
HAL Id: lirmm-01064146
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01064146

Submitted on 21 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Implementation Properties in Analysis of
Petri Nets Handling Exceptions

Hélène Leroux, Karen Godary-Dejean, David Andreu

To cite this version:
Hélène Leroux, Karen Godary-Dejean, David Andreu. Integrating Implementation Properties in Anal-
ysis of Petri Nets Handling Exceptions. WODES 2014 - 12th IFAC International Workshop on Discrete
Event Systems, May 2014, Paris, France. pp.406-411, �10.3182/20140514-3-FR-4046.00032�. �lirmm-
01064146�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01064146
https://hal.archives-ouvertes.fr

Integrating implementation properties in
analysis of Petri nets handling exceptions

Helene LEROUX ∗ Karen GODARY-DEJEAN ∗∗

David ANDREU ∗

∗DEMAR INRIA LIRMM, Montpellier II University, Montpellier,
FRANCE(leroux,andreu@lirmm.fr).

∗∗ LIRMM, Montpellier II University, Montpellier,
FRANCE(godary@lirmm.fr).

Abstract: To design and implement complex digital systems, designers need to have an efficient
methodology. In this goal, HILECOP has been developed to transform automatically Petri nets
in a VHDL code. To ease design and increase the reactivity of exception handling, the mechanism
of macroplace has been added to the formalism of Petri nets. This article describes an automatic
model transformation for the analysis step. It integrates implementation properties to enhance
reliability.

Keywords: Formal verification, Exception, Petri-nets, Implementation, Discrete-event systems

1. CONTEXT

To design and implement complex digital systems, de-
signers must have an efficient and reliable design process.
Hence a methodology, called HILECOP (High level hard-
ware component programming) has been developed [Sou-
quet et al. (2008)]. This component-based approach allows
designers to easily handle complex digital architecture.
The components and their compositions are described
thanks to Interpreted Time Petri Nets (ITPN) [Leroux
et al. (2013)]. It allows to benefit from their intuitive
graphical representation, but also formal and structural
analyses capabilities of Time PN. Once the components
and their interactions have been defined, the initial model
is automatically transformed (model-to-text transforma-
tions) resulting into two different models: the implementa-
tion model (IM) written in VHDL and the analysis model
(AM) written in PNML. Since HILECOP does not contain
analysis facilities, the AM is used in existing analysis tools
to validate and optimize the implementation. The IM will
be implemented on FPGA devices.

Several other methodologies to translate PN models in
VHDL have been developed [Silva et al. (2010)][Tkacz and
Adamski (2012)]. The advantage of the HILECOP one
is that it handles generalized T-time PN whereas other
methodologies deal with binary non-time PN. Further-
more, as far as we know, the question of the correspon-
dence between the analyzed model and the implementation
has not been treated in these methodologies.

The HILECOP methodology has been successfully used
in industrial applications, especially in the field of im-
plantable active medical device [Andreu et al. (2009)]. Yet
designers encountered some issues for handling exceptions
in a reactive and efficient way [Leroux et al. (2013)]. Hence
the PN formalism is enhanced with a new mechanism to
deal with exceptions: the macroplace (MP). The concept
of MP or exception handling for PN have already been

studied [Holvoet and Verbaeten (1995)][de Oliveira et al.
(2002)] but not in an automatized methodology. Moreover
existing MP do not satisfy all of our constraints: it must
among other things preserve the conformity and efficiency
of the implementation but also the analyzability of the
model with existing analysis tools.

The analysis is notably used to guarantee the behavior. To
have confident validation results, the behavior of the AM
must include every possible implementation behavior. Now
the analysis complexity of the AM has to be contained
to face the classical combinatorial explosion problem, a
fortiori dealing with industrial size models. The goal of this
article is then to introduce efficient model transformations
from the initially designed model to both the AM and
the IM. First, the formalism of ITPN with macroplaces
is defined. Second, its implementation is described. Then
the generation of the analysis model is explained. Last,
obtained results are presented.

