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Université Montpellier 2

fabien.hervouet@lirmm.fr, eric.bourreau@lirmm.fr

Abstract

This paper aims to introduce a flexible framework called
FIMO dedicated to intrinsic motivation in developmental
robotics. With this framework we want to offer a common
way of implementing, testing and analyzing mechanisms re-
lated to intrinsically motivated algorithms. It may be seen
as a generic complex open source framework for online ex-
ploration and structuring of learning spaces. We hereby lay
both theoretical and practical foundations of our framework
to encourage future experimental studies.

Introduction
A commonly shared objective, in the developmental
robotics community, as its name indicates, is insisting on
the developmental part. It means that the most important
aspect of any research leaded in this field lies in the path that
leads to staged growth of learning. It may be about practical
competences, conceptual comprehension or whatever a
living organism with physical capabilities can practice.
This implies that our goal is all about defining a model
of developmental mechanisms, allowing a full open-ended
incremental learning in an autonomous and interactive
way, compliant and resilient with a real environment. The
challenge is to propose a compromise between conciseness
of the model and complexity it can generate as soon it is
instantiated. But for an agent, developing competences
is not that easy. It has to start with some coarse grained
capabilities which are going to be refined throughout the
developmental phase and life in general. This upgrowth
is characterized by a double brain/body maturity, but also
by the acquisition of sensorimotor experiences supporting
learning. Inside the developmental robotics community,
this is currently realized by inspecting multiple aspects
of development. First the individual autonomous mental
development which insists on finding mechanisms for an
interactive system to develop itself solely using its very low-
level sensory inputs and acting through its low-level motor
outputs. The main second path for exploring development
is the social learning. In this paper, we are interested in the
first view.

Precisely, our working frame is mechanisms that can play
the role of heuristics in order to focus and control the explo-
ration of the potentially huge sensorimotor space of a situ-
ated and fully embodied agent. We believe that the goal of
any developmental robotics algorithm is to design a control
loop that – if executed on robot with physical capabilities
– should reveal its own morphology affordance within its
environment, through an unsupervised process. Moreover
we also believe, as we already said, that the key challenge
is to identify and implement low-level mechanisms that al-
low a long-term development as a scaffolding of capabili-
ties. The more low-level these mechanisms are, the more
the system can be considered as relevant. In the case of bio-
inspired developmental robotics, we are interested in sen-
sorimotor learning through the open-ended exploration of
high-dimensional and complex bodies. This means we have
to inspect and design scalable task-independent mechanims
that may involve the robot in a self autonomous skill prac-
tice. The main idea remains that the huge sensorimotor
space can be divided into subspaces in order to facilitate the
learning of the full space using intrinsic heuristics of space
exploration. Another way to explain our view is to say that
we are aiming at transfering the traditional cognitive model-
ing biases towards the natural limits and constraints imposed
by the sensorimotor grounding embodiment.

In our case, we here underline the need for a framework
for intrinsic motivation as we introduce it, with the capa-
bility to make parametric studies and introduce new bio-
inspired ideas from state of the art neuroscience or devel-
opmental psychology research. We insist on the fact we
propose in our framework FIMO facilitations for future im-
provements for some parts of the general intrinsically mo-
tivated algorithm it implements. In the rest of the article,
we first propose a motivational background of the specific
research field of ours. Then we present the practical founda-
tions of this framework called FIMO. Then we zoom on the
theoretical model of our view of intrinsic motivations. We
conclude this paper by recalling the need for such a frame-
work in our community, and draw some interesting applica-
tion perspectives.
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Motivational Background
The question to ask when we get to implement some
mechanisms like motivation in artificial agents, is about the
origin of the notion of motivation. In this case, psychology
has studied motivation a lot. The very first background of
works about intrinsic motivation is the self-determination
theory, which is the result of psychological research leaded
by Deci and Ryan (1985) from the human point of view.
This theory says that any individual has innate tendencies
towards personal growth and vitality that are either satisfied
in relation to their immediate environment. The theory also
explains that there are three satisfactory needs that actors
seek to satisfy: competence, relatedness and autonomy.
Innate tendencies are enacted when these needs are fully
satisfied. We will see that these founding psychological
works have been at the base for transfering the notion of
motivation in silico.

