Anthony Schneider

Robert J Woodward

Berthe Y Choueiry

Christian Bessiere
email: bessiere@lirmm.fr

Improving Relational Consistency Algorithms Using Dynamic Relation Partitioning

Relational consistency algorithms are instrumental for solving difficult instances of Constraint Satisfaction Problems (CSPs), often allowing backtrack-free search. In this paper, we improve an algorithm for enforcing relational consistency by exploiting the property that the constraints of the dual encoding of a CSP are piecewise functional. This property allows us to partition a CSP relation into blocks of equivalent tuples at varying levels of granularity. Our new algorithm dynamically exploits those partitions. Our experiments show a significant improvement of the processing time for enforcing relational consistency.

Introduction

Algorithms for enforcing local consistency are a focal point of research in Constraint Programming because they are an efficient means to reduce the size of the search space and effort [START_REF] Bessiere | Handbook of Constraint Programming, chapter Constraint Propagation[END_REF]. In recent years, new techniques for enforcing higher levels of consistency have been proposed. While most consider combinations of two constraints [START_REF] Bessière | Domain Filtering Consistencies for Non-Binary Constraints[END_REF][START_REF] Lecoutre | Extending STR to a Higher-Order Consistency[END_REF][START_REF] Paparrizou | An Efficient Higher-Order Consistency Algorithm for Table Constraints[END_REF][START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF], some operate on combinations of two or more constraints [START_REF] Bessiere | Efficient Algorithms for Singleton Arc Consistency[END_REF][START_REF] Dechter | Local and Global Relational Consistency[END_REF][START_REF] Karakashian | Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition[END_REF][START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF][START_REF] Woodward | Solving Difficult CSPs with Relational Neighborhood Inverse Consistency[END_REF][START_REF] Woodward | Revisiting Neighborhood Inverse Consistency on Binary CSPs[END_REF]. In this paper, we improve the performance of the algorithm for enforcing the relational consistency property R(* ,m)C [START_REF] Karakashian | Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition[END_REF][START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF] (originally known as m-wise consistency [START_REF] Gyssens | On the Complexity of Join Dependencies[END_REF]). This property ensures that any tuple can be consistently extended over every combination of m -1 relations.

Samaras and Stergiou showed that the constraints of the dual encoding of a CSP are piecewise functional [START_REF] Van Hentenryck | A Generic Arc Consistency Algorithm and its Specializations[END_REF][START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF]. Given two constraints that are adjacent in the dual graph, this property partitions the tuples of each relation into a set of blocks, i.e., equivalence classes of tuples. They exploited those partitions in an algorithm (PW-AC) for enforcing pairwise-consistency (i.e., R(* ,2)C), which is defined on pairs of relations. Extending the work of Samaras and Stergiou, we identify as coarse blocks those induced on a constraint's relation by one other adjacent constraint and as fine blocks those induced by all other adjacent constraints. We modify the PerTuple3 algorithm for enforcing R(* ,m)C into the PerFB algorithm, which exploits not only the fine and coarse blocks but also intermediate ones induced by a subset of the constraint's neighbors.

The contributions of this paper are as follows: a) The definitions of levels of relation partitions and the specification of data structures to store and manipulate the coarse and fine blocks; b) The design of an algorithm that utilizes those data structures to enforce R(* ,m)C; c) A complexity analysis of our data structures and algorithm; and, d) An empirical evaluation of PerFB comparing its performance to that of PerTuple.

In addition to the contribution of Samaras & Stergiou [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF], our approach is related to the following research. Karakashian et al. propose a compact data structure, the index tree, which finds coarse blocks and stores them in the leaves of the tree [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF]. However, they fall short of exploiting them to improve constraint propagation. Lecoutre et al. propose the algorithm STR3 to enforce GAC using the size of the blocks induced, on a relation, by a variable in its scope [START_REF] Lecoutre | A Path-Optimal GAC Algorithm for Table Constraints[END_REF]. Further, Lecoutre et al. propose the algorithm eSTR to enforce pairwise-consistency using only the size of the coarse blocks [START_REF] Lecoutre | Extending STR to a Higher-Order Consistency[END_REF]. Our work is also related to the computation of subproblem interchangeability [START_REF] Choueiry | Dynamic Bundling: Less Effort for More Solutions[END_REF][START_REF] Choueiry | On the Computation of Local Interchangeability in Discrete Constraint Satisfaction Problems[END_REF][START_REF] Freuder | Eliminating Interchangeable Values in Constraint Satisfaction Problems[END_REF][START_REF] Lal | Neighborhood Interchangeability and Dynamic Bundling for Non-Binary Finite CSPs[END_REF], where the variables' domains (instead of constraints' relations) are dynamically partitioned by the constraints of a specified subproblem.

This paper is organized as follows. Section 2 gives some background information. Section 3 discusses relation partitioning. Section 4 describes how to create relation partitions and the data structures for storing them. Section 5 gives the partition-based algorithms for enforcing R(* ,m)C. Section 6 discusses our experiments and results. Finally, Section 7 concludes this paper.