2. ITPN WITH MACROPLACE

2.1 Definition

The formalism used to describe a HILECOP-component
behavior is generalized Interpreted T-time Petri Nets with
test and inhibitor arcs and with macroplaces (cf Fig. 1).
Broadly speaking, the model is composed of a main PN
which is an ITPN (described in Leroux et al. (2013)) and
macroplaces (MP). A MP is an entity containing an ITPN
called refinement and is represented by a double ellipse.
The main PN and MP are linked by specific arcs: entry
and exit arcs represented by dashed arrows. A situation is
associated to these arcs to describe the interaction between
a transition and a MP (cf Fig. 1). The situation (*) can
be associated to an exit arc to describe an exception arc.
An exception transition is a transition targeted by an
exception arc as texc in Fig.1.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 406 10.3182/20140514-3-FR-4046.00032

(*)

(2P7)
(P6,?P7)

P1

P2

P3

P6

P5

P4P7

(P1)
[1,1]

[1,1]

[1,1]

[1,1]

[2,3]

[1,1] [1,1]

[1,1]

[1,1]

tA

texc

tI1

tB

t4

t5

t6t3

t2

t1 2

2

[1,2]

PA

init

tF PBPC

[1,inf]

[1,1]tI2

(2P7)

Fig. 1. Example of ITPN with macroplace

Our notations and some definitions are inspired from
[Traonouez et al. (2009)] and [Berthomieu et al. (2007)].
Let I+ be the set of non empty real intervals with non
negative rational endpoints. For i ∈ I+, ↓ i is its left end-
point and ↑ i is its right end-point or∞ if i is unbounded.
The interpretation of a ITPN consists of conditions, func-
tions and actions. Let C, F , A be respectively the set
of conditions, functions and actions described in VHDL.
They interact with inputs and outputs of the system or
manipulate internal variables. ε means that there is no
condition nor function linked to a transition nor action
linked to a place.

An ITPN with MP is a tuple < P, T,M,Pre, Pret, P rei,
Post, Entry,Exit,m0, Is, C, F,A >, in which :

• P , T are respectively the set of places and transitions
of the main PN, M is the set of MP.
• m0 is the initial marking.
• mp ∈M is an ITPN defined with< Pmp, Tmp, P remp,
P rempt , P rempi , Postmp,mmp

0 , Imps , Cmp, Fmp, Amp >
• Pall = P ∪

⋃
mp∈M

Pmp, Tall = T ∪
⋃

mp∈M
Tmp.

• Pre, Pret, P rei, Post : T → P → N are respectively
the precondition function, the test function, the inhi-
bition function and the postcondition function.

• ∀mp ∈ M,Premp, P rempt , P rempi , Postmp : T →
Pmp → N are respectively the precondition function,
the test function, the inhibition function and the
postcondition function of the refinement of the MP.

• Entry = (PreM , P reMt, P reMi) and Exit = (PostM ,
Postexc) are the description of entry and exit situa-
tions.

• PreM , P reMt, P reMi, PostM : T →
⋃

mp∈M
Pmp → N

are the entry precondition function, the entry test
function, the entry inhibition function and the entry
postcondition function, respectively.

• Postexc : T →M → B is the exception function. It is
equal to 1 when there is an exception arc between a
MP and a transition, 0 otherwise.

• Is : Tall → I+ ∪∅ is the static interval function.
• C : Tall → C ∪ ε→ B ∪ ε is the condition function.
• F : Tall → F ∪ ε is the impulsive action function.
• A : Pall → A∪ ε is the continuous action function.

Moreover, a place or a transition cannot be in the main
PN and in a refinement ie : ∀mp ∈ M,P ∩ Pmp = ∅
and T ∩ Tmp = ∅; a place or a transition cannot be in
two different refinements, ie: ∀(mp,mp′) ∈ M2, Pmp ∩
Pmp

′
= ∅ and Tmp ∩ Tmp′ = ∅. Also, if there is an

exception arc between a MP and a transition there cannot
be an other exit arc between them, ie : ∃(mp, t) ∈ (M,T)\
Postexc(t)(mp) = 1⇒ ∀p ∈ Pmp, PostM (t)(p) = 0.

