Robert J Woodward

Anthony Schneider

Berthe Y Choueiry

Christian Bessiere
email: bessiere@lirmm.fr

Adaptive Parameterized Consistency for Non-Binary CSPs by Counting Supports

published or not. The documents may come

Introduction

There is an abundance of local consistency techniques of varying cost and pruning power to apply to a Constraint Satisfaction Problem (CSP), but choosing the right one for a given instance remains an open question. In a portfolio approach [START_REF] Xu | SATzilla: Portfolio-Based Algorithm Selection for SAT[END_REF][START_REF] Kadioglu | Algorithm Selection and Scheduling[END_REF][START_REF] Geschwender | Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Techniques[END_REF], we typically choose a single consistency level and enforce it on the entire problem (or a subproblem). Heuristic-based methods have been proposed to dynamically switch, at various stages of search and depending on the constraint, between a weak and a strong level of consistency, AC and maxRPC for binary CSPs [START_REF] Stergiou | Heuristics for Dynamically Adapting Propagation[END_REF] and GAC and maxRPWC for non-binary CSPs [START_REF] Paparrizou | Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation[END_REF]. The above-mentioned approaches do not allow us to enforce different levels of consistency on the values in the domain of the same variable. To this end, Balafrej et al. introduced adaptive parameterized consistency, which selects, for each value in the domain of a variable, one of two consistency levels based on the value of a parameter [START_REF] Balafrej | Adaptive Parameterized Consistency[END_REF]. That parameter is determined by the rank of the support of the value in a constraint (assuming a fixed total ordering of the variables' domains), and updated depending on the weight of the constraint [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF]. Their study targeted enforcing AC and maxRPC on binary CSPs.

In this paper, we extend their mechanism to enforcing GAC and pairwiseconsistency on non-binary CSPs with table constraints. Our approach is based on counting the number of supporting tuples, which is automatically provided by the algorithms that we use. Thus, we remove the restriction on maintaining ordered domains and the approximation of a support's count by its rank. We establish empirically the advantages of our approach.

The paper is structured as follows. Section 2 provides background information. Section 3 describes our approach, and Section 4 discusses our empirically evaluation on benchmark problems. Finally, Section 5 concludes the paper.

Background

We first summarize the main concepts and definitions used.

Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a tuple (X , D, C), where X is a set of variables, D is a set of domains, and C is a set of constraints. Each variable x i ∈ X is associated a finite domain dom(x i) ∈ D. We denote a variablevalue pair as x i , v i , where v i ∈ dom(x i). Each constraint c j ∈ C is defined in extension by a relation R j specified over the scope of the constraint, scope(c j), which is the set of variables to which the constraint applies. For readability, we refer to the scope of a relation scope(R j) = scope(c j). A tuple τ ∈ R j is a combination of allowed values for the variables in scope(R j). τ [x i] is the value that the variable x i takes in τ . We denote cons(x i) as the set of constraints that apply to variable x i , and neigh(c j) the set of constraints whose scopes overlap with c j . When |scope(c j)| = 2, c j is said to be a binary constraint, otherwise, it is non-binary. A solution to the CSP assigns, to each variable, a value taken from its domain such that all the constraints are satisfied. Deciding the existence of a solution for a CSP is NP-complete.

Local Consistency Properties

CSPs are typically solved with backtrack search. To reduce the severity of the combinatorial explosion, CSPs are usually filtered by enforcing a given local consistency property [START_REF] Bessiere | Handbook of Constraint Programming, chap. Constraint Propagation[END_REF].