Background

A constraint satisfaction problem (CSP) is defined by P= (X , D, C), where X is a set of variables, D is a set of domains, and C is a set of constraints. A variable in X has a finite domain in D, and is constrained by constraints in C. The constraints restrict the acceptable combinations of values for variables. A solution to the CSP is an assignment to each variable of a value taken from its domain such that all the constraints are satisfied. Deciding the existence of a solution for a CSP is NP-complete.

Each constraint C i ∈ C is defined by a relation R i specified over the scope of the constraint, scope(C i), which is the set of variables to which the constraint applies. The arity of a constraint is the cardinality of its scope. In this paper, we study table constraints, where a tuple t i ∈R i is a combination of allowed values for the variables in scope(C i). We call the subscope of a constraint a subset of its scope, and use it to denote the set of variables common to two constraints: subscope(C i , C j) = scope(C i)∩ scope(C j). We use the relational operator project, π, to restrict a partial assignment (e.g., a tuple) to a particular set of variables.

Several graphical representations of a CSP exist. In the hypergraph, the vertices represent the variables of the CSP, and the hyperedges represent the scopes of the constraints. Figure 1 shows the hypergraph of our running example. In the dual graph, the vertices represent the CSP constraints, and the edges connect vertices representing constraints whose scopes overlap (see Figure 2). Thus, two CSP constraints are adjacent or neighbors in the dual graph when their subscope is not empty. The constraints of the dual graph enforce the equality of the variables in the subscope of the two adjacent CSP constraints.

C 3 B C D E A C 5 C 1 C 4 F C 2 G Fig. 1: Hypergraph of a CSP example. C 2 C 1 A,B,C,D,G A,B,E A,B,F C,F B,E,G A,B A,B C A,B C 3 C 4 C 5 B,E F B,G B Fig. 2: Dual graph of CSP in Figure 1.
Backtrack search is typically used to solve CSPs. To reduce the size of the search tree, CSPs are usually filtered by enforcing a given local consistency property. One common property is Generalized Arc Consistency (GAC). A CSP is GAC iff for every constraint, any value in the domain of any variable in the scope of the constraint can be extended to a tuple satisfying the constraint. While GAC is enforced by filtering the domains, other consistency properties are enforced by filtering the relations (which are then typically projected on the domains). Karakashian et al. proposed a relation-filtering algorithm that allows us to control the consistency level enforced while preserving the topology of the constraint network [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF]. Their algorithm enforces R(* ,m)C, which guarantees that every relation is minimal in every combination of m relations. PerTuple, the algorithm for enforcing R(* ,m)C, ensures that each tuple in a relation appears in a solution of the dual CSP induced by the m relations by conducting a backtrack search on the tuples of the m-1 relations (see Figure 3). Samaras and Stergiou showed that the constraints of the dual graph are piecewise functional [START_REF] Van Hentenryck | A Generic Arc Consistency Algorithm and its Specializations[END_REF][START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF]. Given two CSP constraints with nonempty overlapping scopes, this property partitions the tuples of each relation into a set of blocks, equivalence classes of tuples, where each block is consistent with at most one block in the other relation (see Figure 4). PW-AC, their algorithm for enforcing pairwise-consistency, finds the partition induced on the relation of each constraint by each one of its neighbors in the dual graph. When a block of a relation is not supported in one of the constraint's neighbors, the block's tuples are deleted. This operation may cause other blocks of the same relation to lose tuples, eventually becoming empty. Propagation stops when the network is A B C D G t 1 0 0 0 0 0 t 2 0 0 0 1 0 t 3 0 0 1 0 0 t 4 0 0 1 1 1 t 5 0 1 1 0 1 t 6 0 1 1 1 1

t 7 1 1 1 1 1 A B E 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 ✗ ✗ R 1 R 2
Fig. 4: Piecewise functional constraint.

pairwise-consistent or when a relation becomes empty. The effectiveness of PW-AC was established on sparse networks and other structured benchmarks [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF]. 43 Relation Partitioning

We exploit the equivalence classes induced, on the relation R i of a constraint C i , by C i 's neighbors in the dual graph. We distinguish three types of such classes depending on the subset of neighbors considered: coarse (cb), fine (f b), and intermediate blocks (ib). Figures 5 and6 illustrate the above for R 1 . The notations and data structures used in the following sections refer to this example.

Coarse blocks: Any single neighbor of C i in the dual graph partitions R i into a set of coarse blocks. In Figure 5, 5 and consistent with (0,0,0) and (0,0, [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF]. Fine blocks: When we consider all the constraints adjacent to C i in the dual graph, they induce on R i the finest possible partition, obtained by performing the intersections of all R i 's coarse blocks. As a result, they yield the (unique) set of R i 's fine blocks. In Figure 6, the set of fine blocks of R 1 is {f b 1 , f b 2 , . . . , f b 5 }. Intermediate blocks: Finally, the partition induced on a relation R i by a given combination of m constraints depends on the neighboring constraints of C i that are included in m. The granularity of that partition is intermediate: not finer than R i 's fine partition and not coarser than any of its coarse partitions. For example, We compute and store the fine and coarse blocks before preprocessing. PerFB, our new algorithm for enforcing R(* ,m)C, conducts backtrack search over the fine blocks, and uses the coarse blocks during lookahead. It does not permanently store any of the intermediate partitions.