An entry situation is written such as ({niPi}) where
ni ∈ N+ and Pi ∈ Pmp. An exit situation is written either
such as: ({XniPi}) where ni ∈ Z\{0}, Pi ∈ Pmp and
X ∈ {ε, ?} or as (∗) to describe an exception. ? allows to
describe test and inhibitor arcs.

Let Mexc(t) be the set of MP linked to the transition
t by an exception arc: ∀mp ∈ M,mp ∈ Mexc(t) ⇔
Postexc(t)(mp) = 1. For f, g : P → N, f ≥ g means (∀p ∈
P)(f(p) ≥ g(p)) and f{+| − | = | 6=}g maps f(p){+| −
| = | 6=}g(p) with every p. The function m : Pall → N
is the marking. The marking of a MP mp is defined
by the function mmp = m|Pmp . A transition t ∈ Tmp

is sensibilized by m iff (m ≥ Premp(t) + Prempt (t)) ∧
(m < Prempi (t)). A transition t ∈ T is sensibilized by m
iff (m ≥ Pre(t) + Pret(t) + PreM (t) + PreMt(t)) ∧ (m <
Prei(t) +PreMi(t))∧∀mp ∈Mexc(t),m

mp 6= 0 where 0 is
the null function. In these cases, we note t ∈ sens(m). Let
m′ be the marking of the ITPN after the firing of t from
the marking m. The set of transitions newly sensibilized is
noted ↑ sens(m, t). A transition k ∈ T is newly sensibilized
by the firing of the transition t from the marking m iff :

if t ∈ Tmp, k ∈ sens(m′)
∧ [(k = t) ∨ k /∈ sens(m− Premp(t))]

if t ∈ T, k ∈ sens(m′)
∧ [(k = t) ∨ k /∈ sens(m− Pre(t)− PreM (t))]

A MP mp is active iff mmp 6= 0 where 0 is the null
function. A state of an ITPN is s = (m, I) where m is
the marking and I is a function called the time-interval
function. Function I : Tall → I+ ∪ ∅ associates a time-
interval with every transition sensitized by m. A transition
t ∈ Tall is fireable from (m, I) if : t ∈ sens(m)∧(C(t) = 1∨
C(t) = ε) ∧ 0 ∈ I(t). It is denoted fireable(m).

2.2 Semantics

Because of interpretation, the strong semantic used for
time PN cannot be used. Indeed, it cannot be guaranteed
that, for a transition t, we have C(t) = 1 and 0 ∈ I(t)
at the same time. Weak semantics is not used either as it
does not allow to describe the emergency of some events.
So we defined in [Leroux et al. (2013)] a new semantics for
ITPN allowing to block a transition t if C(t) = 0 during
all the time slot. It is unblocked when t becomes newly
sensibilized. We adapted this semantics to ITPN with MP.

The main difference between the semantics of ITPN and
the one of ITPN with MP is the firing of an exception
transition. When an exception transition is fired, the
marking of the MP linked to it is cleared, as well as the
time counter of every transition of these MP and every
transition having these MP in input. Let Tiexc(t) be the
set of transitions defined by : ∀k ∈ T , k ∈ Tiexc(t)⇔ ∃p ∈⋃
mp∈Mexc(t)

Pmp \PreMi(k)(p) = 1. It is the transitions of

the main PN linked to a cleared MP by only an inhibitor
arc with a weight equal to one.

The semantics of an ITPN with MP is the timed transition
system < S, s0,;> where:

WODES 2014
Cachan, France. May 14-16, 2014

407

•S is the set of states (m, I) of the ITPN with MP.
•s0 = (m0, I0) is the initial state, where m0 is the initial
marking and I0 is the static interval function Is restricted
to the transitions sensitized by m0.
•;⊆ S × (Tall ∪ R+)× S is the state transition relation,

defined as follows ((s, a, s′) ∈ ; is written s
a
; s′):

1. Discrete transitions: (m, I)
t
; (m′, I ′) iff :

- t ∈ Tmp ∧ t ∈ fireable(m)
- m′ = m− Premp(t) + Postmp(t)
- (∀k ∈ Tall\k ∈ sens(m′)), if k ∈↑ sens(m, t), I ′(k) =
Is(k), otherwise I ′(k) = I(k).