Historically, Schmidhuber (1991a) was the first to
introduce research results about the importance of what he
called artificial curiosity, in the sense of applying typical
human curiosity to artificial machines. He argues that his
research work has been driven by the simple idea that an
optimal adapted and motivated agent is nothing but an
agent trying to improve its compressed model of the world.
He said that an agent with a prediction module, allowing
the lossless compression of data by finding regularities
in the world, is driven toward an optimal improvement.
Schmidhuber (1991b) proposed to measure the learning
progress of an agent by comparing difference of prediction
for a same situation before and after the reality feedback.
He therefore introduced the idea that an optimal curious
agent’s interest lies in the narrow corridor between what
is simply too compressible and therefore uninteresting and
boring, and what is not compressible at all because of a lack
of regularity making it too complicated to learn.

Barto et al. (2004) have extended their own work in
reinforcement learning (Sutton and Barto, 1998) with the
notion of intrinsic motivation. They introduce an elabo-
ration of the existing reinforcement learning framework
that “encompasses the autonomous development of skill
hierarchies through intrinsically motivated reinforcement
learning”. Their model advocates the creation and use by
an agent of structures of instrinsic generic rewards allowing
adapted behavioral learning. They do not consider in any
way external rewards.

Soon after the birth of the developmental robotics
community (see Weng et al., 2001), Oudeyer and Kaplan
(2004) introduced the IAC (Intelligent Adaptive Curiosity)
algorithm. It explicitly refers to Schmidhuber’s adaptive
curiosity and must be linked with another paper published
the same year by Steels (2004). The proposed mechanism is
anchored at a sensorimotor level and allows low-level action
selection in the high-dimensional sensorimotor space for a
robot. This algorithm postulates that one way to provide

autonomy to a robot is to let it make its proper action
choices, based on its experience, in order to maximize
its learning. With this architecture an embodied agent is
going to experiment grounded sensorimotor coordinations
in order to learn the effects of its actions thanks to a unique
action selection mechanism that tends to choose actions that
improve prediction quality.

Baranes and Oudeyer (2010) then proposed an evolution
to the original IAC algorithm called SAGG-RIAC which
is of interest to us because of the competence acquisition
paradigm it explores. The global principle remains the
same except that this time, the agent has to choose sensory
regions where it wants to return to, instead of choosing
sensorimotor regions where it comes from. Practically, the
SAGG-RIAC algorithm is based on alternating reaching
phases (i.e. reaching a goal in what they call an operational
space) and local exploration phases (i.e. improving the
world comprehension toward the goal). The purpose of
reaching phases is to test the reliability of the forward
motor model while the purpose of exploration phases is
to improve the inverse model of the system in the close
vicinity of the current state. Exploration phases are trig-
gered when the reliability of the local controller is too low.
In the following section we explain some improvements
to this algorithm we would like to introduce and experiment.

This research must also be linked with some other works
by Blank et al. (2005) we fully agree with, where they argue
that any intrinsic developmental algorithm has to be based
on a recursive model that produces complex behavior and
that it should rely on three concepts: abstraction, anticipa-
tion and intrinsic motivation.

General Architecture of FIMO
FIMO1 has the goal of bringing up a brand new open, flex-
ible and extensible framework for research in the develop-
mental robotics field working on agents driven by intrinsic
motivations. We propose with this architecture, a solid and
well-thought way of experimenting new ideas for the intrin-
sic motivation interested community. This section is dedi-
cated to the presentation of FIMO, either the way it is archi-
tectured, its pythonic foundations, its software architecture
and workflow, and the default provided environments.

Python Foundations
First of all, it is important to explain the Python foundations
of this framework. We based our development on well doc-
umented, community supported and very powerful libraries
such as SciPy, NumPy, matplotlib which are dedicated to sci-
entific data processing. The first one Jones et al. (2001) is
open-source software for mathematics, science, and engi-
neering. It depends on the second one, which provides con-

1The Python open source code of the framework is available
at https://info-depot.lirmm.fr/republic/fimo
(public cloning repository) released under GNU GPLv3 license.
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venient and fast N-dimensional array manipulation, with ef-
ficient numerical routines. The visualization module relies
for its part on the third one Hunter (2007). Our point is
that the techniques used in this framework have been already
deeply tested and used by a lot of other researchers, and that
they have proved their efficiency and their reliability.