subscope(C 1 ,C 2) = {A, B, C, D, G} ∩ {A, B, E} = {A, B} = o 1 . The tuples t i∈[1,4] ∈ R 1 are equivalent for R 1 given o 1 =00,
1) ∈ R 2 . Indeed, π o1 (t i∈[1,4] ∈ R 1) = (0, 0) and π o1 ((0, 0, 0) ∈ R 2) = π o1 ((0, 0, 1) ∈ R 2) = (0, 0).
{C 2 , C 5 } ⊂ neighbors(C 1) induce the intermediate blocks {ib 1 , ib 2 , ib 3 , ib 4 }. A B C D G fb 1 t 1 0 0 0 0 0 t 2 0 0 0 1 0 fb 2 t 3 0 0 1 0 0 fb 3 t 4 0 0 1 1 1 fb 4 t 5 0 1 1 0 1 t 5 0 1 1 1 1 fb 5 t 7 1 1 1 1 1 A B F fb 12 0 0 0 fb 13 0 0 1 fb 14 0 1 1 fb 15 1 1 0 fb 16 1 1 1 B E G C F R 1 R 3 R 4 R 5 A B E fb 6 0 0 0 fb 7 0 0 1 fb 8 0 1 0 fb 9 0 1 1 fb 10 1 0 0 fb 11 1 0 1 R 2 Fig. 5: Relations of CSP example.

Generating and Storing Partition Blocks

Because the partitions of a relation R i are induced by an equivalence relation, any coarse or intermediate block of R i is made up of a number of R i 's fine blocks (e.g., in Figure 6,

cb 1 = {f b 1 , f b 2 , f b 3 } and ib 2 = {f b 2 , f b 3 }).
Also, any fine block appears in exactly one block of a partition of a given granularity. For this reason, we first build the fine blocks of a relation, then we build its coarse blocks as sets of fine blocks. Below, we describe the data structures for storing the blocks (both fine and coarse) of a relation. Then, we describe how to generate them, and discuss their complexity.

Data Structures

Figure 7 partially depicts the data structures for the example of Figure 5. A coarse block is uniquely determined by three entities: a subscope, values of the subscope, and the relation that is being partitioned. For example, cb 1 of Figure 6 is determined by o 1 , o 1 =00, and R 1 , and stored in cb R1,o1=00 . The structure rel-cb o1=00 stores an entry for all relations R i (i.e., R 1 , R 2 , R 3) with at least one tuple t i where π o1 (t i) = (0, 0). This entry points to the coarse blocks of R i with o 1 =00. Further, a back-pointer, not shown in Figure 7 for readability, links each such coarse block back to rel-cb o1=00 . All the coarse blocks accessible from rel-cb o1=00 are pairwise consistent. If a relation R i has the subscope o 1 but does not have an entry in rel-cb o1=00 , or if R i loses during constraint propagation all its tuples t i where π o1 (t i) = (0, 0), then all the coarse blocks accessible from rel-cb o1=00 are inconsistent. Thus, given any coarse block with o 1 =00 (e.g., cb R2,o1=00), rel-cb o1=00 gives us constant-time access to the coarse blocks that are pairwise consistent with it in all relations.

vls o1 00 rel-cb o1=00 01 rel-cb o1=01 10 rel-cb o1=10 11 rel-cb o1=11 rel-cb o1=00 R 1 cb R1,o1=00 R 2 cb R2,o1=00 R 3 cb R3,o1=00 cb R1,o1=00 fb 1 fb 2 fb 3 #fb-alive=3 all-subscopes o 1 ={A,B} vls o1 o 2 ={B,G} vls o2 o 3 ={C} vls o3 o 4 ={B} vls o4 o 5 ={B,E} vls o5 o 6 ={F} vls o6 rel-cb o1=11 R 1 cb R1,o1=11 R 3 cb R3,o1=11
The structure vls o1 gives access to the structures storing rel-cb o1=vi for each subscope value v i of o 1 (i.e., 00, 01, 10, 11). For each v i , there is one such entry.

The structure all-subscopes gives access to the structures storing the subscopes values vls oi for each subscope o i in the problem. For example, for o 1 = {A, B}, all-subscopes gives access to vls o1 .

In addition to the above structures, we use two constant-time lookup tables. The table f b-subscope-2-cb gives the coarse block in which a fine block of a relation appears given a subscope. For example, f b-subscope-2-cb[f b 2 , R 1 , {A, B}] points to the coarse block cb R1,o1=00 shown in Figure 7. Similarly, tup-2-f b maps a tuple t i in a relation to the fine block that contains t i . In the example in Figures 5 and 6, it maps t 5 ∈ R 1 to the structure storing f b 4 .

Fine Blocks

CreateFineBlocks (Algorithm 1) generates the fine blocks of a relation R i . We use the following accessors and notations:

-The function FineBlocks(R i) returns the set of fine blocks of R i .

-The accessor #tuples-alive(f b i) gives the count of living tuples of f b i . This count is stored in the structure of f b i , and updated during search whenever a tuple in f b i is marked or unmarked as deleted.

-The accessor #fb-alive(R i) gives the number of fine blocks alive in R i .

-The function FindEquivFB(R i , subT uple) is a relational selection operator: it iterates over the fine blocks in FineBlocks(R i), and returns the fine block with the values assignment matching subT uple.

