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Abstract. Relational consistency algorithms are instrumental for solv-
ing difficult instances of Constraint Satisfaction Problems (CSPs), often
allowing backtrack-free search. In this paper, we improve an algorithm
for enforcing relational consistency by exploiting the property that the
constraints of the dual encoding of a CSP are piecewise functional. This
property allows us to partition a CSP relation into blocks of equivalent
tuples at varying levels of granularity. Our new algorithm dynamically
exploits those partitions. Our experiments show a significant improve-
ment of the processing time for enforcing relational consistency.

1 Introduction
Algorithms for enforcing local consistency are a focal point of research in Con-
straint Programming because they are an efficient means to reduce the size of
the search space and effort [1]. In recent years, new techniques for enforcing
higher levels of consistency have been proposed. While most consider combina-
tions of two constraints [3,20–22], some operate on combinations of two or more
constraints [2, 6, 15, 16, 23, 24]. In this paper, we improve the performance of
the algorithm for enforcing the relational consistency property R(∗,m)C [15,16]
(originally known as m-wise consistency [10]). This property ensures that any
tuple can be consistently extended over every combination of m− 1 relations.

Samaras and Stergiou showed that the constraints of the dual encoding of a
CSP are piecewise functional [11, 22]. Given two constraints that are adjacent
in the dual graph, this property partitions the tuples of each relation into a set
of blocks, i.e., equivalence classes of tuples. They exploited those partitions in
an algorithm (PW-AC) for enforcing pairwise-consistency (i.e., R(∗,2)C), which
is defined on pairs of relations. Extending the work of Samaras and Stergiou,
we identify as coarse blocks those induced on a constraint’s relation by one
other adjacent constraint and as fine blocks those induced by all other adjacent
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constraints. We modify the PerTuple3 algorithm for enforcing R(∗,m)C into
the PerFB algorithm, which exploits not only the fine and coarse blocks but
also intermediate ones induced by a subset of the constraint’s neighbors.

The contributions of this paper are as follows: a) The definitions of levels
of relation partitions and the specification of data structures to store and ma-
nipulate the coarse and fine blocks; b) The design of an algorithm that utilizes
those data structures to enforce R(∗,m)C; c) A complexity analysis of our data
structures and algorithm; and, d) An empirical evaluation of PerFB comparing
its performance to that of PerTuple.

In addition to the contribution of Samaras & Stergiou [22], our approach
is related to the following research. Karakashian et al. propose a compact data
structure, the index tree, which finds coarse blocks and stores them in the leaves
of the tree [16]. However, they fall short of exploiting them to improve constraint
propagation. Lecoutre et al. propose the algorithm STR3 to enforce GAC using
the size of the blocks induced, on a relation, by a variable in its scope [19]. Fur-
ther, Lecoutre et al. propose the algorithm eSTR to enforce pairwise-consistency
using only the size of the coarse blocks [20]. Our work is also related to the
computation of subproblem interchangeability [4, 5, 7, 18], where the variables’
domains (instead of constraints’ relations) are dynamically partitioned by the
constraints of a specified subproblem.

This paper is organized as follows. Section 2 gives some background infor-
mation. Section 3 discusses relation partitioning. Section 4 describes how to
create relation partitions and the data structures for storing them. Section 5
gives the partition-based algorithms for enforcing R(∗,m)C. Section 6 discusses
our experiments and results. Finally, Section 7 concludes this paper.

2 Background

A constraint satisfaction problem (CSP) is defined by P= (X ,D, C), where X
is a set of variables, D is a set of domains, and C is a set of constraints. A
variable in X has a finite domain in D, and is constrained by constraints in C.
The constraints restrict the acceptable combinations of values for variables. A
solution to the CSP is an assignment to each variable of a value taken from its
domain such that all the constraints are satisfied. Deciding the existence of a
solution for a CSP is NP-complete.

Each constraint Ci ∈ C is defined by a relation Ri specified over the scope of
the constraint, scope(Ci), which is the set of variables to which the constraint
applies. The arity of a constraint is the cardinality of its scope. In this paper, we
study table constraints, where a tuple ti∈Ri is a combination of allowed values
for the variables in scope(Ci). We call the subscope of a constraint a subset of
its scope, and use it to denote the set of variables common to two constraints:
subscope(Ci, Cj) = scope(Ci)∩ scope(Cj). We use the relational operator project,
π, to restrict a partial assignment (e.g., a tuple) to a particular set of variables.

3 PerTuple was originally called ProcessQueue [16] and later renamed PerTuple
to contrast it to another algorithm, AllSol, that guarantees the same result [8,14].



Several graphical representations of a CSP exist. In the hypergraph, the ver-
tices represent the variables of the CSP, and the hyperedges represent the scopes
of the constraints. Figure 1 shows the hypergraph of our running example. In the
dual graph, the vertices represent the CSP constraints, and the edges connect
vertices representing constraints whose scopes overlap (see Figure 2). Thus, two
CSP constraints are adjacent or neighbors in the dual graph when their sub-
scope is not empty. The constraints of the dual graph enforce the equality of the
variables in the subscope of the two adjacent CSP constraints.
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Fig. 1: Hypergraph of a CSP example.
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Fig. 2: Dual graph of CSP in Figure 1.

