which communication

capabilities can also be impaired (stroke patients for example).

This brings our initial idea of considering brain-machine inter-

faces (BMI) as the possible communication tool between the

human and the humanoid assistant. Notwithstanding, brought

along with this reflection was the more general question, non-

necessarily application-directed, of a human using its brain motor

functions to control a human-like artificial body the same way

they control their own human body. This question becomes our

main motivation and concern in the present work since solving it

would pave the way of the discussed applicative perspectives. We

thus propose our solution to it in this paper.

The approach we choose to investigate deals with the following

constraints of the problem. First, we only consider easy-and-

ready-to-use non-invasive BMI technologies. Among this class of

technologies, we aim more specifically at the one that would align

best and most intuitively with our expressed desire of mimicking

human motor-control function, namely motor-imagery-based

BMI, consisting ideally for the human user of imagining a move-

ment of their own body for it to be replicated in the humanoid

body, though we do not reach that ideal vision restricting our

study for the sake of feasibility demonstration to the use of a

generic motor-imagery task (imagining arm movement) that we

re-target to the specific motion of the robot at hand (leg motion of

the robot). Finally, the control paradigm for the humanoid robot

we set as objective in our study is that of low-level joint/link-level

control, to keep as general behavior and class of movements as

possible for the user to replicate at the robot, without restric-

tion of the class of movements allowed by particular higher-level

humanoid motion controllers.

We address the related work and existing proposed solu-

tions for this problem or approaching ones in the next sec-

tion (Section 2). We then detail our own solution, based on

the integration of, for the humanoid motion control part,

an autonomous contact-based planning and control frame-

work (Section 3), and for the BMI part, a motor-imagery-task-

generated brain-signal classification method (Section 4). The

integration of these two originally independent components is

discussed in Section 5, 6 presents an example proof-of-concept

experiment with a fully physics-simulated humanoid robot.

Section 7 concludes the paper with discussion and future work.

2. RELATED WORK AND PROPOSED SOLUTION

Various approaches have been proposed to solve the problem we

stated in the introduction of controlling a humanoid robot with
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BMI (Bell et al., 2008; Bryan et al., 2011; Chung et al., 2011;

Finke et al., 2011; Gergondet et al., 2011; Ma et al., 2013). All

approaches, ours included, are based on the integration of a BMI

technology with a humanoid controller, and can thus be catego-

rized according to which strategy is followed for each of these two

components. See Figure 1 for an overview.

From the BMI point-of-view, all these works do abide by

our posed constraint of using non-invasive BMIs that rely

on electroencephalography (EEG), generally utilizing the well-

established frameworks of visual-stimulation-based event-related

potentials (ERP) such as P300 in Bell et al. (2008), evoked

potentials (EP) such as the steady state visually evoked potential

(SSVEP) in Bryan et al. (2011); Chung et al. (2011); Gergondet

et al. (2011), or hybrid approaches combining electrooculogram

(EOG) with ERP such as in Ma et al. (2013), or P300 with motor-

imagery-evoked event-related desynchronization (ERD) (Finke

et al., 2011; Riechmann et al., 2011). None, however, investigated

a solely motor-imagery-based BMI as stated in our motivations of

replicating intuitive human motor-control strategies. Hence our

first contribution in the integration initiative.

We adapt in this work a motor-imagery decoding scheme

that we previously developed for the control of a one-degree-of-

freedom robot and for sending standing-up/sitting-down com-

mands to a wearable exoskeleton (Noda et al., 2012). It allows

us to generate a three-valued discrete command that we propose

to map to a one-dimensional subspace of the multi-dimensional

whole-body configuration space motion of the humanoid, and

more precisely the motion along a generalized notion of “verti-

cal axis” of the moving end-limb, such as the foot of the swing

leg in a biped motion for instance. As we detail in the course of

the paper (Section 5), the motivation behind this strategy is to

allow the user to assist the autonomous motion that might lead

the moving limb to be “blocked” in potential field local minima

while trying to avoid collision. The strategy can in future work be

developed into a more sophisticated two-dimensional continuous

command one as proven possible by recent and ongoing studies

FIGURE 1 | A schematic illustration of the proposed approach vs. the

existing ones for controlling a humanoid robot with non-invasive BMI.

on motor-imagery control (Wolpaw and McFarland, 2004; Miller

et al., 2010).