CreateFineBlocks (Algorithm 1) groups tuples with the same values assignments for the variables in U s = Cj ∈neighbors(Ci) subscope(C i , C j). In addition to grouping tuples, it keeps a counter storing the total number of living tuples in the given fine partition. When a tuple is deleted during search, we use the array tup-2-f b to update the count of living tuples in the tuple's fine block. FineBlocks(Ri) ← ∅ 3:

Us ← C j ∈neighbors(C i) subscope(Ci, Cj) 4:

for each tuple τ ∈ Ri do 5:

subT uple ← πU s (τ) 6:

f bcurr ← FindEquivFB(Ri, subT uple) 7:

if f bcurr = nil then 8:

f bcurr ← create a new fine block 9:

FineBlocks(Ri) ← FineBlocks(Ri) ∪ {f bcurr} 10:

#fb-alive(Ri) ← #fb-alive(Ri) + 1 11:

f bcurr ← f bcurr ∪ {τ } 12:

#tuples-alive(f bcurr) ← #tuples-alive(f bcurr) +1 13:

tup-2-f b[τ] ← f bcurr 14: return FineBlocks(Ri) CreateFineBlocks is O(e • |o i | • log(|o i |) + (t • (k + k • t))) = O(k • t 2 + e • |o i | • log(|o i |)).
When arity(C i) = |U s |, Lines 5-10 are bypassed. In this case, each fine block of R i has a single tuple. Thus, while the time complexity is large, the cost of Lines 5-10 is incurred only when a fine block can potentially have more than one tuple. The space complexity for storing the fine blocks of R i is O(t), incurred when each fine block in R i has one tuple. The array mapping tuples to the fine blocks to which they belong is O(t), making the total space complexity O(t) per constraint.

Coarse Blocks

Below, we describe the creation of the coarse blocks, similar to the ones introduced by Samaras and Stergiou [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF]. Our design improves on theirs in that a) a coarse block stores fine blocks and not tuples, thus, potentially reducing the size of each coarse block, and b) we iterate over subscopes, rather than pairs of relations (e.g., in Figures 5 and6, R 1 has four neighbors but only three subscopes).

CreateCoarseBlocks (Algorithm 2) generates the coarse blocks of a relation R i for a subscope o i out of R i 's existing fine blocks. It first retrieves all the values of o i (Line 2). Then, it iterates over the fine blocks f b i of R i , adding each f b i to the appropriate coarse partition. When a coarse block does not exist (Line 9), it is created (Line 10). The accessor function #fb-alive(cb i) maintains the number of fine blocks alive in the coarse block cb i . This function has the same name as #fb-alive(R i) (function-name overload), which operates in a similar manner. return vlso i

The time complexity to get the specific coarse block to which a particular fine block belongs provided a subscope is O(1) thanks to the f b-subscope-2-cb table. The time complexity to query all fine blocks in a relation R j that are consistent with a coarse block corresponding to a relation R i is O(1) thanks to the back-pointer to the rel-cb table stored in each coarse block.

The space complexity for a set of coarse blocks for a single subscope and relation is O(t) because each fine block is in exactly one coarse block for a given subscope. The space complexity for all coarse blocks is then O(k • t • e 2) because, in the worst case, each relation is partitioned by every other relation in the problem, and each coarse block is identified by a subtuple of size k. Additionally, the f b-subscope-2-cb table requires O(e 2 • t) space, as each tuple is in exactly one coarse block.

Note that the coarse blocks have the same space complexity as the index-tree data structure [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF], but can be more efficiently queried.

5 Consistency Algorithm: From PerTuple to PerFB Below, we describe PerFB and FB-SearchSupport, which improve PerTuple and SearchSupport [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF], respectively, for enforcing R(* ,m)C on a CSP. Like PerTuple, PerFB takes as input Q and Φ. Φ is the set of all combinations of m relations. The queue Q is initialized to all the combination-relations pairs ϕ, R i such that ϕ∈Φ and R i ∈ϕ. PerFB iterates over all fine blocks of a relation R i in a combination ϕ, calling FB-SearchSupport to ensure that a fine block can be extended to a solution in the dual CSP induced by ϕ by conducting a backtrack search that maintains support structures. In addition to the static fine and coarse blocks, PerFB and FB-SearchSupport make use of intermediate blocks, dynamically induced by the relations in ϕ. In this section, we abuse the notations and use subscope(R i , R j), scope(R i), neighbors(R i) to refer to subscope(C i , C j), scope(C i), neighbors(C i), respectively.

PerFB

PerFB (Algorithm 3) improves PerTuple [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF] in two ways in order to reduce the number of costly calls to FB-SearchSupport:

1. PerFB ensures that all fine blocks, rather than all tuples, in a relation R i can be extended to a solution over the relations of a combination ϕ of size m (Line 11). This difference can reduce the number of calls to FB-SearchSupport. 2. The number of calls to FB-SearchSupport can be further reduced by exploiting the dynamically induced intermediate blocks.

We use the following additional notations to describe how PerFB operates.