Software architecture
The global workflow of our framework FIMO is rather
common and intuitive. Typically, the framework features
an environment that describes in a formal way the being
explored sensorimotor space, which is mandatory for
bootstrapping the agent’s living loop. Once the environment
is chosen, we must also provide the agent with parameters
and metrics – which may have a significant influence on
its developmental trajectory – depending on the choices
made at the instantiation time. Then, at the end of a
run, i.e. when the program has tried to reach the certain
amount of goals you asked it to perform, multiple data are
dumped into log files. Typically, it includes the evolution
of space partitioning into subregions, acquired sensorimotor
raw data, interests of selected regions where objectives
were generated and test results. Finally, another powerful
advantage of the framework also lies in the visualization
module made possible thanks to the logging process. This
possibility to observe the result of any run instance makes it
easier to understand and validate the configured parameters,
metrics and other implemented ideas. We will illustrate the
rest of the paper with some visualizations FIMO can offer.

Environments
An environment as we defined and formalized it within our
framework is all about the agent’s acting possibilities. We
mean that an environment should be seen as a complex
interface between the sensory (or operational) space to
explore, the motor space allowed for this exploration, and
the combined result of these two. An environment must
provide the sensory dimensions or operational dimensions,
the motor dimensions, a starting state or rest position. It
must also specify a function computing a new state given a
current state and an action to execute, and a function that
generates reachable coordinates in the sensory / operational
space to be used for the examination. As a bias, you can
predefine a region partitioning for the agent to start with,
in order for instance to help it bootstrapping. The way
we implemented the connection between environments
and the main loop must allow to easily connect to some
existing 3D simulated environments or to any physical
robots following the same guidelines. Table 1 provides a
summary of proposed simulated environments in FIMO and
present their sensory and motor dimensions.

Wheeled vehicle The first provided environment is a very
simple wheeled vehicle in an arena. The first version is only
two dimensional (1D sensory space and 1D motor space).

Environments a b
One-wheeled vehicle (OWV) 1D fully reachable 1 1

OWV 1D not fully reachable 1 1
OWV 1D bump requiring sufficient inertia to pass 1 1

Two-wheeled vehicle (TWV) 2D squared area 2 2
TWV 2D squared area with obstacles 2 2

TWV 2D triangled area 2 2
Robotic arm (RA) with one joint 2 1

RA with two joints 2 2
RA with three joints 2 3

RA with fifteen joints 2 15

Table 1: Summary of the variations of the main existing en-
vironments in FIMO presenting their distinctive feature(s),
the size of their operational (a) and motor (b) spaces.

The second version is four dimensional (two sensory space,
2D motor space). Generally the shape of the arena is a
square, but it could be different or contains obstacles. In
the first version, the vehicle evolves in a 1D space and has
a sole coordinate (x), that is the distance to the front wall.
In the second version, the vehicle evolves in a 2D space and
has two coordinates (x; y). It can move by performing an
action (∆x,∆y) representing a shift in the plane.

Robotic Arm We propose a second environment typically
used – in particular in Baranes and Oudeyer (2010, 2013)
– to test intrinsic motivation algorithms: a robotic arm (cf.
figure 12). The environment provided is a generic robotic
arm that you can easily instantiate by defining the number
of joints/limbs you want, and their respective length (or the
unique length if ever).

θ1

θ2

θ3

σt

σt+1

γt+1

∆θ1

∆θ2

...

Figure 1: Schematic successive positions of a 3 joints robotic arm
environment at time t and t+ 1.

2Here, each limb has the same length and θi represent angles of
each joint, relatively to θi−1. The performed action that moves
the end-effector from σt to σt+1 coordinates in the operational
space by trying to reach γt+1 was α = (∆θ1 = +115,∆θ2 =
−140,∆θ3 = +40).
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The transition from end effector position to another one
through a given action is computed using standard meth-
ods for forward position kinematics. An action is a vector
of positive or negative ∆ for each joint (∆θ1 ,∆θ2 ,∆θ3).
It means the agent can only use relative moves from one
(Hx,t, Hy,t) to the next (Hx,t+1, Hy,t+1) position.

Theoretical Model
In this section we explain the theoretical model behind
of FIMO. Thus, we present the main algorithm and every
single parameters or metrics that the experimenter must use
as such or improve, extend or change. Nevertheless, what
we want to emphasize is that this algorithm needs to be
configured by many parameters and metrics to be specified
by the experimenter that can strongly influence the final
behavior of the system and its evaluation.