A variable-value pair x i , v i has an arc-consistent support (AC-support) [START_REF] Mackworth | Consistency in Networks of Relations[END_REF][START_REF] Bessière | An Optimal Coarse-Grained Arc Consistency Algorithm[END_REF]. A CSP is arc consistent if every variable-value pair has an AC-support in every constraint. Generalized Arc Consistency (GAC) generalizes arc consistency to non-binary CSPs [START_REF] Mackworth | Consistency in Networks of Relations[END_REF].

x j , v j if the tuple (v i , v j) ∈ R ij where scope(R ij) = {x i , x j }
x i , v i has a GAC-support in constraint c j if ∃τ ∈ R j such that τ [x i] = v i . A CSP is GAC if every x i , v i
has a GAC-support in every constraint in cons(x i). GAC can be enforced by removing domain values that have no GAC-support, leaving the relations unchanged. Simple Tabular Reduction (STR) algorithms not only enforce GAC on the domains, but also remove all tuples τ ∈ R j where ∃x i ∈ scope(R j) such that τ [x i] / ∈ dom(x i) [START_REF] Ullmann | Partition Search for Non-binary Constraint Satisfaction[END_REF][START_REF] Lecoutre | STR2: Optimized Simple Tabular Reduction for Table Constraints[END_REF][START_REF] Lecoutre | A Path-Optimal GAC Algorithm for Table Constraints[END_REF].

A CSP is m-wise consistent if, every tuple in a relation can be extended to every combination of m-1 other relations in a consistent manner [START_REF] Gyssens | On the Complexity of Join Dependencies[END_REF][START_REF] Janssen | A Filtering Process for General Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Associated Binary Representation[END_REF]. Keeping with relational-consistency notations, Karakashian et al. denoted m-wise consistency by R(* ,m)C, and proposed a first algorithm for enforcing it [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF]. Their implementation finds an extension (i.e., support) for a tuple by conducting a backtrack search on the other m -1 relations, and removes the tuples that have no support. After all relations are filtered, they are projected onto the domains of the variables. Pairwise consistency (PWC) corresponds to m=2, R(* ,2)C≡PWC. Lecoutre et al. introduced the algorithm extended STR (eSTR) [START_REF] Lecoutre | Extending STR to a Higher-Order Consistency[END_REF], which enforces PWC on a CSP using the STR mechanism [START_REF] Ullmann | Partition Search for Non-binary Constraint Satisfaction[END_REF]. eSTR maintains counters on the intersections of two constraints to determine if a tuple is pairwise consistent or not. In this paper, we enforce PWC using the algorithm for R(* ,2)C [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF], and not eSTR, because it is prohibitively expensive to continuously maintain the counters of eSTR in a strategy where PWC is only selectively enforced.

Adaptive Parameterized Consistency

Balafrej et al. introduced the distance to the end of value v i for variable x i as:

∆(x i , v i) = |dom o (x i)| -rank(v i , dom o (x i)) |dom o (x i)| where dom o (x i) is the original, unfiltered domain of x i , and rank(v i , dom o (x i)) is the position of v i in the ordered set dom o (x i) [1]. In Figure 1, borrowed from [1], ∆(x 2 , 1) = 0.75, ∆(x 2 , 2) = 0.50, ∆(x 2 , 3) = 0.25, and ∆(x 2 , 4) = 0.00.
Further, for a given parameter p, they defined x i , v i to be p-stable for AC for c ij where scope(c ij) = {x i , x j } if there exists an AC-support x j , v j with ∆(x j , v j) ≥ p for c ij . Figure 1 illustrates an example for the constraint x 1 ≤ x 2 with p = 0.25. x 1 , 1 , x 1 , 2 , x 1 , 3 are all 0.25-stable for AC for the constraint, but x 1 , 4 is not, because its only AC-support, x 2 , 4 , has distance 0. The parameterized strategy p-LC [START_REF] Balafrej | Adaptive Parameterized Consistency[END_REF] enforces, on each variable-value pair, either AC or some local consistency (LC) property strictly stronger than AC depending on the value of the parameter p. The idea is to enforce LC only on the variable-value pairs with few supports, approximated with the rank (< p) of the first found AC-support. We focus on the constraint-based version, pc-LC, where x i , v i is pc-LC if for every constraint c j ∈ cons(x i), x i , v i is p-stable for AC on c j or x i , v i is LC on c j . In pc-LC, the value of p is given as input. In the adaptive version, apc-LC, it is dynamically determined for each constraint c j using the weight of c j , w(c j), which is the number of times c j caused a domain wipe-out like in the variable-ordering heuristic dom/wdeg [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF]:

p(c j) = w(c j) -min c k ∈C (w(c k)) max c k ∈C (w(c k)) -min c k ∈C (w(c k)) + 1 . (1)
In [START_REF] Balafrej | Adaptive Parameterized Consistency[END_REF], apc-maxRPC was experimentally shown to outperform AC and maxRPC [START_REF] Debruyne | From Restricted Path Consistency to Max-Restricted Path Consistency[END_REF].