-The accessor CB((R i , f b i), o i) retrieves the coarse block of R i containing the fine block f b i given the subscope o i . It uses the table

f b-subscope-2-cb. -The accessor Support(R j ,CB(R i , f b i , o ij)) retrieves the coarse block of R j containing the fine blocks consistent with f b i of relation R i given o ij = subscope(C i , C j).
To this end, it uses the back-pointer to the rel-cb structures from the coarse block

CB(R i , f b i , o ij) and accesses rel-cb[R j]. -The structure shared-fvars[l] stores, at the search level l in FB-SearchSupport
where R i is 'assigned' a fine block, the variables in Rj ∈ϕ subscope(R i , R j).

In Figure 6,

f b 2 and f b 3 are equivalent in ϕ = {R 1 , R 2 , R 5 } yielding ib 2 = {f b 2 , f b 3 } for R 1 by {o 1 ∪o 3 }. PerFB exploits such intermediate blocks.
The key to dynamically identifying them is the table equiv-F Bs[R i , v i], which is created at each call to PerFB, and returns true or f alse, given a relation R i ∈ ϕ, and a subset of values v i from a fine block f b i . The subset v i is determined by projecting f b i over the variables in shared-fvars [START_REF] Bessiere | Handbook of Constraint Programming, chapter Constraint Propagation[END_REF] (Lines 10-12 in Algorithm 3). Any other fine block of R i with the same v i is necessarily in the same intermediate block. Thus, before executing FB-SearchSupport, we check equiv-F Bs[R i , v i] to see if a result for this particular v i was already found (Line 13). If so, the result is reused. Otherwise, FB-SearchSupport is called, and its result stored for future use (Line 14). Similar to PerTuple, when f b i has no support, its tuples are marked as deleted, and the count of fine blocks alive in R i is decremented (Lines 15-19). Inconsistency is detected when all fine blocks in R i are deleted (Lines 20-21). The updates of Q are identical to those in PerTuple. The only relation used to access equiv-F Bs in PerFB is R i . Other relations' entries in equiv-F Bs are discussed in Section 5.2.

When |shared-f vars[1]| = arity(C i), PerFB reduces to PerTuple because no two fine blocks in R i are equivalent. In this case, the discovery of equivalent fine blocks is bypassed to save on CPU time and memory.

Finally, note that m = 2 does not require any calls to FB-SearchSupport. For this reason, for m = 2, we use PW-AC [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF] during preprocessing and PerFB during search. Further, because, when m = 2, the intermediate blocks are exactly Algorithm 3 Enforces R(* ,m)C using a queue Q and list Φ of combinations

1: function PerFB(Q, Φ) 2: while Q = ∅ do 3: ϕ, Ri ← Pop(Q) 4: deleted ← f alse 5: R f ← ϕ \ Ri 6:
for Rj ∈ ϕ do 7:

equiv-F Bs[Rj] ← ∅ 8:

for i = 1 to m do 9: shared-f vars[i] ← ∅ 10: shared-f vars[1] ← R j ∈R f subscope(Ri, Rj) 11:
for each living f bi ∈ FineBlocks(Ri) do 12:

vi ← π (shared-f vars [START_REF] Bessiere | Handbook of Constraint Programming, chapter Constraint Propagation[END_REF]) (f bi) 13:

if equiv-F Bs[Ri, vi] does not exist then 14:

equiv-F Bs[Ri, vi] ← FB-SearchSupport(f pi, Ri, R f , equiv-F Bs) 15:
if equiv-F Bs[Ri, vi] = f alse then 16:

for each tuple τ ∈ f bi do 17:

Delete(τ, Ri) 18:

deleted ← true 19:

#fb-alive(Ri) ← #fb-alive(Ri) -1 20:

if #fb-alive(Ri) = 0 then 21:

return inconsistent 22:

if deleted then 23:

for each ϕ ∈ (Φ \ {ϕ}), Ri ∈ ϕ do 24:

for each R ∈ (ϕ \ {Ri}) do 25:

Q ← Q ∪ { ϕ , R } 26:
return consistent the stored coarse blocks, checking whether or not a coarse block is consistent can be done in constant time by checking the #fb-alive(R j) of the coarse block returned by Support(R j ,CB(R i , f b i , o ij)), where R j is the other relation in the combination. Thus, intermediate blocks are not used.

FB-SearchSupport

FB-SearchSupport performs backtrack search with forward checking on the subproblem induced, on the dual of the CSP P, by the relations in the combination ϕ, denoted as P Dϕ . The variables of P Dϕ are the relations in the combination

ϕ = {R i } ∪ R f . The 'variable' R i is assigned the 'value' f b i in the search. FB- SearchSupport is called with the argument (f b i , R i , R f , equiv-F Bs).
The domain of a relation R j ∈ R f is the set of fine blocks (represented by their indices) in the coarse block returned by Support(R j ,CB((

R i , f b i), o ij))
, where o ij is the subscope of R i and R j . However, coarse blocks are not defined when R i and R j are not neighbors (subscope(R i , R j) = ∅). Thus, the 'domain' of R j is either a) the set of living fine blocks from FineBlocks(R j) when no relation adjacent to R j has been instantiated, or b) the set of fine blocks in the coarse block Support(R j ,CB((R k , f b k), o jk)), where R k , a relation adjacent to R j , was 'assigned' f p k . Figure 8 illustrates forward checking in FB-SearchSupport using the example from Figure 5. Assume R 4 contains only tuples (0, 0, 0) and (0, 1, 0), and R 5 only (0, 0) and (0, 1), denoted f b 17 , f b 18 , f b 19 , f b 20 , respectively. When R 2 ← f b 6 , forward checking removes f b 18 from the domain of the dual variable R 4 . As mentioned above, each fine block has an accessor index. The set of fine blocks in a coarse block is represented by a sorted array of indices. Thus, the 'intersection' of the current domain of R 4 and cb x (R 4), where cb x (R 4) = Support(R 4 ,CB(R 2 , f b 6), o 24) is performed by iterating over the index of each fine block in the current domain of R 4 , performing a binary search on the fine block indices of cb x (R 4), and removing, from the current domain of R 4 , the indices of the fine blocks not listed in cb x (R 4).