The living loop algorithm as we call it, proposes a kind
of reinforcement learning method, but it must be seen as an
empty shell that must be completed with the right parame-
ters to be able to observe the best behavior (see algorithm
1). Indeed, in the same way that one must specify an en-
vironment, the configuration parameters and the choice of
metrics are essential and grouped in a config.py file. The in-
teraction of the body/environment and the intrinsically mo-
tivated algorithm is something very delicate which requires
the attention of the experimenter. One must see this guided
exploration of sensorimotor space as a complex system as
it is composed with multiple interconnected parts (different
parameters and metrics to tune) which as a whole exhibit be-
havior not obviously predictable from the individual prop-
erties. The interaction of these parameters put together in
the living loop algorithm may exhibit emergent properties.
Moreover we believe that it may be possible to define some
precise optimized setting for a specific environment.

In the rest of the section we present some of the general
part of the framework (main algorithm, default regions
structure and implemented learning method) as well as the
criticals part that may be overriden with improvements
(competence and interest measures, the way memory may
be restructured). These parameters should be deeply studied
in order to fit the need for a specific morphology, because
we believe that the embodiment plays a major role in order
to help determining fully appropriate, responsive, efficient
and developmental settings.

Thus this is all about trying to find a compromise to en-
courage and facilitate effective and efficient exploration of
space, without losing time in not interesting areas, while al-
lowing rapid improvement for test result. Among the default
implementation choices we present here, some have already
been presented in Hervouet and Bourreau (2012).

Living loop algorithm
Although we keep the overall operation of the original
motivational living algorithm SAGG-RIAC Baranes and
Oudeyer (2010), we extended the frame. The global

Environment

Competence
κt

Action Decision
D

Exploration
τr

Goal Generation
γt

Restructuring
Memory

Region Selection
argmax(ρ(Rt))

MotorsSensors

κt ≥ κmax

κt ≤ kmin

otherwise

Figure 2: General algorithmic architecture of the intrinsically mo-
tivated living loop implemented in FIMO.

algorithmic architecture is presented in figure 2 and its
implementation is presented in algorithm 1. With this im-
plementation, we want to underline the flexibility of certain
specific parts of the algorithm. We mean that the sequence
of the algorithm is nothing but a generic system that aims
at exploring and structuring a sensory / operational space
with partial data for sensorimotor learning. Indeed we
have to be aware of the strong influence of metrics and
parameters that we may use to obtain more compliant or
efficient behavior. This is the reason why we decided to em-
phasize the critical parts in the algorithm in order to be more
illustrative. Each of them is studied in the rest of this section.

In a formal way, our architecture makes a distinction
between raw data ξr accumulated during exploration
phases (second loop in fig. 2) and more structured data ξg
accumulated during exploitation phases (third loop in fig.
2). An exploration phase is triggered each time the agent
is considered as incompetent and consist in accumulating
τr raw data about the consequences of actions the agent
executes. In practice, exploration data represent a forward
model of the body in the world. Exploitation phases consist
in generating a goal and attempting to reach it in τg times.
Exploitation data represent the particular historical and
motivational coupling between the agent and its environ-
ment, in the sense of Varela et al. (1991), i.e. the sensory
configuration he has set itself for its goals that it tried to
achieve by itself with varying degrees of success, according
to the increase of its competence in relation to these goals.
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As it is implicitely formalized, time is considered in the
algorithm: σt always represents the agent’s current state,
which changes every time the agent performs an action αt

using the execute(α) method.

Algorithm 1: Intrinsically Motivated Living Loop

input: σ experienced states;
R set of existing regions;
γ set of self generated goal;
ρ interest measure;
κ competence measure;
D action decision method;
ξr, ξg respectively raw and goal experiments;
τr, τg resp. exploration and reaching trials;

1 while True do
2 σstart ← σt

3 Rt ← argmax(ρ(Ri) ∀Ri ∈ R) (see section IM)
4 γt ← randomGoal(Rt)
5 A ← ∅
6 repeat
7 αi ← D(ξr, σt, γt) (see section AD)
8 A ← A∪ αi

9 execute(αi)
10 κt ← κ(σstart, γt, σt) (see section CM)
11 ξr ← ξr ∪ (σt−1, αi, σt)
12 if κt ≤ κmin then
13 ξg,Rσt

← ξg,Rσt
∪ (σt−1, σt, {αi}, σt, 0)