From the humanoid controller point-of-view now, the most

standard retained solution consists in using available humanoid

high level controllers. These can be either walking controllers

with the commands “walk forward” “stop” “turn left” “turn right”

sent to a walking humanoid, effectively reducing the problem of

humanoid motion control to that of walk steering control (Bell

et al., 2008; Chung et al., 2011; Finke et al., 2011; Gergondet et al.,

2011), or an object selecton/pick-up controller, where the user

selects an object in the scene and then the arm reaching/grasping

controller of the robot picks up the desired object (Bryan et al.,

2011). Finally Ma et al. (2013) use a hybrid control strategy where

both walk steering and selecting a high-level behavior among a

finite library can be done by switching between EOG and ERP

control. With these strategies, a humanoid can be seen as an

arm-equipped mobile robot, with wheels instead of legs (as it

is actually the case in Bryan et al., 2011 where only the upper

body is humanoid), and consequently the considerable amount of

work done on BMI wheelchair control, for example, can be read-

ily adapted. However, in doing so, the advantages of using a legged

device over a wheeled one are partially lost, and we can no longer

claim the need for the humanoid design nor defend the argument

of the possibility of using the robot in everyday living environ-

ment which would present non-flat structures, such as stairs for

example, with which the walking controllers are not efficient to

deal.

While we admit that these strategies relying on walking pattern

generators can in the long term benefit from the developments

in these techniques that would allow them to autonomously

cope with unstructured terrain (variable height stairs, rough ter-

rain) (Takanishi and Kato, 1994; Hashimoto et al., 2006; Herdt

et al., 2010; Morisawa et al., 2011), and that they can as well

use the hierarchical architectures in which they are embedded

as it is the case in Chung et al. (2011); Bryan et al. (2011); Ma

et al. (2013) for switching, for example, to an appropriate stair-

climbing controller when facing stairs, we choose in this work

to investigate an entirely different approach that does not incor-

porate any kind of walking or high-level controller. Instead, we

propose to allow the user to perform lower-level joint/link level

control of the whole-body motion of humanoid, driven again

by the desire of replicating the human low-level motor-control

strategies into the humanoid, but also by the belief that a generic-

motion generating approach will allow the robot assistant to deal

more systematically with unpredictable situations that inevitably

occur in everyday living scenarios and for which the discussed

hierarchical architectures would not have exhaustively accounted.

This is our second contribution. To achieve this goal, we rely

on the contact planning paradigm that we previously proposed

for fully autonomous robot (Bouyarmane and Kheddar, 2012),

adapting it here to the instance of a BMI-controlled robot.

3. HUMANOID CONTROLLER

Our humanoid controller is based on the multi-contact planning

paradigm, introduced in Hauser et al. (2008); Bouyarmane and

Kheddar (2012). This controller allows for autonomously plan-

ning and executing the complex high-degree-of-freedom motion
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of the humanoid from a high-level objective expressed in terms

of a desired contact state to reach. The controller works in two

stages: an off-line planning stage and an on-line execution stage.