R 2 R 3 R 4 R 5 R 1 ←fb 1 R 2 ←fb 6 R
We further exploit the intermediate partitions in the subproblem P Dϕ in FB-SearchSupport in order to bypass the exploration of entire redundant subtrees during search. While this mechanism did not yield significant savings in the number of nodes visited in our experiments for finding one solution, it may prove useful when we search for all solutions (i.e., AllSol). Fine blocks are passed over for instantiation by observing the following:

1. When instantiating a relation R j at level l, we initialize shared-f vars

[l] ← R k ∈R f subscope(R j , R k).
2. Prior to instantiating R j ← f b j at level l in search, we check in equiv-F Bs whether or not an equivalent fine block was already instantiated. That is, we check equiv-F Bs[R j , v j] where v j = π shared-f vars[l] (f b j). If the entry is f alse, f b j need not be instantiated because an equivalent fine block in the same intermediate partition was already found inconsistent on a previous path in the same search. (Note that the entry cannot be true because search terminates after finding the first solution.) When the domain of a future 'variable' is annihilated during forward checking for v j , equiv-F Bs[R j , v j] is marked as f alse. 3. When unlabeling a 'variable' R j at a level l (upon backtracking), equiv-F Bs[R j] and shared-f vars[l] are set to ∅.

Complexity. When deleting a tuple during search, it is important to maintain the correct counts of fine and coarse blocks.

Empirical Evaluations

We compare the performance of PerFB to that of PerTuple. We use the latest strategy for enforcing R(* ,m)C obtained after removing redundant edges from the dual graph [START_REF] Janssen | A Filtering Process for General Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Associated Binary Representation[END_REF], localizing consistency propagation to the clusters of a tree decomposition of the CSP, and bolstering propagation between adjacent clusters by the addition of constraint projections to the clusters' separators [START_REF] Karakashian | Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition[END_REF]. (The corresponding consistency property is denoted cl+proj-wR(* ,m)C.) Although weakening the dual graph weakens consistency for m > 2, it also reduces the number of combinations and, thus, cost. Importantly, localization of the constraints to clusters is an excellent 'set up' for testing intermediate partitions. For both PerFB and PerTuple, we used m = {2, 3, 4, |ψ(cl)|} where m = |ψ(cl)| is the number of constraints in a cluster in the tree decomposition and corresponds to enforcing the minimality of each cluster .

In our experiments, we find the first solution of an instance by backtrack search, using the dynamic variable ordering dom/deg and doing full lookahead with relational consistency (i.e., cl+proj-wR(* ,m)C for m = {2, 3, 4, |ψ(cl)|}). For the evaluation, we use benchmarks from the CSP Solver Competition that are either hard to solve, thus requiring high levels of consistency, or are challenging for R(* ,m)C, thus demonstrating the effectiveness of partitioning. 6 We limit maximum processing time to 2 hours, and the maximum memory allocation to 8GB. All CPU times are reported in seconds and include all processing operations, including data-structure creation, preprocessing, and search.

Table 1 lists the min, max, and mean values of the fine block sizes averaged over all instances in a benchmark, as well as the size of the largest block in any

Definition 1 .

 1 A set of m constraints C = {C 1 , C 2 , . . . , C m } with m ≥ 2 is said to be R(* ,m)C iff every tuple in the relation of each constraint C i ∈ C can be extended to the variables in Cj ∈C scope(C j) \ scope(C i) in an assignment that satisfies all the constraints in C simultaneously. A network is R(* ,m)C iff every set of m constraints, m ≥ 2, is R(* ,m)C.

Fig. 3 :

 3 Fig. 3: Illustrating R(* ,m)C.

Fig. 7 :

 7 Fig. 7: Data structures for storing coarse and fine blocks for the CSP in Figure 5.

Algorithm 1

 1 Complexity: We use the following parameters in the complexity analysis. t is the maximum number of tuples in a relation; k is the maximum constraint arity; e = |C| is the number of constraints in the CSP; and |o i | is the size of the largest subscope that a relation shares with a neighbor. The time complexity of each of FineBlocks(R i) and #fb-alive(R i) is O(1). The creation of U s on Line 3 of Algorithm 1 is O(e• |o i | •log(|o i |)) because a constraint may be adjacent to all other constraints in the dual graph, and each edge requires inserting at most |o i | variables into the set. In the worst case, the function FindEquivFB performs k comparisons on t fine blocks to find an existing equivalent fine block. Its complexity is thus O(t • k). Computing the subTuple in Line 5 is O(k). Thus, Creating the fine partition of a relation R i 1: function CreateFineBlocks(Ri) 2:

 (a) m = 2 (b) m = |ψ(cl)|

Fig. 9 :

 9 Fig. 9: Pairwise comparisons of PerFB and PerTuple for tested values of m.

 ={A,B} o 2= {B,G} o 3 ={C} o 1 ∪o 2 ∪o 3 o 1 ∪o 3 Fig. 6: Coarse, fine, and intermediate blocks of R1.

	o 1							
	cb 1 cb 2	t 1 t 2 t 3 t 4 t 5 t 6	cb 4 cb 5 t 4 t 1 t 2 t 3 cb 6 t 5 t 6	cb 7 cb 8	t 1 t 2 t 3 t 4 t 5 t 6	fb 1 fb 2 t 3 t 1 t 2 fb 3 t 4 fb 4 t 5 t 6	ib 1 ib 2 ib 3	t 1 t 2 t 3 t 4 t 5 t 6
	cb 3 t 7	t 7		t 7	fb 5 t 7	ib 4 t 7

 Complexity: The table lookups on Lines 2 and 10 of CreateCoarseBlocks are O(1). The table lookups for vls oi on Lines 6-9 are O(log(t) • |o i |) if vls oi is represented as a binary search tree that uses v i as a key. Creating v i on Line 6 is O(|o i |). The for-loop is executed O(t) times. The complexity for Create-CoarseBlocks is thus O(|o i | • t • log(t)). Creating the coarse partition of a relation R i given a subscope o i

	Algorithm 2 1: function CreateCoarseBlocks(Ri, oi)
	2:	vlso i ← all-subscopes[oi]
	3:	for each f bi ∈ FineBlocks(Ri) do
	4:	if #tuples-alive(f bi) = 0 then
	5:	continue
	6:	vi ← πo i (f bi)
	7:	if vlso i [vi] does not exist then
	8:	vlso i [vi] ← create new rel-cb table
	9:	curr-rel-cb ← vlso i [vi]
	10:	curr-cb ← curr-rel-cb[Ri]
	11:	if curr-cb does not already exist then
	12:	curr-cb ← create new coarse block
	13:	curr-cb ← curr-cb ∪ {f bi}
	14:	#fb-alive(curr-cb) ← #fb-alive(curr-cb) + 1
	15:	f b-subscope-2-cb[f bi, Ri, oi] ← curr-cb
	16:	

 3 ←fb 12 R 4 ←fb 17 R 5 ←fb 19 Backtrack search on fine blocks using coarse and intermediate blocks.

	fb 6			
	fb 7			
	fb 12	fb 12		
	fb 13	fb 13		
	fb 17	fb 17	fb 17	
	fb 18			
	fb 19	fb 19	fb 19	fb 19
	fb 20	fb 20		
	Fig. 8:			

 Each tuple deletion costsO(e 2) updates. Updates are constant time thanks to the f b-subscope-2-cb and tup-2-f p tables. The cost of these updates is, in practice, greatly dwarfed by that of FB-SearchSupport. The time complexity of PerFB is identical to that of PerTuple, and dominated by the O(t m-1) search conducted in FB-SearchSupport[START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF]. Additionally, PerFB performs at most as many calls to FB-SearchSupport as PerTuple does, because Rj ∈ϕ\{Ri} subscope(R i , R j) is the same as scope(R i) in the worst case, and all fine blocks have a single tuple. Insertion and retrieval of equivalent fine blocks for R i is done in O(k • log(t)) time. Indeed, the entry for equiv-F Bs[R i] is a binary search tree with sub-tuples of values v i as its keys, comparing each node in the tree is O(k), and O(log(t)) comparisons may be required when each fine block has only one tuple.At each level of search in FB-SearchSupport, equiv-F Bs holds O(t) fine blocks, each represented by a sub-tuple of size O(k). Thus, an additional O(m • t • k) space is required for PerFB to store the equivalent fine blocks at each level of search in FB-SearchSupport.

 PerFB for m = 2, 3, 4, |ψ(cl)|

							m=2													8000												m=3												8000											m=4			8000	m=|ψ(cl)|
			PerTuple																	7000						PerTuple																		7000				PerTuple								7000	PerTuple
			PerFB																		6000						PerFB																			6000				PerFB										6000	PerFB
																								5000																													5000																			5000
																								4000																													4000																			4000
																								3000																													3000																			3000
																								2000																													2000																			2000
																								1000																																																	1000
	350	362	374	386	398	410	422	434	446	458	470	482	494	506	518	530	542	554			0	450	460	470	480	490	500	510	520	530	540	550	560	570	580	590	600	610				0	400	411	422	433	444	455	466	477	488	499	510	521	532	543	554	565	576	587	0	400	412	424	436	448	460	472	484	496	508	520	532	544	556	568	580	592	604
				(c) m = 2																				(d) m = 3																(e) m = 4	(f) m = |ψ(cl)|
							8000																																																																		
													m=2							m=3											PerFB																	
							7000																																																																		
													m=4							m=|C| m=|ψ(cl)|																																					
							6000																																																																		
							5000																																																																		
							4000																																																																		
							2000																																																																		
							1000																																																																		
								0		400	404	408	412	416	420	424	428	432	436	440	444	448	452	456	460	464	468	472	476	480	484	488	492	496	500	504	508	512	516	520	524	528	532	536	540	544	548	552	556	560	564	568	572	576	580	584	588	592	596	600	604	608	612	616
																												(g)																																									

PerTuple was originally called ProcessQueue[START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF] and later renamed PerTuple to contrast it to another algorithm, AllSol, that guarantees the same result[START_REF] Geschwender | Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Techniques[END_REF][START_REF] Karakashian | Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition[END_REF].