14 repeat
15 σt ← σt − 1
16 αj ← randomAction()
17 execute(αj)
18 ξr ← ξr ∪ (σt−1, αj , σt)
19 until τr trials not exceeded
20 end
21 until κt ≤ κmax or |A| ≤ τg
22 ξg,Rt ← ξg,Rt ∪ (σstart, γt,A, σt, κt)
23 restructuringMemory() (see section RM)
24 end

Interest Measure (IM)
The measure of interest ρ qualifies the dynamic interest of
a region. It is used to compute the most interesting region,
the one with maximum ρ value (line 3), the agent is going to
self-generate a goal in. The default one proposed in FIMO is
based on the one introduced by Baranes and Oudeyer in
Baranes and Oudeyer (2010) with one major difference. It
is computed as follows:

ρ(Ri) = learningProg(Ri) + diversification(Ri)

The learning progress is computed using experiments from
exploitation phases (ξg for goal experiments) which are of
the form:

ξg,t = (σt, γt,A, σt+i, κt)

with σt the current sensory configuration state, γt the chosen
goal to be reached, A the motor configurations successively
performed to achieve the goal with |A| = i, σt+i the new
current state after execution of actions and the competence
κt (explained in detail in a following section). The learning
progress computation can be seen as a derivative of com-
petences. Let κj be the competence of the jth experiment
stored in memory, and |Ri| the number of experiments in a
region.

learningProg(Ri) =
|∑|Ri|/2

j=0 κj −
∑|Ri|

j=|Ri|/2 κj |
|Ri|

We chose to directly incorporate a UCT based Kocsis and
Szepesvári (2006) diversification measure which takes into
account in an incremental way the number of experiments
conducted in the current region relative to the total number
of experiments. It means that this mechanism will gently
wake up regions whose direct learning progress is decreas-
ing but for which it would be wise to generate a goal in just
to make sure everything has been already either understood
or misunderstood. Let n and ni be respectively the total
number of experiments and the number of experiments in
the current region. Let c be a constant that allows to normal-
ize the result of diversification measure.

diversification(Ri) = c×
√

lnn

ni

In summary, the interest measure ρ is composed by the ad-
dition of two dynamic but separate measures. The first one
computes the learning progress in a given region, while and
the second one tries to uniformly balance against the natural
excessive regional intensification of the first one. This sep-
aration of the intensification measure and the diversification
measure is of real interest for future improvements, because
we will only have to deal with precisely defining the first
one without taking into account the uniformisation process
preventing overspecialization.

Action Decision (AD)
The default decision method we propose is a simple algo-
rithm that chooses the next action to perform in order to
reach a goal driven through experience (line 7). We propose
to compute action towards a goal using k-nearest-neighbour
experiments chosen among previously acquired explorative
experiments. These experiments (ξr for raw experiments)
are of the form:

ξr,t = (σt, αt, σt+1)

with σt the current sensory configuration state, α the mo-
tor configuration determined at time t and finally σt+1 the
new current state after execution of action α. These experi-
ments must maximize two criteria: the initial and final states
should be as close as possible respectively to current and
goal states. The strategy then consists in generating a mean
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action with respect to actions performed in these filtered ex-
periments (with |K| = k).

D(ξr, σt, γt) =

∑|K|
u=1 αu

k
where

K = {ξr,u ∈ ξr : min(|σt − σu|+ |γt − σu+1|)}

Competence Measure (CM)
Competence κt ranges in [κmin; 0], as it is computed in the
original algorithm, with κmax typically equal to −1. The de-
fault implemented measure sums distances for all sensors in
S between the final sensory position minus the goal sensory
position, relative to the start position minus the goal posi-
tion. It means that we compute the shift between where the
agent comes from, where it should have arrived and where it
has finally arrived.

κ(σs, γt, σf ) = max(−|σf − γt|
|σs − γt|

, κmin)

with σs, γt and σf respectively start, goal and final state
κmin the minimal competence (or maximal incompetence)
and κmax the very competent threshold. The 3D visualiza-
tion of the competence value of the robotic arm evolving
in a 2D space is presented in figure 3. We can observe the
reachable area at the center.

Figure 3: 3D visualization of generated goals for an instance run
of the robotic arm in the two dimensional operational space. The
closer to 0 on the third axis the goals, the more competent the agent
was to reach them. The greener the goals, the more recently they
have been reached. Blue points represent goals for assessment.