Backtrack search is typically used to solve CSPs. To reduce the size of the
search tree, CSPs are usually filtered by enforcing a given local consistency prop-
erty . One common property is Generalized Arc Consistency (GAC). A CSP is
GAC iff for every constraint, any value in the domain of any variable in the
scope of the constraint can be extended to a tuple satisfying the constraint.
While GAC is enforced by filtering the domains, other consistency properties
are enforced by filtering the relations (which are then typically projected on the
domains). Karakashian et al. proposed a relation-filtering algorithm that allows
us to control the consistency level enforced while preserving the topology of the
constraint network [16]. Their algorithm enforces R(∗,m)C, which guarantees
that every relation is minimal in every combination of m relations.

Definition 1. A set of m constraints C = {C1, C2, . . . , Cm} with m ≥ 2 is said
to be R(∗,m)C iff every tuple in the relation of each constraint Ci ∈ C can be
extended to the variables in

⋃
Cj∈C scope(Cj) \ scope(Ci) in an assignment that

satisfies all the constraints in C simultaneously. A network is R(∗,m)C iff every
set of m constraints, m ≥ 2, is R(∗,m)C.

PerTuple, the algorithm for enforcing R(∗,m)C, ensures that each tuple in a
relation appears in a solution of the dual CSP induced by the m relations by
conducting a backtrack search on the tuples of the m−1 relations (see Figure 3).

Samaras and Stergiou showed that the constraints of the dual graph are
piecewise functional [11, 22]. Given two CSP constraints with nonempty over-
lapping scopes, this property partitions the tuples of each relation into a set
of blocks, equivalence classes of tuples, where each block is consistent with at
most one block in the other relation (see Figure 4). PW-AC, their algorithm
for enforcing pairwise-consistency, finds the partition induced on the relation of
each constraint by each one of its neighbors in the dual graph. When a block
of a relation is not supported in one of the constraint’s neighbors, the block’s
tuples are deleted. This operation may cause other blocks of the same relation to
lose tuples, eventually becoming empty. Propagation stops when the network is
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Fig. 3: Illustrating R(∗,m)C.

A B C D G 
t1 0 0 0 0 0 
t2 0 0 0 1 0 
t3 0 0 1 0 0 
t4 0 0 1 1 1 
t5 0 1 1 0 1 
t6 0 1 1 1 1 
t7 1 1 1 1 1 

A B E 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 

✗ 

✗ 

R1 R2 

Fig. 4: Piecewise functional constraint.

pairwise-consistent or when a relation becomes empty. The effectiveness of PW-
AC was established on sparse networks and other structured benchmarks [22].4

3 Relation Partitioning
We exploit the equivalence classes induced, on the relation Ri of a constraint
Ci, by Ci’s neighbors in the dual graph. We distinguish three types of such
classes depending on the subset of neighbors considered: coarse (cb), fine (fb),
and intermediate blocks (ib). Figures 5 and 6 illustrate the above for R1. The
notations and data structures used in the following sections refer to this example.

Coarse blocks: Any single neighbor of Ci in the dual graph partitions Ri into
a set of coarse blocks. In Figure 5, subscope(C1,C2) = {A,B,C,D,G} ∩
{A,B,E} = {A,B} = o1. The tuples ti∈[1,4] ∈ R1 are equivalent for R1 given
o1=00,5 and consistent with (0,0,0) and (0,0,1) ∈ R2. Indeed, πo1(ti∈[1,4] ∈
R1) = (0, 0) and πo1((0, 0, 0) ∈ R2) = πo1((0, 0, 1) ∈ R2) = (0, 0). Further,
the above does not hold for any other tuple of R1. Thus, cb1 = {t1, t2, t3, t4}
is the coarse block of R1 induced by o1=00. The other two coarse blocks
are cb2 = {t5, t6} and cb3 = {t7}. Similarly, subscope(C1, Cj∈{3,4,5}) is o1 =
{A,B}, o2 = {B,G}, and o3 = {C} respectively. Thus, o1, o2, and o3 induce
on R1 the set of coarse blocks {cb1, cb2, cb3}, {cb4, cb5, cb6}, and {cb7, cb8},
respectively. Coarse blocks are the partitions identified and exploited by
Samaras and Stergiou [22].

Fine blocks: When we consider all the constraints adjacent to Ci in the dual
graph, they induce on Ri the finest possible partition, obtained by perform-
ing the intersections of all Ri’s coarse blocks. As a result, they yield the
(unique) set of Ri’s fine blocks. In Figure 6, the set of fine blocks of R1 is
{fb1, fb2, . . . , fb5}.

Intermediate blocks: Finally, the partition induced on a relationRi by a given
combination of m constraints depends on the neighboring constraints of Ci

that are included in m. The granularity of that partition is intermediate:
not finer than Ri’s fine partition and not coarser than any of its coarse
partitions. For example, {C2, C5} ⊂ neighbors(C1) induce the intermediate
blocks {ib1, ib2, ib3, ib4}.

4 We suspect that PW-AC could be shown to be effective on dense networks had the
redundant edges of the dual CSPs been removed [12,16].

5 Abusing tuple/set assignment notation.
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Fig. 5: Relations of CSP example.
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Fig. 6: Coarse, fine, and intermediate blocks of R1.

We compute and store the fine and coarse blocks before preprocessing. PerFB,
our new algorithm for enforcing R(∗,m)C, conducts backtrack search over the
fine blocks, and uses the coarse blocks during lookahead. It does not permanently
store any of the intermediate partitions.

4 Generating and Storing Partition Blocks
Because the partitions of a relation Ri are induced by an equivalence relation,
any coarse or intermediate block of Ri is made up of a number of Ri’s fine
blocks (e.g., in Figure 6, cb1 = {fb1, fb2, fb3} and ib2 = {fb2, fb3}). Also, any
fine block appears in exactly one block of a partition of a given granularity. For
this reason, we first build the fine blocks of a relation, then we build its coarse
blocks as sets of fine blocks. Below, we describe the data structures for storing
the blocks (both fine and coarse) of a relation. Then, we describe how to generate
them, and discuss their complexity.