We suspect that PW-AC could be shown to be effective on dense networks had the redundant edges of the dual CSPs been removed[START_REF] Janssen | A Filtering Process for General Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Associated Binary Representation[END_REF][START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF].

Abusing tuple/set assignment notation.

aim-(50, 100, 200), composed-(25-1-2, 25-1-25, 25-1-40, 25-1-80, 25-10-20,

75-1-2, 75-1-25, 75-1-40, 75-1-80), dag-rand, dubois, geom, graphColoring-(hos, mug, register-mulsol, sgb-book, sgb-games, sgb-queen), hanoi, lexVg, modifiedRenault, pret, pseudo-aim, rand-(10-20-10, 3-20-20-fcd), renault, rlfapGraphsMod, rlfapScens-Mod, ssa, super-queens, tightness0.9, varDimacs.

This research was supported by NSF Grant No. RI-111795 and EU project ICON (FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a Chateaubriand Fellowship. Experiments were conducted on the equipment of the Holland Computing Center at the University of Nebraska-Lincoln.

instance in the benchmark. Table 2 lists similar results for the coarse blocks. Benchmarks not shown in Table 1 all have one tuple per fine block. While the average size tends to be fairly small, some benchmarks show rather large values (e.g., modifiedRenault and tightness0.9). Even though the block sizes may seem small, our technique remains beneficial because cluster-based R(* ,m)C (i.e., cl+proj-wR(* ,m)C) restricts the neighborhood of a relation by localization. Table 3 summarizes our results. It reports the numbers of instances completed (#Completed) by each algorithm, those completed only by one algorithm, and those completed by both algorithms. It also reports the average CPU time, the number of calls to SearchSupport or FB-SearchSupport, and their ratio. For each value of m, the average CPU time is computed over instances completed by both algorithms. The best values are bolded. Note that the entry for SearchSupport calls for m = 2 is blank because PerFB does not call FB-SearchSupport in this case.

PerFB clearly wins across the board. While few instances are solved only by PerTuple, many more are solved only by PerFB. The discovery and exploitation of equivalent fine blocks during PerFB clearly greatly reduces the number of calls to find a support, with the poorest reduction (m = 4) still reducing the number of searches by over half. This saving is reflected in the reduction of CPU time because the cost of searching for a support in a combination of m relations is much larger than that of identifying and storing equivalent fine blocks (see Section 5). Although not shown here, the average percentages of nodes visited that were skipped in FB-SearchSupport thanks to the usage of intermediate partitions are .01%, .04%, and .10% for m = 3, 4, and ψ, respectively. Thus, the use of intermediate partitions during FB-SearchSupport is largely ineffectual when finding a single solution to the subproblem. (However, it may be useful for improving the performance of AllSol.) The scatter plots in Figure 9a Marks on the right (top) border denote instances that timed out only for Per-Tuple (PerFB). Where PerTuple outperforms PerFB, the instances are 'easier' and the time difference is negligible for the majority of these (note the logarithmic scale). On the other hand, for hard instances, PerFB is faster. This difference is likely due to the cost of identifying the intermediate partitions in PerFB; easy instances tend to not make use of the intermediate partitions, but may still incur the cost of identifying them. The cumulative charts in Figures 9c,9d, 9e, and 9f display the number of instances completed within a given time by each algorithm, and show that PerFB outperforms PerTuple for every m. We establish statistical significance by running a one-tailed paired t-test on instances completed by both PerFB and PerTuple for each value of m. The tests give p < .01 for each value of m. Thus, the two algorithms are extremely unlikely to have equivalent performances. This result and those in Table 3 and Figure 9 support our hypothesis that PerFB outperforms PerTuple.

Conclusion and Future Work

Given the importance of minimal CSPs in reasoning [START_REF] Gottlob | On Minimal Constraint Networks[END_REF] and higher-level consistencies in solving difficult problems [START_REF] Jeavons | Local Consistency and SAT-Solvers[END_REF], it seems important to improve the performance of the techniques for enforcing them. In this paper, we extend the work of Samaras & Stergiou [START_REF] Samaras | Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results[END_REF] to improve the initial algorithm of Karakashian et al. [START_REF] Karakashian | A First Practical Algorithm for High Levels of Relational Consistency[END_REF] for relational consistency by exploiting blocks of equivalent tuples at various levels of granularity, and we empirically validate our approach.

We need to evaluate the effectiveness of the approach on AllSol, the alternative algorithm for minimality [START_REF] Geschwender | Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Techniques[END_REF][START_REF] Karakashian | Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition[END_REF]. We believe that applying the ideas explored in this paper to join computation in relational databases is a promising next step [START_REF] Lal | Constraint Processing Techniques for Improving Join Computation: A Proof of Concept[END_REF], potentially highly rewarding in practice.