Restructuring Memory (RM)
A typical developmental and incremental process pushes
the robot to start its learning from scratch. It can only make
non-optimal decisions solely from previously acquired
data. This implies that the robot acts very strangely at

the begining because it does not hold enough information
about the world it develops in. The figure 4 presents the
result of a run instance with original operational space
split into subregions of interest through time3. We can
observe the naturally delimited reachable space because we
add perfectly reached goals from where we arrive at the
end of a reaching attempt. Moreover we can observe the
reinforcement of generated goals in the vicinity of these
natural embodiment limits. This shows that the agent seems
to find interesting areas located near the limits it can reach,
which must be considered as a good behavior.

Therefore, pushing the robot to split its sensorimotor
space allows it to overcome the lack of information at the
beginning of the developmental living process. This is this
particular splitting condition that makes the strength of
this approach because it allows the isolation of coherent
experiments. This coherence may depend on the nature of
the measure that determines the best split in a sensorimotor
region. The default coherence measure implemented in
FIMO is related to the notion of learning progress4, i.e. the
derivative of learning.

Figure 4: Visualization of generated experienced goals and re-
gions containing them in the split operational space for a robotic
arm environment.

Thus the splitting condition needs to take into account
knowledge and experience accumulated. Otherwise the
agent will always tend to split again and again its space,
which will probably be pointless. We wanted to propose
a general way to be able to implement a kind of dual re-
structuring measure. Because it may be very interesting to

3The shape of the reachable area is not a full circle because of
the limitation we added for each joint’s absolute angle θi to range
between [0; 180].

4But it could be related to any other idea that we could think
of progress: better structuring memory, novelty, compression, etc.
This is the reason why we should facilitate the implementation of
new ideas by emphasizing replaceable metrics and parameters.
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be able to elaborate a measure that would decide, depend-
ing on accumulated experience, not only how to split, but
more how to reorganize the memory. This vision totally fits
a developmental process. Thus we chose to combine these
two mechanisms by proposing by default a dual measure for
both splitting and merging. It tries to maximize the absolute
value of the difference between the learning progress in the
two subregions relative to the current learning progress in
the mother region.

µ(R1,R2, R) =
|LP (R1)− LP (R2)|

LP (R)

It means that in the splitting case we will split the current
region R if it contains two subregions R1 and R2 exhibit-
ing better learning progress, relatively to the current learning
progress in the region R. On the other hand in the merging
case, we will merge two regions that have been split possibly
a long time ago when the agent didn’t hold enough informa-
tion: the current region R1 should be merged with another
region R2 into a sole region R if the learning progress of R
exhibits a better evolution than R1 and R2.

Regions as a graph structure
In order to propose more genericity for future implementa-
tions we chose to upgrade the tree structure of regions used
since IAC Oudeyer and Kaplan (2004). We decided to in-
troduce a graph structure of regions (cf. figure 5) because
we considered that the tree representation was a limitation.
We believe that, by its more scalable and flexible nature, the
graph structure facilitates from an operational point of view
potential reorganization as we will discuss in the follow-
ing section. In particular it may allow the creation of non-
convex regions by merging already existing region whether
they are physically adjacent or not.

C1

B2

D1 D2

(a) Typical final re-
sult of the space
splitting process af-
ter a run instance.

C1

B2D1

D2

(b) Graph structure
of the space splitting
(edges represent ad-
jacency between two
regions).

Figure 5: Illustration of the graph structure for regions. On the left
it represents the result of a 2-dimensional sensory space splitting
process, while on the right the way this is handled in memory.

So, how to evaluate?
To propose a framework laying the foundations to encourage
the community to easily implement and test new ideas is one
thing, to propose a way to evaluate them is another. Indeed
setting up such a framework obviously also involves setting

up an experimental validation process as a common founda-
tion for evaluation, which is not a trivial thing. As pointed
out by Meeden and Blank (2006) a few years ago, the eval-
uation question is fundamental, especially in the frame of
autonomous developmental robotics.

We generally make a distinction between the formative
and the summative assessments in the literature. A quota-
tion attributed to Robert Stakes in Scriven (1991) tends to
explain the difference between them: ”When the cook tastes
the soup, that’s formative; when the guests taste the soup,
that’s summative”.