3 Modifying apc-LC for Non-Binary CSPs

For binary CSPs, p-stability for AC of x i , v i estimates how many supports are left for x i , v i in other constraints using the rank of the AC-support in the corresponding domain. This estimate should not directly applied to non-binary table constraints because the GAC-support of x i , v i is a tuple in a relation that is unsorted, which would make the estimate way too imprecise. Consider the example with x i , v i and a relation R j of 100 tuples. Assume that the only tuple τ ∈ R j supporting x i , v i appears at the top of the table of R j . The estimate would indicate that there are many supports for x i , v i because there are 99 tuples that appear after it. However, in reality, x i , v i has a unique support. Below, we introduce p-stability for GAC, which counts the number of supports for each variable-value pair. Then, we introduce a mechanism to compute p-stability for GAC, and finally give an algorithm for enforcing apc-LC, which adaptively enforces STR or LC. In this paper, we study R(* ,2)C as LC, and discuss the implementation of apc-R(* ,2)C.

p-stability for GAC

We say that x i , v i is p-stable for GAC if for every constraint c j ∈ cons(x i),

|σ xi=vi (R j)| |R o j | ≥ p(c j),
where σ xi=vi (R j) selects the tuples in R j where x i , v i appears, and R o j is the original, unfiltered relation. A CSP is p-stable for GAC if every variable-value pair is p-stable for GAC for every constraint that applies to it.

Figure 2 gives the relation for the constraint x 1 ≤ x 2 . x 1 , 1 and x 1 , 2 are 0.25-stable for GAC. Indeed, σ x1=1 returns four rows {0, 1, 2, 3} in the table, and x 1 , 1 is 0.25-stable: 4 10 ≥ 0.25. Similarly, x 1 , 2 also is 0.25-stable: 3 10 ≥ 0.25. x 1 , 3 and x 1 , 4 are not 0.25-stable, because 2 10 ≥ 0.25 and 1 10 ≥ 0.25. This example illustrates how, on binary constraints, and for a given p, p-stable for AC does not guarantee p-stable for GAC. (Recall that x 1 , 3 is 0.25-stable for AC in Figure 1).

Computing p-stability for GAC

For each constraint c j , we introduce for every x i , v i a set of integers indicating the position of the tuples returned by σ xi=vi (R j), which is similar to the data structure in GAC4 [START_REF] Mohr | Good Old Discrete Relaxation[END_REF]. We denote this table

gacSupports[R j][x i , v i].
The check for p-stable can be verified by using 2, shows the gacSupports[R j] for the constraint x 1 ≤ x 2 . For each relation, the space complexity to store each gacSupports

|gacSupports[R j][x i , v i]|. Figure
[R j] is O(k • t),
where k is the maximum constraint arity and t is the maximum number of tuples in a relation. The time complexity to generate gacSupports[R j] is O(k • t), by iterating through every tuple.

x 1 x 2 0 1 1 1 1 2 2 1 3 3 1 4 4 2 2 5 2 3 6 2 4 7 3 3 8 3 4 9 4 4 gacSupports[R j](〈x 1 ,1〉)={0,1,2,3} gacSupports[R j](〈x 1 ,2〉)={4,5,6} gacSupports[R j](〈x 1 ,3〉)={7,8} gacSupports[R j](〈x 1 ,4〉)={9} gacSupports[R j](〈x 2 ,1〉)={0} gacSupports[R j](〈x 2 ,2〉)={1,4} gacSupports[R j](〈x 2 ,3〉)={2,5,7} gacSupports[R j](〈x 2 ,4〉)={3,6,8,9}