4.1 Data Structures

Figure 7 partially depicts the data structures for the example of Figure 5. A
coarse block is uniquely determined by three entities: a subscope, values of the
subscope, and the relation that is being partitioned. For example, cb1 of Figure 6
is determined by o1, o1=00, and R1, and stored in cbR1,o1=00.
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Fig. 7: Data structures for storing coarse and fine blocks for the CSP in Figure 5.

The structure rel-cbo1=00 stores an entry for all relations Ri (i.e., R1, R2, R3)
with at least one tuple ti where πo1(ti) = (0, 0). This entry points to the coarse
blocks of Ri with o1=00. Further, a back-pointer, not shown in Figure 7 for read-
ability, links each such coarse block back to rel-cbo1=00. All the coarse blocks



accessible from rel-cbo1=00 are pairwise consistent. If a relation Ri has the sub-
scope o1 but does not have an entry in rel-cbo1=00, or if Ri loses during constraint
propagation all its tuples ti where πo1(ti) = (0, 0), then all the coarse blocks ac-
cessible from rel-cbo1=00 are inconsistent. Thus, given any coarse block with
o1=00 (e.g., cbR2,o1=00), rel-cbo1=00 gives us constant-time access to the coarse
blocks that are pairwise consistent with it in all relations.

The structure vlso1 gives access to the structures storing rel-cbo1=vi for each
subscope value vi of o1 (i.e., 00, 01, 10, 11). For each vi, there is one such entry.

The structure all-subscopes gives access to the structures storing the sub-
scopes values vlsoi for each subscope oi in the problem. For example, for o1 =
{A,B}, all-subscopes gives access to vlso1.

In addition to the above structures, we use two constant-time lookup tables.
The table fb-subscope-2-cb gives the coarse block in which a fine block of a re-
lation appears given a subscope. For example, fb-subscope-2-cb[fb2, R1, {A,B}]
points to the coarse block cbR1,o1=00 shown in Figure 7. Similarly, tup-2-fb maps
a tuple ti in a relation to the fine block that contains ti. In the example in Fig-
ures 5 and 6, it maps t5 ∈ R1 to the structure storing fb4.

4.2 Fine Blocks

CreateFineBlocks (Algorithm 1) generates the fine blocks of a relation Ri.
We use the following accessors and notations:

– The function FineBlocks(Ri) returns the set of fine blocks of Ri.
– The accessor #tuples-alive(fbi) gives the count of living tuples of fbi. This

count is stored in the structure of fbi, and updated during search whenever
a tuple in fbi is marked or unmarked as deleted.

– The accessor #fb-alive(Ri) gives the number of fine blocks alive in Ri.
– The function FindEquivFB(Ri, subTuple) is a relational selection operator:

it iterates over the fine blocks in FineBlocks(Ri), and returns the fine block
with the values assignment matching subTuple.

CreateFineBlocks (Algorithm 1) groups tuples with the same values as-
signments for the variables in Us =

⋃
Cj∈neighbors(Ci)

subscope(Ci, Cj). In ad-
dition to grouping tuples, it keeps a counter storing the total number of living
tuples in the given fine partition. When a tuple is deleted during search, we use
the array tup-2-fb to update the count of living tuples in the tuple’s fine block.
Complexity : We use the following parameters in the complexity analysis. t is the
maximum number of tuples in a relation; k is the maximum constraint arity;
e = |C| is the number of constraints in the CSP; and |oi| is the size of the
largest subscope that a relation shares with a neighbor. The time complexity
of each of FineBlocks(Ri) and #fb-alive(Ri) is O(1). The creation of Us on
Line 3 of Algorithm 1 is O(e · |oi| · log(|oi|)) because a constraint may be adjacent
to all other constraints in the dual graph, and each edge requires inserting at
most |oi| variables into the set. In the worst case, the function FindEquivFB
performs k comparisons on t fine blocks to find an existing equivalent fine block.
Its complexity is thus O(t ·k). Computing the subTuple in Line 5 is O(k). Thus,



Algorithm 1 Creating the fine partition of a relation Ri

1: function CreateFineBlocks(Ri)
2: FineBlocks(Ri) ← ∅
3: Us ←

⋃
Cj∈neighbors(Ci)

subscope(Ci, Cj)

4: for each tuple τ ∈ Ri do
5: subTuple← πUs(τ)
6: fbcurr ← FindEquivFB(Ri, subTuple)
7: if fbcurr = nil then
8: fbcurr ← create a new fine block
9: FineBlocks(Ri) ← FineBlocks(Ri) ∪ {fbcurr}

10: #fb-alive(Ri) ← #fb-alive(Ri) + 1

11: fbcurr ← fbcurr ∪ {τ}
12: #tuples-alive(fbcurr) ← #tuples-alive(fbcurr) +1
13: tup-2-fb[τ ]← fbcurr

14: return FineBlocks(Ri)

CreateFineBlocks is O(e · |oi| · log(|oi|) + (t · (k+ k · t))) = O(k · t2 + e · |oi| ·
log(|oi|)). When arity(Ci) = |Us|, Lines 5–10 are bypassed. In this case, each
fine block of Ri has a single tuple. Thus, while the time complexity is large, the
cost of Lines 5–10 is incurred only when a fine block can potentially have more
than one tuple.

The space complexity for storing the fine blocks of Ri is O(t), incurred when
each fine block in Ri has one tuple. The array mapping tuples to the fine blocks to
which they belong is O(t), making the total space complexity O(t) per constraint.

4.3 Coarse Blocks

Below, we describe the creation of the coarse blocks, similar to the ones intro-
duced by Samaras and Stergiou [22]. Our design improves on theirs in that a) a
coarse block stores fine blocks and not tuples, thus, potentially reducing the size
of each coarse block, and b) we iterate over subscopes, rather than pairs of rela-
tions (e.g., in Figures 5 and 6, R1 has four neighbors but only three subscopes).

CreateCoarseBlocks (Algorithm 2) generates the coarse blocks of a re-
lation Ri for a subscope oi out of Ri’s existing fine blocks. It first retrieves
all the values of oi (Line 2). Then, it iterates over the fine blocks fbi of Ri,
adding each fbi to the appropriate coarse partition. When a coarse block does
not exist (Line 9), it is created (Line 10). The accessor function #fb-alive(cbi)
maintains the number of fine blocks alive in the coarse block cbi. This function
has the same name as #fb-alive(Ri) (function-name overload), which operates
in a similar manner.
Complexity : The table lookups on Lines 2 and 10 of CreateCoarseBlocks
are O(1). The table lookups for vlsoi on Lines 6-9 are O(log(t) · |oi|) if vlsoi is
represented as a binary search tree that uses vi as a key. Creating vi on Line 6
is O(|oi|). The for-loop is executed O(t) times. The complexity for Create-
CoarseBlocks is thus O(|oi| · t · log(t)).



Algorithm 2 Creating the coarse partition of a relation Ri given a subscope oi

1: function CreateCoarseBlocks(Ri, oi)
2: vlsoi ← all-subscopes[oi]
3: for each fbi ∈ FineBlocks(Ri) do
4: if #tuples-alive(fbi) = 0 then
5: continue
6: vi ← πoi(fbi)
7: if vlsoi [vi] does not exist then
8: vlsoi [vi]← create new rel-cb table

9: curr-rel-cb← vlsoi [vi]
10: curr-cb← curr-rel-cb[Ri]
11: if curr-cb does not already exist then
12: curr-cb← create new coarse block
13: curr-cb← curr-cb ∪ {fbi}
14: #fb-alive(curr-cb) ← #fb-alive(curr-cb) + 1
15: fb-subscope-2-cb[fbi, Ri, oi]← curr-cb

16: return vlsoi

The time complexity to get the specific coarse block to which a particular
fine block belongs provided a subscope is O(1) thanks to the fb-subscope-2-cb
table. The time complexity to query all fine blocks in a relation Rj that are
consistent with a coarse block corresponding to a relation Ri is O(1) thanks to
the back-pointer to the rel-cb table stored in each coarse block.

The space complexity for a set of coarse blocks for a single subscope and
relation is O(t) because each fine block is in exactly one coarse block for a given
subscope. The space complexity for all coarse blocks is then O(k · t · e2) because,
in the worst case, each relation is partitioned by every other relation in the
problem, and each coarse block is identified by a subtuple of size k. Additionally,
the fb-subscope-2-cb table requires O(e2 · t) space, as each tuple is in exactly one
coarse block.

Note that the coarse blocks have the same space complexity as the index-tree
data structure [16], but can be more efficiently queried.

5 Consistency Algorithm: From PerTuple to PerFB

Below, we describe PerFB and FB-SearchSupport, which improve PerTu-
ple and SearchSupport [16], respectively, for enforcing R(∗,m)C on a CSP.
Like PerTuple, PerFB takes as input Q and Φ. Φ is the set of all combina-
tions of m relations. The queue Q is initialized to all the combination-relations
pairs 〈ϕ,Ri〉 such that ϕ∈Φ and Ri∈ϕ. PerFB iterates over all fine blocks of
a relation Ri in a combination ϕ, calling FB-SearchSupport to ensure that
a fine block can be extended to a solution in the dual CSP induced by ϕ by
conducting a backtrack search that maintains support structures. In addition to
the static fine and coarse blocks, PerFB and FB-SearchSupport make use of
intermediate blocks, dynamically induced by the relations in ϕ. In this section,



we abuse the notations and use subscope(Ri, Rj), scope(Ri), neighbors(Ri) to
refer to subscope(Ci, Cj), scope(Ci), neighbors(Ci), respectively.

5.1 PerFB

PerFB (Algorithm 3) improves PerTuple [16] in two ways in order to reduce
the number of costly calls to FB-SearchSupport:

1. PerFB ensures that all fine blocks, rather than all tuples, in a relation
Ri can be extended to a solution over the relations of a combination ϕ of
size m (Line 11). This difference can reduce the number of calls to FB-
SearchSupport.

2. The number of calls to FB-SearchSupport can be further reduced by
exploiting the dynamically induced intermediate blocks.

We use the following additional notations to describe how PerFB operates.

– The accessor CB((Ri, fbi), oi) retrieves the coarse block of Ri containing the
fine block fbi given the subscope oi. It uses the table fb-subscope-2-cb.

– The accessor Support(Rj ,CB(Ri, fbi, oij)) retrieves the coarse block of Rj

containing the fine blocks consistent with fbi of relation Ri given oij =
subscope(Ci, Cj). To this end, it uses the back-pointer to the rel-cb structures
from the coarse block CB(Ri, fbi, oij) and accesses rel-cb[Rj ].

– The structure shared-fvars[l] stores, at the search level l in FB-SearchSupport
where Ri is ‘assigned’ a fine block, the variables in

⋃
Rj∈ϕ subscope(Ri, Rj).

In Figure 6, fb2 and fb3 are equivalent in ϕ = {R1, R2, R5} yielding ib2 =
{fb2, fb3} for R1 by {o1∪o3}. PerFB exploits such intermediate blocks. The key
to dynamically identifying them is the table equiv-FBs[Ri, vi], which is created
at each call to PerFB, and returns true or false, given a relation Ri ∈ ϕ, and a
subset of values vi from a fine block fbi. The subset vi is determined by projecting
fbi over the variables in shared-fvars[1] (Lines 10–12 in Algorithm 3). Any other
fine block of Ri with the same vi is necessarily in the same intermediate block.
Thus, before executing FB-SearchSupport, we check equiv-FBs[Ri, vi] to see
if a result for this particular vi was already found (Line 13). If so, the result
is reused. Otherwise, FB-SearchSupport is called, and its result stored for
future use (Line 14). Similar to PerTuple, when fbi has no support, its tuples
are marked as deleted, and the count of fine blocks alive in Ri is decremented
(Lines 15–19). Inconsistency is detected when all fine blocks in Ri are deleted
(Lines 20–21). The updates of Q are identical to those in PerTuple. The only
relation used to access equiv-FBs in PerFB is Ri. Other relations’ entries in
equiv-FBs are discussed in Section 5.2.

When |shared-fvars[1]| = arity(Ci), PerFB reduces to PerTuple because
no two fine blocks in Ri are equivalent. In this case, the discovery of equivalent
fine blocks is bypassed to save on CPU time and memory.

Finally, note that m = 2 does not require any calls to FB-SearchSupport.
For this reason, for m = 2, we use PW-AC [22] during preprocessing and PerFB
during search. Further, because, when m = 2, the intermediate blocks are exactly



Algorithm 3 Enforces R(∗,m)C using a queue Q and list Φ of combinations

1: function PerFB(Q,Φ)
2: while Q 6= ∅ do
3: 〈ϕ,Ri〉 ← Pop(Q)
4: deleted← false
5: Rf ← ϕ \Ri

6: for Rj ∈ ϕ do
7: equiv-FBs[Rj ]← ∅
8: for i = 1 to m do
9: shared-fvars[i]← ∅

10: shared-fvars[1]←
⋃

Rj∈Rf
subscope(Ri, Rj)

11: for each living fbi ∈ FineBlocks(Ri) do
12: vi ← π(shared-fvars[1])(fbi)
13: if equiv-FBs[Ri, vi] does not exist then
14: equiv-FBs[Ri, vi]← FB-SearchSupport(fpi, 〈Ri,Rf 〉, equiv-FBs)

15: if equiv-FBs[Ri, vi] = false then
16: for each tuple τ ∈ fbi do
17: Delete(τ,Ri)

18: deleted← true
19: #fb-alive(Ri) ← #fb-alive(Ri)− 1
20: if #fb-alive(Ri) = 0 then
21: return inconsistent
22: if deleted then
23: for each ϕ′ ∈ (Φ \ {ϕ}), Ri ∈ ϕ′ do
24: for each R′ ∈ (ϕ′ \ {Ri}) do
25: Q← Q ∪ {〈ϕ′, R′〉}
26: return consistent

the stored coarse blocks, checking whether or not a coarse block is consistent
can be done in constant time by checking the #fb-alive(Rj) of the coarse block
returned by Support(Rj ,CB(Ri, fbi, oij)), where Rj is the other relation in the
combination. Thus, intermediate blocks are not used.

5.2 FB-SearchSupport

FB-SearchSupport performs backtrack search with forward checking on the
subproblem induced, on the dual of the CSP P, by the relations in the combina-
tion ϕ, denoted as PDϕ. The variables of PDϕ are the relations in the combination
ϕ = {Ri} ∪ Rf . The ‘variable’ Ri is assigned the ‘value’ fbi in the search. FB-
SearchSupport is called with the argument (fbi, 〈Ri,Rf 〉, equiv-FBs). The
domain of a relation Rj ∈ Rf is the set of fine blocks (represented by their in-
dices) in the coarse block returned by Support(Rj ,CB((Ri, fbi), oij)), where oij
is the subscope of Ri and Rj . However, coarse blocks are not defined when Ri

and Rj are not neighbors (subscope(Ri, Rj) = ∅). Thus, the ‘domain’ of Rj is
either a) the set of living fine blocks from FineBlocks(Rj) when no relation
adjacent to Rj has been instantiated, or b) the set of fine blocks in the coarse



R2

R3

R4

R5

R1←fb1 R2←fb6 R3←fb12 R4←fb17 R5←fb19 

fb6 
fb7 
fb12 
fb13 
fb17 
fb18 
fb19 
fb20 

fb12 
fb13 
fb17 

fb19 
fb20 

fb17 

fb19 fb19 

Fig. 8: Backtrack search on fine blocks using coarse and intermediate blocks.

block Support(Rj ,CB((Rk, fbk), ojk)), where Rk, a relation adjacent to Rj , was
‘assigned’ fpk.

Figure 8 illustrates forward checking in FB-SearchSupport using the ex-
ample from Figure 5. Assume R4 contains only tuples (0, 0, 0) and (0, 1, 0),
and R5 only (0, 0) and (0, 1), denoted fb17, fb18, fb19, fb20, respectively. When
R2 ← fb6, forward checking removes fb18 from the domain of the dual vari-
able R4. As mentioned above, each fine block has an accessor index. The set of
fine blocks in a coarse block is represented by a sorted array of indices. Thus,
the ‘intersection’ of the current domain of R4 and cbx(R4), where cbx(R4) =
Support(R4,CB(R2, fb6), o24) is performed by iterating over the index of each
fine block in the current domain of R4, performing a binary search on the fine
block indices of cbx(R4), and removing, from the current domain of R4, the
indices of the fine blocks not listed in cbx(R4).

We further exploit the intermediate partitions in the subproblem PDϕ in FB-
SearchSupport in order to bypass the exploration of entire redundant subtrees
during search. While this mechanism did not yield significant savings in the
number of nodes visited in our experiments for finding one solution, it may
prove useful when we search for all solutions (i.e., AllSol). Fine blocks are
passed over for instantiation by observing the following:

1. When instantiating a relation Rj at level l, we initialize shared-fvars[l]←⋃
Rk∈Rf

subscope(Rj , Rk).
2. Prior to instantiating Rj ← fbj at level l in search, we check in equiv-FBs

whether or not an equivalent fine block was already instantiated. That is,
we check equiv-FBs[Rj , vj ] where vj = πshared-fvars[l](fbj). If the entry is
false, fbj need not be instantiated because an equivalent fine block in the
same intermediate partition was already found inconsistent on a previous
path in the same search. (Note that the entry cannot be true because search
terminates after finding the first solution.) When the domain of a future
‘variable’ is annihilated during forward checking for vj , equiv-FBs[Rj , vj ] is
marked as false.

3. When unlabeling a ‘variable’Rj at a level l (upon backtracking), equiv-FBs[Rj ]
and shared-fvars[l] are set to ∅.

Complexity. When deleting a tuple during search, it is important to main-
tain the correct counts of fine and coarse blocks. Each tuple deletion costs



O(e2) updates. Updates are constant time thanks to the fb-subscope-2-cb and
tup-2-fp tables. The cost of these updates is, in practice, greatly dwarfed by
that of FB-SearchSupport. The time complexity of PerFB is identical to
that of PerTuple, and dominated by the O(tm−1) search conducted in FB-
SearchSupport [16]. Additionally, PerFB performs at most as many calls to
FB-SearchSupport as PerTuple does, because

⋃
Rj∈ϕ\{Ri} subscope(Ri, Rj)

is the same as scope(Ri) in the worst case, and all fine blocks have a single tuple.
Insertion and retrieval of equivalent fine blocks for Ri is done in O(k · log(t))
time. Indeed, the entry for equiv-FBs[Ri] is a binary search tree with sub-tuples
of values vi as its keys, comparing each node in the tree is O(k), and O(log(t))
comparisons may be required when each fine block has only one tuple.

At each level of search in FB-SearchSupport, equiv-FBs holds O(t) fine
blocks, each represented by a sub-tuple of size O(k). Thus, an additional O(m ·
t ·k) space is required for PerFB to store the equivalent fine blocks at each level
of search in FB-SearchSupport.

6 Empirical Evaluations

We compare the performance of PerFB to that of PerTuple. We use the latest
strategy for enforcing R(∗,m)C obtained after removing redundant edges from
the dual graph [12], localizing consistency propagation to the clusters of a tree
decomposition of the CSP, and bolstering propagation between adjacent clusters
by the addition of constraint projections to the clusters’ separators [15]. (The
corresponding consistency property is denoted cl+proj-wR(∗,m)C.) Although
weakening the dual graph weakens consistency for m > 2, it also reduces the
number of combinations and, thus, cost. Importantly, localization of the con-
straints to clusters is an excellent ‘set up’ for testing intermediate partitions. For
both PerFB and PerTuple, we used m = {2, 3, 4, |ψ(cl)|} where m = |ψ(cl)| is
the number of constraints in a cluster in the tree decomposition and corresponds
to enforcing the minimality of each cluster .

In our experiments, we find the first solution of an instance by backtrack
search, using the dynamic variable ordering dom/deg and doing full lookahead
with relational consistency (i.e., cl+proj-wR(∗,m)C for m = {2, 3, 4, |ψ(cl)|}).
For the evaluation, we use benchmarks from the CSP Solver Competition that
are either hard to solve, thus requiring high levels of consistency, or are chal-
lenging for R(∗,m)C, thus demonstrating the effectiveness of partitioning.6 We
limit maximum processing time to 2 hours, and the maximum memory alloca-
tion to 8GB. All CPU times are reported in seconds and include all processing
operations, including data-structure creation, preprocessing, and search.

Table 1 lists the min, max, and mean values of the fine block sizes averaged
over all instances in a benchmark, as well as the size of the largest block in any

6 aim-(50, 100, 200), composed-(25-1-2, 25-1-25, 25-1-40, 25-1-80, 25-10-20, 75-1-
2, 75-1-25, 75-1-40, 75-1-80), dag-rand, dubois, geom, graphColoring-(hos, mug,
register-mulsol, sgb-book, sgb-games, sgb-queen), hanoi, lexVg, modifiedRenault,
pret, pseudo-aim, rand-(10-20-10, 3-20-20-fcd), renault, rlfapGraphsMod, rlfapScens-
Mod, ssa, super-queens, tightness0.9, varDimacs.



instance in the benchmark. Table 2 lists similar results for the coarse blocks.
Benchmarks not shown in Table 1 all have one tuple per fine block. While the
average size tends to be fairly small, some benchmarks show rather large val-
ues (e.g., modifiedRenault and tightness0.9). Even though the block sizes may
seem small, our technique remains beneficial because cluster-based R(∗,m)C (i.e.,
cl+proj-wR(∗,m)C) restricts the neighborhood of a relation by localization.

Table 1: Absolute and averaged size of fine blocks.
Absolute Averages

Benchmark Max Min Max Mean

geom 17 1.0 1.2 1.0
graphColoring-hos 3 1.0 2.0 1.0

graphColoring-sgb-book 12 1.0 7.7 1.1
hanoi 2 1.0 2.0 1.0

modifiedRenault 260 1.0 25.6 1.0
rand-10-20-10 2 1.0 1.3 1.0

renault 4 1.0 4.0 1.0
ssa 8 1.0 3.1 1.1

tightness0.9 38 1.0 28.1 1.0
varDimacs 16 1.0 3.4 1.1

Table 2: Absolute and averaged size of coarse blocks.
Abs Averages Abs Averages

Benchmark Max Min Max Mean Benchmark Max Min Max Mean

aim-50,100,200,pseudo 4 1.0 4.0 2.1 grCol-sgb-queen 17 10.3 10.3 10.3
cmpsed-25-1-2,25,40,80 10 1.0 10.0 8.0-8.4 hanoi 3 1.0 3.0 2.9

cmpsed-25-10-20 10 1.0 10.0 7.6 lexVg 875 1.0 484.7 3.6
cmpsed-75-1-2,25,40,80 10 1.0 10.0 8.3-8.5 modifiedRenault 48,720 1.0 48,720.0 7.9

dag-rand 108 1.0 91.6 2.9 rand-10-20-10 1,046 1.0 119.2 1.3
dubois,pret 2 1.0 2.0 1.5 rand-3-20-20-fcd 190 1.0 181.5 12.8

geom 20 6.4 20.0 15.0 renault 48,720 1.0 48,720.0 7.7
grCol-hos 6 1.0 3.3 3.3 rlfapGr/ScensMod 44,43 1.0 30.0,35.6 18.5,19.4

grCol-mug 3 1.0 2.5 2.4 ssa 31 1.0 14.7 2.1
grCol-register-mulsol 48 23.2 23.2 23.2 super-queens 49 15.6 17.6 16.4

grCol-sgb-book 12 1.0 7.7 7.5 tightness0.9 40 1.0 36.3 16.9
grCol-sgb-games 8 1.0 6.3 6.1 varDimacs 512 1.0 115.0 5.6

Table 3 summarizes our results. It reports the numbers of instances completed
(#Completed) by each algorithm, those completed only by one algorithm, and
those completed by both algorithms. It also reports the average CPU time, the
number of calls to SearchSupport or FB-SearchSupport, and their ratio.
For each value of m, the average CPU time is computed over instances com-
pleted by both algorithms. The best values are bolded. Note that the entry for
SearchSupport calls for m = 2 is blank because PerFB does not call FB-
SearchSupport in this case.

PerFB clearly wins across the board. While few instances are solved only by
PerTuple, many more are solved only by PerFB. The discovery and exploita-
tion of equivalent fine blocks during PerFB clearly greatly reduces the number
of calls to find a support, with the poorest reduction (m = 4) still reducing the
number of searches by over half. This saving is reflected in the reduction of CPU
time because the cost of searching for a support in a combination of m relations
is much larger than that of identifying and storing equivalent fine blocks (see
Section 5). Although not shown here, the average percentages of nodes visited
that were skipped in FB-SearchSupport thanks to the usage of intermediate
partitions are .01%, .04%, and .10% for m = 3, 4, and ψ, respectively. Thus, the



use of intermediate partitions during FB-SearchSupport is largely ineffectual
when finding a single solution to the subproblem. (However, it may be useful for
improving the performance of AllSol.)

Table 3: Summary of results for each tested value of m over 853 instances.
m = 2 m = 3 m = 4 m = |ψ(cl)|
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#Completed 546 557 604 616 566 589 597 615
. . . only by 5 16 1 13 2 25 8 26
. . . by both 541 603 564 589

Avg. CPU (sec) 538 227 521 362 472 314 669 458

SearchSupport calls (109) 86.4 0 88.1 26.1 52.7 19.6 24.7 8.1
ratio – 3.37 2.69 3.06

The scatter plots in Figure 9a and 9b compare the CPU time of PerFB and
PerTuple for solving all 853 instances for m = 2 and m = |ψ(cl)|. Marks below
the diagonal line represent instances where PerFB outperformed PerTuple.
Marks on the right (top) border denote instances that timed out only for Per-
Tuple (PerFB). Where PerTuple outperforms PerFB, the instances are
‘easier’ and the time difference is negligible for the majority of these (note the
logarithmic scale). On the other hand, for hard instances, PerFB is faster. This
difference is likely due to the cost of identifying the intermediate partitions in
PerFB; easy instances tend to not make use of the intermediate partitions, but
may still incur the cost of identifying them. The cumulative charts in Figures 9c,
9d, 9e, and 9f display the number of instances completed within a given time
by each algorithm, and show that PerFB outperforms PerTuple for every m.
Figure 9g compares PerFB for varying values of m. PerFB with m = 3, |ψ(cl)|
are the clear winners on the tested benchmarks.

We establish statistical significance by running a one-tailed paired t-test on
instances completed by both PerFB and PerTuple for each value of m. The
tests give p < .01 for each value of m. Thus, the two algorithms are extremely
unlikely to have equivalent performances. This result and those in Table 3 and
Figure 9 support our hypothesis that PerFB outperforms PerTuple.

7 Conclusion and Future Work
Given the importance of minimal CSPs in reasoning [9] and higher-level con-
sistencies in solving difficult problems [13], it seems important to improve the
performance of the techniques for enforcing them. In this paper, we extend the
work of Samaras & Stergiou [22] to improve the initial algorithm of Karakashian
et al. [16] for relational consistency by exploiting blocks of equivalent tuples at
various levels of granularity, and we empirically validate our approach.

We need to evaluate the effectiveness of the approach on AllSol, the al-
ternative algorithm for minimality [8, 14]. We believe that applying the ideas
explored in this paper to join computation in relational databases is a promising
next step [17], potentially highly rewarding in practice.



(a) m = 2 (b) m = |ψ(cl)|

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

35
0 

36
2 

37
4 

38
6 

39
8 

41
0 

42
2 

43
4 

44
6 

45
8 

47
0 

48
2 

49
4 

50
6 

51
8 

53
0 

54
2 

55
4 

m=2 
PerTuple 
PerFB 

(c) m = 2
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(d) m = 3
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(e) m = 4
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(f) m = |ψ(cl)|
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Fig. 9: Pairwise comparisons of PerFB and PerTuple for tested values of m.



References

1. C. Bessiere. Handbook of Constraint Programming, chapter Constraint Propaga-
tion, pages 29–83. Elsevier, 2006.

2. C. Bessiere, S. Cardon, R. Debruyne, and C. Lecoutre. Efficient Algorithms for
Singleton Arc Consistency. Constraints, 16 (1):25–53, 2011.

3. C. Bessière, K. Stergiou, and T. Walsh. Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence, 172:800–822, 2008.

4. B.Y. Choueiry and A.M. Davis. Dynamic Bundling: Less Effort for More Solutions.
In SARA 2002, volume 2371 of LNCS, pages 64–82, 2002.

5. B.Y. Choueiry and G. Noubir. On the Computation of Local Interchangeability in
Discrete Constraint Satisfaction Problems. In AAAI 1998, pages 326–333, 1998.

6. R. Dechter and P. van Beek. Local and Global Relational Consistency. Theor.
Comput. Sci., 173(1):283–308, 1997.

7. E.C. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In AAAI 1991, pages 227–233, 1991.

8. D. Geschwender, S. Karakashian, R. Woodward, B.Y. Choueiry, and S.D. Scott.
Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learn-
ing Techniques. In Pre-PhD Student Abstract and Poster Program of AAAI 2013,
pages 1611–1612, 2013.

9. G. Gottlob. On Minimal Constraint Networks. In CP 2011, volume 6876 of LNCS,
pages 325–0339, 2011.

10. M. Gyssens. On the Complexity of Join Dependencies. ACM Trans. Database
Systems, 11(1):81–108, 1986.

11. P. Van Hentenryck, Y. Deville, and C.-M. Teng. A Generic Arc Consistency Algo-
rithm and its Specializations. Artificial Intelligence, 57:291–321, 1992.

12. P. Janssen, P. Jégou, B. Nougier, and M.-C. Vilarem. A Filtering Process for
General Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using
an Associated Binary Representation. In IEEE Workshop on Tools for AI, pages
420–427, 1989.

13. P. Jeavons and J. Petke. Local Consistency and SAT-Solvers. JAIR, 43:329–351,
2012.

14. S. Karakashian. Practical Tractability of CSPs by Higher Level Consistency and
Tree Decomposition. PhD thesis, University of Nebraska-Lincoln, 2013.

15. S. Karakashian, R. Woodward, and B.Y. Choueiry. Improving the Performance
of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree
Decomposition. In AAAI 2013, pages 466–473, 2013.

16. S. Karakashian, R. Woodward, C. Reeson, B.Y. Choueiry, and C. Bessiere. A First
Practical Algorithm for High Levels of Relational Consistency. In AAAI 2010,
pages 101–107, 2010.

17. A. Lal and B.Y. Choueiry. Constraint Processing Techniques for Improving Join
Computation: A Proof of Concept. In International Symposium on Constraint
Databases (CDB 2004), volume 3074 of LNCS, pages 149–167, 2004.

18. A. Lal, B.Y. Choueiry, and E.C. Freuder. Neighborhood Interchangeability and
Dynamic Bundling for Non-Binary Finite CSPs. In AAAI 2005, pages 387–404,
2005.

19. C. Lecoutre, C. Likitvivatanavong, and R.H.C. Yap. A Path-Optimal GAC Algo-
rithm for Table Constraints. In ECAI 2012, pages 510–515, 2012.

20. C. Lecoutre, A. Paparrizou, and K. Stergiou. Extending STR to a Higher-Order
Consistency. In AAAI 2013, pages 576–582, 2013.



21. A. Paparrizou and K. Stergiou. An Efficient Higher-Order Consistency Algorithm
for Table Constraints. In AAAI 2012, 2012.

22. N. Samaras and K. Stergiou. Binary Encodings of Non-binary Constraint Satis-
faction Problems: Algorithms and Experimental Results. JAIR, 24:641–684, 2005.

23. R. Woodward, S. Karakashian, B.Y. Choueiry, and C. Bessiere. Solving Difficult
CSPs with Relational Neighborhood Inverse Consistency. In AAAI 2011, pages
112–119, 2011.

24. R.J. Woodward, S. Karakashian, B.Y. Choueiry, and C. Bessiere. Revisiting Neigh-
borhood Inverse Consistency on Binary CSPs. In CP 2012, volume 7514 of LNCS,
pages 688–703, 2012.