Or
- t ∈ T ∧ t ∈ fireable(m)
- ∀p ∈ (P ∪

⋃
mp∈M\Mexc(t)

Pmp),

m′(p) = (m− Pre(t)− PreM (t)
+Post(t) + PostM (t)) (p)

and ∀p ∈ (
⋃

mp∈Mexc(t)

Pmp), m′(p) = 0

- ∀k ∈ (T\Tiexc(t) ∪
⋃

mp∈M\Mexc(t)

Tmp)\k ∈ sens(m′),

if k ∈↑ sens(m, t),I ′(k) = Is(k),
otherwise I ′(k) = I(k) and ∀k ∈ (Tiexc(t)
∪

⋃
mp∈Mexc(t)

Tmp), if k ∈ sens(m′), I ′(k) = Is(k).

2. Continuous transitions: (m, I)
θ
; (m, I ′) iff θ ∈ R+ and:

- (∀t ∈ Tall) I(t) 6= ∅ ∧ t ∈ sens(m)⇒ θ ≤↑ I(t)
- (∀t ∈ Tall) I(t) 6= ∅∧ t ∈ sens(m)⇒↓ I ′(t) =↓ I(t)−
θ∧ ↑ I ′(t) =↑ I(t)− θ

- (∀t ∈ Tall) I(t) = ∅⇒ I ′(t) = I(t)

3. Blocking transitions: (m, I)
t
; (m, I ′) iff t ∈ Tall and:

- t ∈ sens(m) ∧ (C(t) = 0) ∧ (↑ I(t) = 0)⇒ I ′(t) = ∅
- (∀k ∈ Tall\t) I ′(k) = I(k)

3. IMPLEMENTATION

3.1 Implementation of an ITPN

By definition, a PN is an asynchronous model. Yet an
ITPN can contain functions and, on a FPGA, there is
no easy way to know when the execution of a function
is finished (i.e. when output signals are stable) as a VHDL
code is executed in a combinatorial way. When a transition
is fired, the execution of its associated function must be
finished before the firing of the next transition. Hence
it is very intricate to implement ITPN automatically on
a FPGA asynchronously. So we choose to implement it
synchronously (cf Fig.2) with the constraint that every
function takes less than one clock period to execute. The
marking of each place is updated on the raising edge (1©)
and the decision to fire or not is taken on the falling edge
for each transition (3©). If a transition is fired, associated
functions are launched on the following raising edge (1©).
If a place is marked, associated actions are executed on
the following falling edge (3©).

To ensure a deterministic behavior, if a transition is
fireable, it is fired immediately even if its time slot allows
it to be fired later. Also, every concurrent transitions
would be fired together, which is not in keeping with

local clock

determination of transitions which are fired
update of fireable(m) ^ I(t) ^ A(m)

determination of the new marking
update of : m(p) ^ F(t)

1

2

3
4

calculation of
sensitization of texc

signal clear
 null if texc fired

1

Fig. 2. Synchronous execution of an ITPN

the asynchronism of the formalism of PN. The designer
must ensure thanks to the conditions, that transitions in
a structural conflict can never be in an effective conflict.

3.2 Implementation of the MP

An efficient way to implement a MP must be defined
to guarantee the reactivity and the reliability of this
mechanism, but also to keep the benefit of the compactness
of the expression of the MP. To implement the MP, entry
and exit arcs are easily transformed in classical arcs as they
have the same behavior. Therefore there are two issues
to consider : how to translate the fact that an exception
transition is sensitized by a macroplace and how to handle
the firing of an exception transition.

Sensitization of an exception transition An exception
arc sensitizes its output transition if the MP is active, i.e.
if and only if at least one of the places of the refinement
of the MP is marked. Hence for each macroplace, a
process is defined to determine whether the markings
of the refinement places are nul or not. This process is
running asynchronously as soon as the marking of places
is modified (cf Fig. 2).

Firing of an exception transition Firing an exception
transition means clearing the marking of all internal places
of the given MP but also the order to fire and the time
counter of internal and exit transitions. It also resets the
actions linked to the internal places. Functions do not have
to be taken care of as the command to trigger functions
is given at the following raising edge of the clock (1©)
and depends on the decision to fire a transition which
have already been cleared if necessary (during 4©). Even
if the implementation of the PN is synchronous, it has
been chosen to asynchronously deal with the effect of
the firing of an exception transition. For example, the
marking is immediately updated (4©) without waiting for
the next rising edge of the clock (1©). It allows to naturally
prioritize the effect of the exception over the ones of the
normal transitions.

To deal with an exception, a signal clear is associated to
each MP. The firing of an exception transition immediately
puts this signal down to 0 (4©). The orders to clear the
marking, time counters and actions signals are handled
combinatorially. As the implementation of the MP is
synchronous, it is possible that an entry transition and an
exception transition are simultaneously fired. In this case,
the MP is deactivated but the firing order of the entry
transition is not cancelled.

4. GENERATION OF THE ANALYSIS MODEL

To be able to guarantee the behavior of a model in every
case, it is necessary to use formal analysis and not solely

WODES 2014
Cachan, France. May 14-16, 2014

408

simulations. In our case, model-checking is used therefore
we need to be able to obtain the reachability graph
(RG) of our model written as an ITPN with MP. The
interpretation cannot be analyzed so it must be removed
to obtain the analysis model (AM). Doing so leads to
authorize some behaviors in the AM that were not in
the implementation. Moreover, to rely on analysis results,
it must be guaranteed that all possible behaviors in the
implementation are also considered on the AM. Yet, it is
better to reduce the unrealistic behaviors to prevent false
analysis results. Additionally the AM must be optimized
for getting the RG, hence it is written to reduce as much
as possible the risk of combinatorial explosion (notably
caused by interleaving transitions).

The initial model is transformed in a Prioritized T-Time
Petri Nets (PrTPN) as this formalism is supported by
existing analysis tools. The definition of PrTPN is given
in Berthomieu et al. (2007). Two main issues must be con-
sidered to ensure that all behaviors of the implementation
will be in the AM: the withdraw of the interpretation and
the asynchronism of the exception. The main point of the
model transformation of an ITPN into a PrTPN will be
presented and then the principle to flatten a model with
macroplaces will be given.

4.1 Transforming an ITPN into a PrTPN

The PrTPN obtained after the transformation must con-
sider not only the interpretation but also the synchronous
implementation of the ITPN. One major point in the
model transformation is to determine the time slot as-
sociated to each transition of the PrTPN. Let Is be the
static interval function of the ITPN and I ′s the one of
the PrTPN. To take into account the synchronism of the
implementation, for every non-time transition t of the
ITPN we have I ′s(t) = [1, 1] in the PrTPN. Moreover, for
timed transition, we have : ↓ IS(t) ≥ 1⇒↓ I ′S(t) =↓ IS(t)
and ↓ IS(t) < 1 ⇒↓ I ′S(t) = 1. For the upper limit of
time transition, two points must be considered: a fireable
transition is fired as soon as possible and a transition
which has a condition can be blocked (cf §2.2). Hence
if C(t) = ε, ↑ I ′S(t) =↓ IS(t) else ↑ I ′S(t) =↑ IS(t).

The possible blocking of a transition is handled if needed
through automatically added places and transitions. The
principle (cf Fig. 3) is to add for each transition ti two
types of transitions: one to block ti, the other to unblock
it. The blocking transition is sensibilized if and only if ti
is but classical arcs are replaced by test ones. The time
slot of this transition is defined such as I ′S(blocking ti) =
[↑ IS(ti), ↑ IS(ti)]. To unblock ti, a transition is added for
every input arcs of ti to verify if ti is still sensibilized.
In the particular case when Pre(ti) = 0, another place
must be added to represent the firing of ti. This place is
immediatly cleared thanks to a sink transition.

Another issue is that the ITPN is implemented syn-
chronously (except for the exception) whereas the AM
is asynchronous. Hence two transitions that will be fired
simultaneously in the implementation will be fired sequen-
tially in the AM. The behavior of an autonomous syn-
chronized PN is included in the one of the corresponding
unsynchronized PN[David and Alla (2008)].

p0 p1 p2

p0

p1
p2

blocked_ti

ti ti blocking_ti

unblocking_ti_0

unblocking_ti_1

unblocking_ti_2
[0,0]

[0,0]

[0,0]

[5,5][2,5][2,5]cond cond

Fig. 3. Transformation for potentially blocked transition

4.2 Flattening a model with a macroplace for analysis

The MP is not supported by existing analysis tools.
Therefore it is necessary to flatten the model in a be-
haviorally equivalent PrTPN. This transformation should
be automated in order to prevent any human error in
the transformation process. To flatten a model containing
macroplaces, three main issues must be solved: how to
translate entry and classical exit arcs, how to translate
exception arcs (i.e. how to modelize the activity of a
macroplace and the purge of the places) and how to handle
the simultaneous firing of entry/exit transitions.

4.3 Translation of entry arcs and classical exit arcs

Let us consider an entry arc associated to a transition t.
For each place P in the set of places in its associated entry
situation, we have: Pre(t)(P) = ni. Now if a classical exit
arc is associated to t, for each place P in the set of places
in its associated exit situation:

• if Xi = ε, Pre(t)(P) = ni.
• if Xi =? and ni > 0, Pret(t)(P) = ni.
• if Xi =? and ni < 0, Prei(t)(P) = ni.

4.4 Translation of exception arcs

Translation of the MP activity The principle consists of
using a place called active MP to explicitly represent the
MP activity. The solution of handling the marking of this
place by checking if all the refinement places are marked or
not at each time step, is not considered since it increases
the analysis complexity. Indeed, it leads to use concurrent
transitions. The idea is then to handle the MP activity by
directly using the transitions producing activity (cf Fig. 4).
An intermediate place activation asked is added to ensure
the boundedness of active MP. As we define the time slot
of intermediate transitions leading to the marking of the
active MP place equal to [0,0], it is marked at the same
instant when the MP becomes active. So the AM behavior
is equivalent to the implementation.

To know when the active MP must be unmarked, the
simpliest solution is to add an inhibitor arc between every
place of the macroplace refinement and a specific transition
deactivation. The time slot of this transition is defined
equal to [0,0] in order to unmark the place active MP as
soon as the macroplace is effectively deactivated.

Clearing the macroplace refinement The firing of an
exception transition must lead to the immediate clearing
of the macroplace refinement. As far as implementation is
concerned, the clear is done on every place and transition
simultaneously and asynchronously in less than 1 time unit
(§3.2). Hence the idea, for the AM, is to empty the places

WODES 2014
Cachan, France. May 14-16, 2014

409

P1

P2

P3

P6

P5

P4
P7

[1,1]

[1,1]

[1,1]

[1,1]

[2,3]

[1,1] [1,1]

[1,1]

[1,1]

tA

tI1

tB

t4

t5

t6t3

t2

t1 2

2

2

active
MP

activation
asked

[1,1]

reinit

[0,0] [0,0]

[0,0]

PA

deactivation

texc

tF PBPC

[1,inf]

[1,1]tI2

2

ta1 ta2

Fig. 4. Modeling the activity of the MP

through added transitions only used for analysis with a
time slot equal to [0,0]. This guarantees that all the tokens
will be withdrawn before the next time step, and hence the
equivalence with the implementation.

Two methods can be used to empty the refinement places:
in parallel or sequentially. Although the parallel method
looks closer to the implementation and requires less added
places and transitions, the two methods are equivalent in
the temporal behavior point of view, as every firing of
added transitions is made in null time. But in the analysis
point of view the sequential method is better. Indeed the
parallel method will create interleavings between all the
added transitions leading to a more complex analysis. An
example of the sequential method is given in figure 5.

P1

P2

P3

P6

P5

P4P7

[1,1]

[2,3]

[1,1] [1,1]

[1,1]

[1,1]

t4

t5

t6t3

t2

t1 2

2

texc

[1,1]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0] tend

exc in progress

te8

te9

te10

te11

te12

te13

te1

te2

te3

te4

te5

te6

te7

Fig. 5. Clearing the macroplace refinement

Yet the internal transitions t1 to t6 of the MP could also be
interlaced with the added transitions te1 to te13 and tend.
To prevent this, and to make sure that no evolution occurs
in the MP during the clearing, a place exc in progress is
introduced (cf Fig. 5). An inhibitor arc is added between
this place and every internal transitions. This solution
limits the behavior of the analysis model to the one of
the implemented model and prevents useless combinatorial

explosion in the building of the reachability graph. The
second goal of the place exc in progress is to reinitialize the
counter of internal transitions even when the transitions
have only inhibitor arcs in input.

4.5 Taking care of simultaneous firing for the MP

As the implementation of the PN is synchronous, more
than one entry/exit transition can be fired simultaneously.
The rules for the activity of the MP in the implementation
has been defined (cf §3.2), hence this must be taken into
account in the AM. If an entry transition and a classical
exit one are simultaneously fired, the MP should stay
active. Hence the entry transitions have an higher priority
than the deactivation transition. If an entry transition
and an exception transition are simultaneously firable, the
MP must be cleared before and then the tokens given
by the entry transition must be added. To guarantee this
behavior, the transitions texc, tei and tend have a higher
priority than every entry transition. Moreover, the active
MP place is emptied when the transition tend is fired.
Hence, in case of simultaneous firing of an entry and
an exception transition, there is a deactivation then a
reactivation like in the implementation. To be conform
with the asynchronous implementation of the effect of
an exception, texc has also a higher priority than every
transition of the refinement and all transitions (entry and
exit transitions) linked to the MP.

Figure 6 gives the whole analysis model for the example
given in figure 1. This figure is given only to show that
the AM is less compact than the initial one and quite
complex. Yet it is obtained automatically so there is no risk
of human errors. Moreover all have been made to reduce
the complexity of the analysis, which is the main criterion
to consider from an analysis point of view.

Fig. 6. Analysis model of the designed model given Fig 1

5. RESULTS

To ensure that our solution is adequate, two criteria must
be checked: the behavior of the IM must be equivalent or
at least included in the one of the AM, and the analysis
complexity of the AM must remain acceptable.

5.1 Validating the behavior

The behavior of the implementation of the case study
used in this article (cf Fig. 1) has been simulated using
the software Libero since we implement it on a Microsemi
FPGA. The analysis of the AM behavior has been done

WODES 2014
Cachan, France. May 14-16, 2014

410

using TINA [Berthomieu et al. (2004)]. In this article, we
illustrate the validation principle with only one property:
when texc is fired, the marking of the MP must be cleared
in less than one clock period. The result of the VHDL
simulation is given in figure 7. It shows the evolution of
the clock, the signal texc fired which shows the exception
transition firing and the signal marking mp giving the
marking of the MP. This last one is created for observation
and is equal to one if the MP is marked and zero if not.

Fig. 7. VHDL simulation of an exception

To validate the clearing of the marking, we used this LTL
formula : [](texc ⇒<> (P1 = 0 ∧ P2 = 0 ∧ P3 = 0 ∧
P4 = 0 ∧ P5 = 0 ∧ P6 = 0 ∧ P7 = 0)). It guarantees that
if texc is fired, the marking of the MP will be eventually
cleared but not that it is cleared in less than one time unit.
To do so, one solution is to use TLTL formulae instead of
LTL one, but TINA does not support TLTL. Therefore
an observer has been added to the model to be able to
verify this quantitative property. Hence we are able to
guarantee that, for this property, the implementation and
the analysis model have the same behavior. The same has
been done for the other properties.

5.2 Size of the resulting reachability graph

To prove the analyzability of models using MP, the size of
the RG of models designed with and without MP has been
compared. The same ‘normal behavior’ is considered and
cleared in case of an exception either with a macroplace or
thanks to an ITPN. There are multiple ways to design this
clearing with an ITPN. Here 2 examples will be considered:
to empty all places in the same time (parallel) or one
after each other (sequential). In both cases, tokens are
withdrawn one by one. According to the results given in
the table 1, the size of the RG is in the same range for
the sequential method and the MP one but the model
with MP is far more reactive. The parallel method is more
reactive than the sequential one but less than with a MP.
Yet the size of the RG in the parallel case is significantly
increased because of interleaving transitions. Hence our
model transformation benefits from size and reactivity
advantages of macroplaces without loosing the possibility
of using formal analysis results.

Table 1. Complexity results

model places trans states trans(RG) reactivity

parallel 18 26 36 429 120 658 4 c.p.
sequential 19 26 3 744 8 859 15 c.p.

MP 21 19 4 275 8 078 1 c.p.

6. CONCLUSION

In the context of complex digital systems design, the
methodology HILECOP uses ITPN with macroplaces. A
model designed thanks to ITPN with MP cannot be
analyzed because of interpretation, and macroplaces are

not handled by existing analysis tools. Hence a model
transformation was presented in this article allowing to
use existing analysis tools. This transformation guaran-
tees that every possible behavior of the implementation
is described in the analysis, and leads to reliable analysis
results. Moreover the analysis complexity of a model with
MP is in the same size range as for a model without
MP. Hence designers benefit from a mechanism allowing
to ease design, have more reactivity to exceptions and
reduce the FPGA implementation size without losing the
benefits of formal analysis. Moreover, this method can be
used in industrial size cases. As a perspective, the model
transformation between ITPN and PrTPN should be for-
mally proven. Also, better results on analysis complexity
could be obtained if the macroplace was directly integrated
within an analysis tools instead of flattening it.

REFERENCES

Andreu, D., Guiraud, D., and Souquet, G. (2009). A
distributed architecture for activating the peripheral
nervous system. Journal of Neural Engineering, 6(2),
026001.

Berthomieu, B., Ribet, P.O., and Vernadat, F. (2004).
The tool tina c construction of abstract state spaces for
petri nets and time petri nets. International Journal of
Production Research, 42(14), 2741–2756.

Berthomieu, B., Peres, F., and Vernadat, F. (2007). Model
checking bounded prioritized time petri nets. In Auto-
mated Technology for Verification and Analysis, 523–
532. Springer.

David, R. and Alla, H. (2008). Discrete, continuous and
hybrid petri nets. Control Systems, IEEE, 28(3), 81 –84.

de Oliveira, W., Marranghello, N., and Damiani, F. (2002).
Exception handling with petri net for digital systems. In
Proceedings of the 15th symposium on Integrated circuits
and systems design, 229–235. IEEE Computer Society.

Holvoet, T. and Verbaeten, P. (1995). Petri charts:
an alternative technique for hierarchical net construc-
tion. In Proceedings of the 1995 IEEE Conference on
Systems, Man and Cybernetics (IEEE-SMC95, 22–25.
IEEE Press.

Leroux, H., Godary-Dejean, K., and Andreu, D. (2013).
Complex digital system design: A methodology and
its application to medical implants. In Proc. of the
18th International Workshop on Formal Methods for
Industrial Critical Systems, 94–107. Madrid, Spain.

Silva, C., Quintans, C., Colmenar, A., Castro, M., and
Mandado, E. (2010). A method based on Petri nets and
a matrix model to implement reconfigurable logic con-
trollers. IEEE Transactions on Industrial Electronics,
57(10), 3544–3556.

Souquet, G., Andreu, D., and Guiraud, D. (2008). Petri
nets based methodology for communicating neuropros-
thesis design and prototyping. In ISABEL’08, 5. Aal-
borg, Danemark.

Tkacz, J. and Adamski, M. (2012). Logic design of
structured configurable controllers. In Proc. of the IEEE
3rd International Conference on Networked Embedded
Systems for Every Application, NESEA, 1–6. Liverpool,
United Kingdom.

Traonouez, L.M., Lime, D., Roux, O.H., et al. (2009).
Parametric model-checking of stopwatch petri nets. J.
UCS, 15(17), 3273–3304.

WODES 2014
Cachan, France. May 14-16, 2014

411