Algorithm for Enforcing apc-LC

With the gacSupports data-structure, we can apply STR by verifying, for each constraint c j , that every variable x i ∈ scope(c j) and

v i ∈ dom(x i) has a non- zero |gacSupports[R j][x i , v i]|.
Living-STR (Algorithm 1) does precisely this operation (ignoring Lines 4 and 5, which apply to the apc-LC operation introduced next). past(P) denotes the variables of the CSP P already instantiated by search, and delTuples(R k , S, level) deletes all the tuples in the subset S ⊆ R k , and marks their removal level at the level of search level. When deleting a tuple from the relation R k , c k 's neighboring constraints, neigh(c k), should be re-queued to be processed with Living-STR. Initially, all constraints are in the queue. Living-STR is similar to STR3 in that it iterates over variable-value pairs rather than over tuples. However, it does not use as much book-keeping for optimizing the number of STR checks as STR3 [START_REF] Lecoutre | A Path-Optimal GAC Algorithm for Table Constraints[END_REF]. Instead, Living-STR uses the same data structures as STR and STR2(+) to manage tuple deletions in a relation [START_REF] Lecoutre | STR2: Optimized Simple Tabular Reduction for Table Constraints[END_REF][START_REF] Ullmann | Partition Search for Non-binary Constraint Satisfaction[END_REF].

Including Lines 4 and 5 in Algorithm 1 yields apc-LC, which adaptively applies LC. The adaptive level p(c j) is defined by Balafrej et al. [START_REF] Balafrej | Adaptive Parameterized Consistency[END_REF] and recalled in Equation [START_REF] Balafrej | Adaptive Parameterized Consistency[END_REF]. The local consistency technique used here is the implementation of R(* ,2)C [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF], apc-R(* ,2)C. Apply-R(* ,2)C (Algorithm 2) takes as input the list of tuples of a constraint on which R(* ,2)C must be enforced. SearchSupport(R i , τ, {R j }) on Line 3 of Algorithm 2 searches for a support for the tuple τ ∈ R i , the pairwise check [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF]. Theoretical analysis: Let k be the maximum constraint arity, d the maximum domain size, and δ the maximum number of neighbors of a constraint. The time complexity of Algorithm

1 is O(k • d). Algorithm 2 is O(δ • t 2) because it makes O(δ • t) calls to SearchSupport, which is O(t)

Empirical Evaluations

The goal of our experimental analysis is to assess if apc-R(* ,2)C effectively selects when to apply STR and R(* ,2)C when used in a pre-processing step and in a real full lookahead strategy [START_REF] Haralick | Increasing Tree Search Efficiency for Constraint Satisfaction Problems[END_REF] during backtrack search to find the first solution to a CSP. In our experiments, we use the variable ordering dom/wdeg [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF]. The Algorithm 1: Living-STR(ci): set of variables Input: cj: a constraint of P Output: Set of variables in scope(cj) whose domains have been modified experiments are conducted on the benchmarks of the CSP Solver Competition3 with a time limit of two hours per instance and 8 GB of memory. Because STR and R(* ,2)C enforce the same level of consistency on binary CSPs [START_REF] Bessière | Domain Filtering Consistencies for Non-Binary Constraints[END_REF], we focus our experiments on 21 non-binary benchmarks4 consisting of 623 CSP instances. We chose these benchmarks because they are given in extension and at least one algorithm completed 5% of the instances in the benchmark. Table 1 summarizes the results in terms of number of instances solved. Importantly, apc-R(* ,2)C completes the largest number of instances (552). Considering the instances solved by all algorithms (485 instances), apc-R(* ,2)C has the smallest average and median CPU time. Row 3 indicates the number of instances STR solved but R(* ,2)C and apc-R(* ,2)C did not solve (18 and 11 instances, respectively), thus showing that apc-R(* ,2)C, although it may have en- R(* ,2)C because the instance is solved backtrack free with STR alone. For apc-LC, no call to LC is done during pre-processing because the weights of all the constraints are set to 1 (giving p(c j) = 0 for all c j ∈ C) and updated only during search. For dag-rand, there is a smaller number of R(* ,2)C calls than STR calls (21,870 vs. 359,248). However, those few calls allow us to solve all the instances of this benchmark whereas STR alone could not solve any instance. This result is a glowing testimony of the ability of apc-R(* ,2)C to apply the appropriate level of consistency where needed.