Formative assessment represents the global operation
of the intrinsically motivated process proposed living loop
algorithm. Indeed, the main role of formative assessment
lies in its subjective regulatory function of the learning
process within the system, where the learner must be able to
measure progress made and progress to be made.

Summative assessment must be seen as a more common
and accepted way permitting to test learning acquisition
from outside of the system, by certificating whether knowl-
edge has been assimilated. This means we must provide in
FIMO an external way, considered as objective as possible,
to measure the relevance and importance of potential im-
provements as explained in Hervouet (2013). Practically in
FIMO we implemented a measure that circumbscribes the
evaluation of the evolution of the competence through time.
The idea is to select a set of arbitrary uniform reachable
goals and compute a mean incompetence for reaching them.

Figure 6: Evolution of the mean incompetence for a given set of
reachable goals for different environment and parameters (1 means
bad competence while 0 means very competent).

As an illustration, we propose on figure 6, a comparison
of assessment scores for a set of different settings under dif-
ferent environments. From bottom: (1) 1-joint robotic arm;
(2,3,4) three instanciations with the same settings of a 2-
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joints robotic arm; (5) 15-joints robotic arm; (6) 2-joints
robotic arm but with random action (baseline).

Conclusions & Perspectives
In this paper we argue that in the developmental robotics
community, and more specifically in the subcommunity
interested in intrinsically motivated robotics, there are
multiple ways to propose some improvements. With the
proposed framework FIMO, we clearly made an attempt,
starting from an existing approach, to extend the frame. It is
absolutely not the purpose of this article to introduce some
fascinating new metrics or define more precisely some of
the parameters. We are not saying we have found the best
something or a better somewhat. In contrast, we believe
that this will be the purpose with forthcoming publications,
thanks to the implementation of our framework and the
facilitations it brings up for the evaluation and comparison
of future improvements. Notwithstanding, there are various
parameters waiting to be tuned. However, the fact remains
that, to illustrate this purpose, we proposed some default
parameters, metrics or even other surroundings learning
features, but they are presented as an indication because we
were confronted to the need to set up the framework with
implementation choices.

We consider FIMO as a necessary formal step toward an
open future of intrinsic motivations work because it will
help future contributions and improvements to emerge. Our
willingness for genericity, must be seen as a contribution in
itself, in the sense of the facilitation for novel contributions.

Beyond this evident aspect, we could draw an interest-
ing future for our framework. Although defining metrics
is typically human compatible (and especially computer in-
compatible), simple parameters should not be set manu-
ally. As a spreading field, evolutionary robotics provides
some exciting opportunities for the developmental robotics
community, and could help us in this context. We mean
that the very practical way of implementing evolutionary
mechanisms consists in growing individuals with different
genomes, and to make reproduce the best adapted ones in
order to grow the next generation. This process can be reit-
erated as long as you may observe some interesting progress
towards adaptation to the environment. That is why we truly
believe that a possible EvoFIMO could constitute a very in-
teresting perspective for the development of our research as
well as for the whole community.

References
Baranes, A. and Oudeyer, P.-Y. (2010). Intrinsically-motivated goal

exploration for active motor learning in robots: A case study.
In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2010).

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of in-
verse models with intrinsically motivated goal exploration in
robots. Robotics and Autonomous Systems, 61(1):49–73.

Barto, A. G., Singh, S., and Chentanez, N. (2004). Intrinsically
motivated learning of hierarchical collections of skills. In
Proceedings of International Conference on Developmental
Learning (ICDL). MIT Press, Cambridge, MA.

Blank, D., Kumar, D., Meeden, L., and Marshall, J. (2005). Bring-
ing up robot: Fundamental mechanisms for creating a self-
motivated, self-organizing architecture. Cybernetics and Sys-
tems, 36.

Deci, E. L. and Ryan, R. M. (1985). Intrinsic Motivation and
Self-Determination in Human Behavior (Perspectives in So-
cial Psychology). Perspectives in social psychology. Plenum
Press.

Hervouet, F. (2013). Autour de la preuve en intelligence artificielle.
In La preuve et ses moyens – Actes des journées interdisci-
plinaires de Rochebrune (sous presse).

Hervouet, F. and Bourreau, E. (2012). Improvement proposals to
intrinsically motivational robotics. In Proceedings of the sec-
ond joint conference ICDL-Epirob’12.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Com-
puting In Science & Engineering, 9(3):90–95.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). Scipy: Open
source scientific tools for python.
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