At the planning stage (Bouyarmane and Kheddar, 2011a), a

search algorithm explores all the possible contact transitions that

would allow the robot to go from the initial contact state to the

desired goal contact state. What we mean by contact transition is

either removing one contact from the current contact state (e.g.,

removing the right foot from a double-support state to transition

to a left-foot single-support one) or adding one contact to the

current contact state (e.g., bringing the swing right foot in contact

with the floor to transition from a left-foot single-support phase

to a double support phase). One must however note that a contact

is defined as a pairing between any surface designated on the cover

of the links of the robot and any surface on the environment, and

is not restricted to be established between the soles of the feet and

the floor surface. For instance, a contact can be defined between

the forearm of the robot and the arm of an armchair, or between

the palm of the hand of the robot and the top of a table. This

strategy stems from the observation that all motions of humans

can be broken down to such a succession of contact transitions,

be it cyclic motions such as walking where these transitions occur

between the feet and the ground, or more complex maneuvers

such as standing up from an armchair were contacts transitions

occur between various parts of the body (hands, forearms feet,

tights, etc.) and various parts the environment objects (armchair,

table floor, etc.). This feature makes our planning paradigm able

to cope with situations that are broader than the ones classi-

cally tackled by humanoid motion planner that either plan for

the motion assuming a given contact state (e.g., planning a reach-

ing motion with the two feet fixed on the ground) (Kuffner et al.,

2002; Yamane et al., 2004; Yoshida et al., 2006, 2008), or plan-

ning footprint placements assuming a cyclic walking pattern will

occur on these footprints (Kuffner et al., 2001; Chestnutt et al.,

2003, 2005). This aligns well with our initially expressed objective

of controlling whole-body motion of any kind without restriction

to a subclass of taxonomically identified motions.

At the above-described contact-transition search stage, every

contact state that is being explored is validated by running an

inverse-kinematics solver which finds an appropriate whole-body

configuration (posture) of the robot that meets the desired con-

tact state, while at the same time satisfying physics constraints

to make the posture physically realizable within the mechanical

limits of the robots (Bouyarmane and Kheddar, 2010). At the

end of the offline-contact planning stage, we are provided with a

sequence of feasible contact transitions and associated transition

postures, that go from the initial contact state to the the goal.

The second stage of the controller is an on-line real-time

low-level controller (Bouyarmane and Kheddar, 2011b) that will

successively track each of the intermediate postures fed by the

off-line planning stage, until the last element of the planned

sequence is reached. The controller is formulated as a multi-

objective quadratic program optimization scheme, the objectives

being expressed in terms of the moving link of the robot involved

in the current contact transition being tracked along the sequence

(e.g., the foot if the contact transition is a sole/floor one), the cen-

ter of mass (CoM) of the robot to keep balance, and the whole

configuration of the robot to solve for the redundancies of the

high-DOF motion. These objectives are autonomously decided

by a finite-state machine (FSM) that encodes the current type of

transition among the following two types:

• Removing-contact transition: the motion of the robot is per-

formed on the current contact state, and the step is completed

when the contact forces applied on the contact we want to

remove vanish. This is done by shifting the weight of the robot

away from the being-removed contact, tracking the CoM posi-

tion of the following configuration in the sequence. There is no

end-link motion in this kind of step. The corresponding FSM

state is labeled “Shift CoM.”

• Adding-contact transition: the motion of the robot is per-

formed on the current contact state, and the motion of the

link we want to add as a contact is guided to its desired con-

tact location. There is thus an end-link motion (contact link) in

this kind of step. Balance is ensured by also tracking the CoM

position of the following configuration in the sequence. The

corresponding FSM state is labeled “Move contact link.”

As an example, a cyclic walking FSM state transition sequence will

look like: Move contact link (left foot) → Shift CoM (on the left

foot) → Move contact link (right foot) → Shift CoM (on the right

foot) → Move contact link → . . . But non-cyclic behaviors are

also possible and allowed, for example when standing up from an

armchair where contacts between the hands of the robot and arms

of chair can be added in succession and removed in succession.

The final output of the quadratic program optimization

scheme is a torque command that is sent to the robot at every con-

trol iteration, after the execution of which the state of the robot is

fed-back to the controller.

4. BMI DECODING

Our aim is for the humanoid system to be controlled by using

brain activities in the similar brain regions that are used to con-

trol the user’s own body. Therefore, we asked a subject to control

the simulated humanoid system by using motor imagery of arm

movements so that brain activities in motor-related regions such

as the primary motor cortex can be used.

As non-invasive brain signal acquisition device we use an

electroencephalogram (EEG) system (64 channels and sampling

rate of 2048 Hz). The brain signals are decoded and classified

using the method that was applied and presented in our previ-

ous work (Noda et al., 2012), based on the spectral regulariza-

tion matrix classifier described in Tomioka and Aihara (2007);

Tomioka and Muller (2010). We recall the method here.

The EEG signals, of covariance matrices C considered as input,

are classified into two classes, labeled with the variable k, with the

following output probabilities (at sampled time t):

P(kt = +1|Ct) =
1

1 + exp ( − at)
, (1)

P(kt = −1|Ct) =
exp ( − at)

1 + exp ( − at)
, (2)

with the logit being modeled as a linear function of C
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at = tr[W⊤Ct] + b , (3)

and where W is the parameter matrix to be learned (b is a

constant-valued bias).

To learn W the following minimization problem is solved

min

n
∑

t = 1

ln (1 + exp ( − ktat)) + λ‖W‖1 , (4)

λ being the regularization variable (λ = 14 in the application

below) and

‖W‖1 =

r
∑

i = 1

σi[W] (5)

being the spectral l1-norm of W (r is the rank of W and σi[W] its

i-th singular value).

Once the classifier learned, the 7–30 Hz band-pass-filtered

measured EEG signals are decoded online, by down-sampling

them from 2048 to 128 Hz, and applying Laplace filtering and

common average substraction to remove voltage bias. Their

covariance matrix, initialized at Ct = x⊤
t xt for the first time step

t = 1, where xt ∈ R
1×64 denotes the filtered EEG signals, are

updated at every time step as follows

Ct =
1

N
x⊤

t xt +
N − 1

N
Ct−1 , (6)

and used to compute the probabilities in Equations (1) and (2).

Finally, the three-valued discrete command ct that is sent to the

robot is selected from these probabilities through the following

hysteresis

ct =

⎧

⎪

⎨

⎪

⎩

+1 if P(kt = +1|Ct) > Pthresh and ct−1 �= +1 ,

−1 if P(kt = −1|Ct) > Pthresh and ct−1 �= −1 ,

0 otherwise ,

(7)

where the threshold is set at Pthresh = 0.6.

5. COMPONENT INTEGRATION

The command ct devised in Equation (7) is sent to the online

humanoid whole-body controller via UDP protocol at 128 Hz

frequency and used to modify the planned and autonomously

executed motion of the humanoid robot as described below and

as schematically represented in Figure 2.

When the robot is executing a step that requires moving a link

to a planned contact location (contact-adding step, executed by

the state “Move contact link” of the FSM, see Section 3), then

instead of tracking directly the goal contact location, we decom-

pose the motion of the end-link (the contact link, for instance the

foot) into two phases:

• Lift-off phase: The link first tracks an intermediate position

located at a designated way-point.

• Touch-down phase: The link then tracks its goal location in the

planned contact state sequence.

This two-phase decomposition allows the link to avoid unneces-

sary friction with the environment contact surface and to avoid

colliding with environment features such as stairs.

Each of these two phases correspond to a sub-state of the meta-

state “Move contact link” of the FSM, namely:

• State “Move contact link to way-point”

• State “Move contact link to goal”

Additionally, in order to avoid stopping the motion of the contact

link at the way-point and to ensure a smooth motion through-

out the step, we implemented a strategy that makes the transition

from the former to the latter sub-state triggered when the con-

tact link crosses a designated threshold plan along the way, before

reaching the tracked way-point.

A default position of the intermediate way-point is automat-

ically pre-set by the autonomous framework using the following

heuristic (see Figure 2, left): Let Ps denote the start position of the

contact link (at the beginning of the contact-adding step) and Pg

denote its goal position (its location in the following contact state

FIGURE 2 | The way-point moving strategy. The rectangles in the left and

middle figures represent positions of the moving foot (say the right foot,

supposing the left foot is the support foot that is fixed and not represented

here). In the right figure the whole leg motion is reconstructed from the foot

motion. In all three figures, in black is the initial position of the foot/leg at the

beginning of the step, in blue the controlled way-point position of the foot/leg

at the middle of the step, and in red is the planned final foot/leg position at

the end of the step. The left figure shows how a default position of the way

point is initialized autonomously by a translation of the final planned position.

�g is the gravity vector, �z the vertical unit vector (opposite to �g), �u is the unit

vector from the initial to the goal position along the goal planned-contact

surface plane, �v is the generalized vertical direction unit vector, i.e., the unit

vector normal to �u and in the plane defined by �u and �z, finally, h is a pre-set

default height. The middle figure shows how the way-point position is

controlled via the command ct sent through the motor imagery interface.

Finally the left figure shows how the resulting motion of the leg actually looks

like with the foot going through the desired way-point that was translated

downwards via the command ct = −1.
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along the planned sequence). Let �g denote the gravity vector, �z the

unit vector opposite to �g, i.e., �z = −�g/‖�g‖, and �u the unit vector

from Ps,g (Ps projected on the goal-contact surface plane) to Pg ,

i.e., �u =
−−−→
Ps,gPg/‖

−−−→
Ps,gPg‖. Finally let �v = �u × (�z × �u) be the unit

vector normal to �u that lies in the plan defined by �u and �z. The

default way-point Pw is defined as

Pw = Pg −
1

2

−−−→
Ps,gPg + h �v , (8)

where h is the hand-tuned user-defined parameter that specifies

the height of the steps. The command ct in Equation (7) that

comes from the BMI decoding system is finally used to modify

in real-time this way-point position Pw by modifying its height h

(see Figure 2, middle). Let δh denote a desired height control res-

olution, then the modified position of the way-point through the

brain command ct becomes

Pw(ct) =

{

Pg − 1
2

−−−→
Ps,gPg + (h + ct δh) �v if t = 1 ,

Pw(ct−1) + ct δh �v if t > 1 .
(9)

The command ct could have been used in other ways, however we

identified two principles that should in our view stand in a BMI

low-level control endeavor of humanoid motion such as ours:

• Principle 1: The full detailed motion, that cannot be designed

joint-wise by the BMI user, should be autonomously planned

and executed from high-level (task-level) command.

• Principle 2: The brain command can then be used to locally

correct or bias the autonomously planned and executed

motion, and help overcome shortcomings inherent to full

autonomy.

The way-point is a key feature to be controlled according to

these two principles as it helps surmount the main limitation

of the autonomous collision-avoidance constraint expressed in

the on-line quadratic-program-formulated controller described

in Section 3. This collision-avoidance constraint, that had to be

formulated as a linear constraint in the joint acceleration vec-

tor of the robot in order to fit within the quadratic-program

formulation [adapting to this end the velocity-damper formula-

tion (Faverjon and Tournassoud, 1987)], acts as a repulsive field,

with the tracked way-point acting as an attractive field, on the

contact link. The resultant field (from the superposition of these

two fields) can display local extrema corresponding to equilib-

rium situations in which the link stops moving though without

having completed its tracking task (see Figure 9). Manual user

intervention, here through the brain command, is then neces-

sary to un-block the motion of the link by adequately moving the

tracked way-point. The brain command is thus used here for low-

level correction of a naturally limitation-affected full-autonomy

strategy.

6. PROOF-OF-CONCEPT EXPERIMENT

The experiment we designed (see Figure 3 and video that

can be downloaded at http://www.cns.atr.jp/~xmorimo/videos/

frontiers.wmv) to test the whole framework is described as

follows.

An initial and goal configurations (Figure 4) are pre-specified

manually by the user among a finite number of locations in the

environment. In this case the initial configuration is standing in

front of a stair and the goal task is to go up on the stair. This selec-

tion is for now done manually, but it can later also be selected

through a brain command by embedding the strategy described

in this work within a hierarchical framework such as the ones sug-

gested in Chung et al. (2011); Bryan et al. (2011), that will switch

between the behavior of selecting the high-level goal task and the

low-level motion control.

Off-line, the framework autonomously plans the sequence of

contact transitions and associated intermediate static postures to

reach that goal (Figure 5), then the on-line controller is executed.

The user is wearing an EEG cap and is trained with 3 training

sessions of approximately 5 min each to learn the parameter of the

classifier described in Section 4, through a motor imagery task

FIGURE 3 | Experiment setup. The user is wearing an EEG cap. The laptop

on his left side is used for decoding the motor imagery task signal, the

computer on his right runs the real-time physics simulation allowing him to

control the position of the moving foot through the visual feedback he gets

from the simulator window.

FIGURE 4 | Intial and goal positions for the experiment. Left: initial

configuration with the robot standing in front of the stair. Right: goal

configuration with the robot standing at the extremity up on the srair.
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FIGURE 5 | The sequence of static postures planned autonomously. The

first posture is the initial posture. The second posture which looks like the

first one keeps both feet on the ground but puts all the weight of the robot

on the right foot so as to zero the contact forces on the right left to release it

for the next posture. The third posture moves the now free left foot and puts

it on the stair, but still without any contact force applied on it (all the weith of

the robot is still supported by the right foot). the fourth postures keeps both

feet at their current locations but shifts all the weight of the robot away from

the right foot to put it entirely on the left foot, the right foot becomes free of

contact forces, and so on.

FIGURE 6 | The controlled motion. The figures represent successive

snapshots from the real-time controlled motion in the physics simulator.

The controlled position of the way point appears in the simulator as a

black sphere that we circle here in red for clarity. This position is tracked

by the foot (more precisely at the ankle joint) throught the simulation.

The two horizontal lines represent the level of the sole of the foot at the

two positions sent as a command by the user through the BMI. These

lines do not appear in the simulator we add them here only as common

visualization reference lines for all the snapshots. In the first two frames

the robot tracks the default position of the way point. In the third frame

the user decides to move that position up, then down in fourth frame,

and finally up again in the fifth frame.

consisting of imagining respectively left arm and right arm cir-

cling movements for going up and down. This task is generic and

we retained it since it gave us in our experiment better decoding

performances than some other tasks (e.g., leg movements). The

user has visual feed-back from the simulator on the desktop com-

puter screen (on his right in Figure 3) and from a bar-diagram

representing in real-time the decoded probability of the motor-

imagery task classification on the laptop computer screen (on his

left in Figure 3). The experiment was successfully completed on

the first effective trial, which was the overall third trial (the first

two trials were canceled after their respective training sessions

since we encountered and fixed some minor implementation bugs

before starting the control phase). The subject had prior experi-

ence with the same motor-imagery classifier in our previously-

cited study (Noda et al., 2012). We only experimented with that

one subject as we considered that we reached our aim of testing

our framework and providing its proof-of-concept experiment.

The decoding of the BMI command is done in real-time and

implemented in Matlab, and the brain command is then sent via

UDP protocol to the physics simulator process implemented in

C++.

We tested the way-point control strategy in the second step

of the motion (the first contact-adding step along the sequence,

the highlighted transition in Figure 5). Figure 6 focuses on this
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controlled part of the motion. The user controlled the posi-

tion of a black sphere that represents the position of the tar-

geted way-point, that the foot of the robot tracks in real-time,

while autonomously keeping balance and avoiding self-collisions,

joint limits, and collision with the environment. A total of 8

FIGURE 7 | Motor imagery decoding performances. On the horizontal

axis is iteration number. From top to bottom: the thick blue line represents

the command cue given as an input to the user, the thin red line represents

the decoded brain activities [the probability P(kt = +1|Ct )], the thick red

point markers represent the estimated classified label [P(kt = +1|Ct ) ≥ 0.5

or < 0.5], finally the thick green line represents the command ct sent to the

robot (based on the threshold Pthres = 0.6). Note that this green command

does not represent the position of the way-point but the instantaneous rate

of change in this position between two successive time steps t and t + 1,

according to Equation (9), line 2 (i.e., the “derivative” were we talking of a

continuous and differentiable function rather than the time-discretized one

at hand).

commands (“up”/“down”) were sent during this controlled tran-

sition phase, that we voluntarily made last around 300 s (5 min)

in order to allow the user to send several commands. We then

externally (manually) triggered the FSM transition to the follow-

ing step along the sequence and left the autonomous controller

complete the motion without brain control. That autonomous

part was completed in about 16 s. See the accompanying

video.

Figure 7 illustrates the decoding performances of the BMI

system, while Figure 8 shows the tracking performance of the

humanoid whole-body controller. The table below gives com-

putation time figures executed on a Dell Precision T7600

Workstation equipped with a Xeon processor E5-2687W

(3.1 GHz, 20 M). Full details on the physics simulator, including

contact modeling and resolution, and collision detection, can be

found in Chardonnet et al. (2006); Chardonnet (2012).

Offline planning 2.7 s

Average online control command (QP) (@ 200 Hz) 2.661 ms

Average online simulation step (@ 1 kHz) 0.389 ms

BCI classifier training and learning session ∼ 30 min

Average online BCI signal buffering (@ 2048 Hz) 0.137 ms

Avg online BCI classification (@ 128 Hz) no control signal

sent (ct = 0)

0.204 ms

Avg BCI classification (@ 128 Hz) control signal sent

(ct = +1 or −1)

6.20 ms

From this experiment, we confirmed that the autonomous

framework can be coupled with the BMI decoding system

in real-time in simulation and that the simulated robot can

safely realize the task while receiving and executing the brain

command.

FIGURE 8 | Way-point tracking performance. The user-controlled quantity,

that happens to be in the particular case demonstrated here the z-coordinate

of the tracked way-point (the “generalized” vertical direction being reduced in

this case to the “conventional” vertical direction, meaning �v ≡ �z in Figure 2,

since the goal-contact surface on the stair is horizontal), is represented by the

piecewise-constant red curve. The corresponding motion of the foot, that

tracks this command-induced way-point position, is shown in yellow curve.

the two other coordinates of the foot (x and y ) are auonomously maintained

by the controller at the corresponding ones of the way-point and stay at their

desired values throught the command phase.
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FIGURE 9 | Comparison of the controlled transition motion in three

instances. Top: without collision-avoidance constraint, the foot of the robot

collides with the stair while targeting its goal, and the simulation stops.

Middle: with autonomous collision-avoidance constraint that happens to

create in this case a local-minimum trap, the robot reaches an equilibrium

situation and stays idle for as long as we let the simulation run (infinite time).

Bottom: The autonomous collision-avoidance strategy combined with the

proposed BMI-control approach helps reposition the way-point and overcome

the local-minimum problem. The robot safely reaches the goal contact

location and the motion along the sequence can be completed.

7. DISCUSSION AND FUTURE WORK

This work demonstrated the technical possibility of real-time

online low-level control of whole-body humanoid motion using

motor-imagery-based BMI.

We achieved it by coupling an existing EEG decoder

and whole-body multi-contact acyclic planning and control

framework. In particular, this coupling allowed us to control a

one-dimensional feature of the high-DOF whole-body motion,
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designed as the generalized height of moving link way-point,

in a discrete way. Though the motor-imagery task used in our

proof-of-concept experiment was a generic one (left-arm vs.

right-arm circling movement), we plan in the future to investigate

more specific motor-imagery tasks that are in tighter correspon-

dence with the limb of the robot being controlled, along the

longer-term user’s-mind-into-robot’s-body “full embodiment”

quest that motivates our study as expressed in our introductory

section. Since previous studies reported that imagery of gait and

actual gait execution have been found to recruit very similar cere-

bral networks (Miyai et al., 2001; La Fougère et al., 2010), we may

be able to expect that a human can control a humanoid the same

way they control their own human body through motor imagery.

We also aim now at continuous control of two-dimensional

feature of this whole-body motion, allowing not only the control

of the tracked way point but also of a corresponding thresh-

old plan that decides when to trigger the transition between the

lift-off and touch-down phases. We believe this can be achieved

based on the previous work done for example on motor-imagery

two-dimensional cursor control (Wolpaw and McFarland, 2004).

Other previous studies also discussed the possibilities of using

EEG for such continuous control (Yoshimura et al., 2012). In

addition, for the continuous two-dimensional feature control,

explicit consideration of individual differences in cerebral recruit-

ment during motor imagery may be necessary (Meulen et al.,

2014). As a future study, we may consider using transfer learn-

ing approaches (Samek et al., 2013) to cope with this individual

difference problem.

Finally, we aim at porting this framework from the simula-

tion environment to the real robot control, so that in future study

we may possibly use the proposed framework in a rehabilitation

training program to enhance recovery of motor-related nervous

system of stroke patients.
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