X modif ied ← ∅ 1 foreach xi ∈ scope(cj) | xi / ∈ past(P) do 2 foreach vi ∈ dom(xi) do 3 if |gacSupports[Rj](xi, vi)| = 0 and |gacSupports[R j](x i ,v i)| |R o j | ≥ p(cj)

Conclusions

In this paper, we extend the notion of p-stability for AC to GAC, and provide a mechanism for computing it. We give an algorithm for enforcing apc-R(* ,2)C on non-binary table constraints, which adaptively enforces GAC and R(* ,2)C. We validate our approach on benchmark problems. Future work is to investigate other adaptive criteria for selecting the level of consistency to apply, in particular one that operates during both pre-processing and search. To apply our approach to constraints defined in intension and other global constraints, we could use techniques that approximate the number of solutions in those constraints [START_REF] Pesant | Counting-Based Search: Branching Heuristics for Constraint Satisfaction Problems[END_REF].

Fig. 1 .

 1 Fig. 1. The constraint x1 ≤ x2. x1, 4 is not 0.25-stable for AC [1].

Fig. 2 .

 2 Fig. 2. The relation of x1 ≤ x2. x1, 3 and x1, 4 are not 0.25-stable for GAC.

 in our context. The correctness of Algorithms 1 and 2 can be shown in straightforward manner by contradiction.

4 then 10 X 11 return X modif ied 12 Algorithm 2 : 2 if

 410111222 Apply-LC(Rj, gacSupports[Rj](xi, vi))5 if |gacSupports[Rj](xi, vi)| = 0 then 6 foreach c k ∈ cons(xi) do 7 delTuples(c k , gacSupports[R k](xi, vi), |past(P)|) 8 dom(xi) ← dom(xi) \ {vi} 9 if dom(xi) = ∅ then throw INCONSISTENCY modif ied ← X modif ied ∪ {xi} Apply-R(* ,2)C(ci,tuples) Input: ci: a constraint; tuples: a set of tuples the constraint ci Output: The tuples are either R(* ,2)C or deleted foreach τ ∈ tuples do 1 foreach cj ∈ neigh(ci) do SearchSupport(Ri, τ, {Rj}) returns inconsistent then 3 delTuples(ci, {τ }, |past(P)|)4

Table 1 .

 1 Number of instances completed by the tested algorithms.

	STR R(* ,2)C apc-R(* ,2)C

Table 2

 2 gives a finer analysis of the data, showing the number of completions and average and median CPU time per benchmark. Averages computed over only the instances completed by all techniques are shown in the column All. We split

Table 2 .

 2 Results of the experiments per benchmark, organized in four categories. is bold faced when its rank differs from that of the average CPU time (on which the four categorized are based). On TSP-20, apc-R(* ,2)C ranks bottom on average CPU time but between STR and R(* ,2)C on median CPU time. On aim-100, jnhUnsat, rand-8-20-5, and ukVg, apc-R(* ,2)C is between STR and R(* ,2)C for average CPU time, but best for median CPU time.Table3shows the average number of STR and R(* ,2)C checks that apc-R(* ,2)C performs per benchmark. In allIntervalSeries, no calls are made to

			#Completed Average CPU time (sec) Median CPU time (sec)
	Benchmark	#Instances	STR	R(* ,2)C	apc-R(* ,2)C	All	STR	R(* ,2)C	apc-R(* ,2)C	STR	R(* ,2)C	apc-R(* ,2)C
						a) apc-R(* ,2)C is the best			
	aim-50 24 24 24 24 24	0.04	0.07	0.04	0.02	0.04	0.03
	allIntervalSeries 25 22 22 22 22	7.09 141.85	6.00	0.13	0.31	0.12
	jnhSat 16 16 16 16 16	13.07 357.66	11.74	8.15 142.24	7.21
	modifiedRenault 50 50 50 50 50	6.39	11.17	6.29	7.24	8.79	6.98
	rand-3-20-20 50 31 43 41 31 1,666.10 939.88 932.77 1,211.50 822.54 811.74
					b) apc-R(* ,2)C is competitive			
	aim-100 24 24 24 24 24	0.38	0.26	0.41	0.18	0.25	0.16
	aim-200 24 22 24 24 22	414.48	6.52 286.27	2.39	1.37	2.60
	jnhUnsat 34 34 34 34 34	13.61 294.77	13.95	10.74 153.50	9.78
	lexVg 63 63 63 63 63	69.81 341.87 338.74	0.50	1.38	0.89
	pret 8 4 4 4 4 117.89 347.03 136.04	115.81 354.82 145.70
	rand-3-20-20-fcd 50 39 48 47 39	928.06 546.84 615.23	501.30 422.24 464.00
	rand-8-20-5 20 9 20 20 9 2,564.94 355.57 372.76 1,987.35 314.26 261.68
	rand-10-20-10 20 12 12 12 12	6.72	1.67	2.76	6.40	1.66	2.75
	ssa 8 6 5 6 5	64.60 100.64	69.59	1.51	1.60	1.58
	TSP-25 15 13 10 13 10 232.38 1,072.72 743.33	69.00 211.41 131.69
	ukVg 65 37 31 34 31 166.82 796.90 421.35	36.29 54.65 30.39
	varDimacs 9 6 6 6 6	89.23 587.55 319.20	1.56	6.43	2.94
	wordsVg 65 65 58 58 58 119.76 532.05 400.22	0.39	0.95	0.59
					c) apc-R(* ,2)C is the worst			
	dubois 13 7 8 6 6 1,000.54 451.91 1,456.01	552.13 255.25 779.57
	TSP-20 15 15 15 15 15 101.20 318.37 335.13	23.32 61.55 46.34
						d) Not solved by STR				
	dag-rand 25 0 25 25 0	-123.70 149.64	-124.47 151.33

Table 3 .

 3 Number of calls to STR and R(* ,2)C by benchmark.

	Benchmark	STR checks R(* ,2)C checks	Benchmark	STR checks R(* ,2)C checks
	a) apc-R(* ,2)C is the best	b) apc-R(* ,2)C is competitive
	aim-50	456,823	39,491	aim-100	7,731,585	894,353
	allIntervalSeries	38,281,694	0	aim-200 1,160,334,482	163,177,907
	jnhSat	22,119,135	599,080	jnhUnsat	51,688,166	1,918,781
	modifiedRenault	4,618,778	601,641	lexVg	564,010,457 2,180,503,026
	rand-3-20-20	489,441,126 3,480,216,943	pret	422,987,946	13,973,748
				rand-3-20-20-fcd	455,664,100 2,956,467,994
	c) apc-R(* ,2)C is the worst	rand-8-20-5	77,470,561	184,764,543
	dubois 3,343,830,604	4,668,288	rand-10-20-10	72,608	3,972
	TSP-20	622,949,698	991,590,957	ssa	156,631,370	11,689,961
				TSP-25 2,903,953,315 3,947,391,769
				ukVg	341,565,892 1,002,334,753
	d) Not solved by STR		varDimacs	720,843,958	84,123,204
	dag-rand	359,248	21,870	wordsVg	514,840,737 2,052,367,934

http://www.cril.univ-artois.fr/CPAI08/

aim-(50,100,200), allIntervalSeries, dag-rand, dubois, jnh(Sat/Unsat), lexVg, modifiedRenault, pret, rand-10-20-10, rand-3-20-20(-fcd), rand-8-20-5, ssa, travellingSalesman-20, travellingSalesman-25, ukVg, varDimacs, wordsVg

This research was supported by NSF Grant No. RI-111795 and EU project ICON (FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a Chateaubriand Fellowship. Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln.