N

N

The Balance Constraint Family

Christian Bessiere, Emmanuel Hébrard, George Katsirelos, Zeynep Kiziltan,
Emilie Picard-Cantin, Claude-Guy Quimper, Toby Walsh

» To cite this version:

Christian Bessiere, Emmanuel Hébrard, George Katsirelos, Zeynep Kiziltan, Emilie Picard-Cantin, et
al.. The Balance Constraint Family. CP: Principles and Practice of Constraint Programming, Sep
2014, Lyon, France. pp.174-189, 10.1007/978-3-319-10428-7_15 . lirmm-01067459

HAL Id: lirmm-01067459
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01067459
Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01067459
https://hal.archives-ouvertes.fr

The Balance Constraint Family

Christian Bessiere!, Emmanuel Hebrard?, George Katsirelos®, Zeynep Kiziltan?,
Emilie Picard-Cantin®, Claude-Guy Quimper®, and Toby Walsh®

1 CNRS, University of Montpellier, France, email: bessiere@lirmm.fr
2 LAAS-CNRS, Toulouse, France, email: hebrard @laas.fr
3 INRA, Toulouse, France, email: george.katsirelos @toulouse.inra.fr
4 DISI, University of Bologna, email: zeynep@cs.unibo.it
5 Université Laval, Canada, email: epicardcantin @petalmd.com,
claude-guy.quimper @ift.ulaval.ca
6 NICTA and University of New South Wales, email: toby.walsh@nicta.com.au

Abstract. The BALANCE constraint introduced by Beldiceanu ensures solutions
are balanced. This is useful when, for example, there is a requirement for solu-
tions to be fair. BALANCE bounds the difference B between the minimum and
maximum number of occurrences of the values assigned to the variables. We
show that achieving domain consistency on BALANCE is NP-hard. We there-
fore introduce a variant, BALANCE™ with a similar semantics that is only poly-
nomial to propagate. We consider various forms of BALANCE™ and focus on
ATMOSTBALANCE" which achieves what is usually the main goal, namely con-
straining the upper bound on B. We provide a specialized propagation algorithm,
and a powerful decomposition both of which run in low polynomial time. Exper-
imental results demonstrate the promise of these new filtering methods.

1 Introduction

In many scheduling, rostering and related problems, we want to share tasks out as
equally as possible. For example, in the nurse rostering problems in [14,4], we wish
for all nurses to have a similar workload. As a second example, in the Balanced Aca-
demic Curriculum Problem (prob030 in CSPLib.org), we want to assign time periods to
courses in a way which balances the academic load across periods. As a third example,
when scheduling viewing times on a satellite, we might want agents to be assigned a
similar number of observations. The BALANCE constraint introduced by Beldiceanu in
the Global Constraint Catalog7 [2] can be used to model situations like this where we
need to minimize the difference in the number of times different values, which typically
represent different resources, are used.

Beldiceanu proposes an automaton based filtering algorithm for the BALANCE con-
straint that uses a counter for each value. This requires exponential space and time
to work. Alternatively, Beldiceanu proposes a decomposition that reorders the vari-
ables and then computes the difference between the longest and the smallest sequences
of consecutive values. As we show, such a decomposition can hinder propagation.
We therefore revisit this global constraint. We prove that propagating the BALANCE

7 http://www.emn. fr/z-info/sdemasse/gccat

constraint completely is intractable in general. We then introduce BALANCE* with a
similar semantics that is only polynomial to propagate. We consider various forms of
BALANCE*, focusing on ATMOSTBALANCE™* which constrains the upper bound of B.
This can be used when we desire solutions to be as balanced as possible and thus want
to minimize B. We present a flow-based algorithm to maintain domain consistency on
ATMOSTBALANCE* and compare it empirically to a decomposition augmented with
implied constraints. The results show that the implied constraints significantly improve
the performance of the decomposition, whilst the filtering algorithm in turn further im-
proves performance.

The problem of ensuring a certain balance in the assignments of [X7, ..., X,] has
been previously studied with the SPREAD [7,12,11] and DEVIATION [13,11] con-
straints. Both constraints look at the deviation from the mean m = L 3" | X; with
balancing criteria D = > (X; —m)? and D = Y. | | X; — m|, respectively. The
constraints in the BALANCE family are, however, different and cannot be expressed
using SPREAD and DEVIATION. In particular, SPREAD and DEVIATION consider the
values taken by X;s, as opposed to the number of occurrences of each value. For in-
stance, for SPREAD and DEVIATION, an assignment [1, 2,2, 2, 2,2, 2, 2, 3] is better than
[1,1,1,2,2,2,3,3, 3] as the deviation from the mean is lower in the first. For the con-
straints in the BALANCE family, however, the second assignment is better because the
number of occurrences of 1,2, and 3 is perfectly balanced (3 occurrences each, B = ()
whereas it is unbalanced in the first (B = 6). This criterion is very important in appli-
cations where we want to balance the occurrence of values where each occurrence of a
value represents the use of a resource such as an employee or machine.

2 Background

A Constraint Network consists of a set of variables X', a domain D mapping each vari-
able X € X to a finite set of values D(X), and a set of constraints C. An assignment o
is a mapping from variables in X’ to values in their domains: for all X; € X we have
o(X;) € D(X;). We denote max(D(X)) by max(X) and min(D(X)) by min(X).
When o is implied from the context, we write X; = v instead of ¢(X;) = v and X
instead of o(X;). A constraint C'is a relation on a set of variables. An assignment saz-
isfies C iff it is a tuple of this relation. We use capitals for variables and lower case
for values. Constraint solvers typically use backtracking search to explore the space of
partial assignments. At each assignment, propagation algorithms prune the search space
by enforcing local consistency properties like domain consistency. A constraint C' on X
is domain consistent (DC) if and only if, for every X; € X and for every v € D(X;),
there is an assignment o satisfying C' such that o(X;) = v. Such an assignment is a
support. A CSP is DC iff all its constraints are DC. A constraint is disentailed iff there
is no possible support.

A decomposition of a constraint C' is a reformulation of C' into a conjunction of
constraints that is logically equivalent to C, potentially including extra variables. A de-
composition N7 is stronger than Ns if and only if propagation on N; detects a superset
of the inconsistent values detected by N, [3].

The domain of a variable X; is an interval iff |D(X;)| = max(X;) — min(X;) + 1.
Let {X1,...,X,} be a set of variables. We call occ(v) = [{i | X; = v}| the num-
ber of occurrences of the value v in this set. The constraint GCC is defined over the
variables [X7, ..., X,] and is parameterized by two sets of integers {l1,...,l,} and
{u1,...,un}. It ensures that for all j € [1,...,m] we have [; < occ(v;) < wu;.
Achieving DC on GCC is polynomial [10]. If the lower and upper bounds on the oc-
currences are given by variables [O1, . .., O,,], DC on the variables X; can be achieved
with the same computational complexity provided that the domains of the occurrences
are intervals.

3 The Balance Constraint Family

BALANCE bounds the difference in the number of occurrences of values assigned to
variables.

Definition 1 (BALANCE).

BALANCE([X1,...,X,],B) <
B= max occ(v) — min occ(v)
’UE{Xl,..‘,Xn} ’UE{XI,‘..,XH}

Notice that only values occurring at least once are considered. Depending on the appli-
cation, this may or may not be desirable. For instance, if we want to select a subset of
resources and distribute tasks among them in a balanced way, then BALANCE is suited.
However, if resources are already selected, then such a solution might be imbalanced as
some resources may receive no tasks. BALANCE also can do limited inference. It is hard
to know if a value will be used for sure until all variables are set. As a consequence,
filtering is weak. We therefore consider a variant, BALANCE* in which all values in a
set) are considered (without loss of generality, we shall assume that V = {1,...,m}).
We shall see that achieving DC on BALANCE is NP-hard, while it is polynomial for
BALANCE".

Definition 2 (BALANCE®).

BALANCE*(V, [X1,...,X,],B) <

B = maxocc(v) —minoce(v) A Vi X; €V
veV veEV

We also consider the variants of BALANCE and BALANCE* where B is only a lower
or an upper bound. By replacing “=" in Definition 1 and 2 by “>” and “<”, we
define the constraints ATMOSTBALANCE, ATLEASTBALANCE, ATMOSTBALANCE*
and ATLEASTBALANCE*. While ATMOSTBALANCE and ATMOSTBALANCE* ensure
that a solution is “balanced enough”, ATLEASTBALANCE and ATLEASTBALANCE*
ensure that the solution is “somewhat unbalanced”. The first two constraints are useful
when we seek balanced solutions and want to minimize B, whilst the last two are useful
when we cannot make B lower than a certain value or desire some level of imbalance.

Theorem 1. Enforcing DC on BALANCE takes polynomial time if the number of values
m is bounded.

Proof. We construct a REGULAR constraint [6] with states containing counters for ev-
ery value, i.e. a state is labeled with a tuple (c,,,...,c,,) where ¢,, is the number
of times the value v; € V was encountered. The unfolded automaton therefore has
O(n™) states. Enforcing DC then takes O(n™*1m) time. One can reduce the number
of counters by 1. Choose a value and delete its counter. After parsing the string, the
missing counter should have value n - sum of the other counters. Total complexity is
then O(n™m). o

Theorem 2. Enforcing DC on BALANCE is NP-hard.

Proof. Reduction from 3-SAT to the problem of finding a support of BALANCE. Given
a formula ¢ with n atoms 1,...,n and m clauses, we build a BALANCE constraint
finding the balance B over a set of (n + 1)(m + 1) variables. Let lf be the k-th literal
of the j-th clause of . We define the variables:

B=0 (3.1)
D(X1,;) = {0} Viel.m+1 (3.2)
D(X2,) = {1} Viel.n (3.3)
D(X3;) = {1j,17, 15} Vjel.m (3.4)
D(Xy;) ={n,...,1,1,...,n} Viel.(n—1)m (3.5)

The domains of variables (3.1) and (3.2) force every value to occur 0 or m + 1 times.
The existence of a model of ¢ implies that there is a solution of BALANCE. Indeed
atom and clause variables (3.3,3.4) can be assigned using only the n literals appearing
in the model. The total number of occurrences of these n values on the variables X ;
and X3 ; is n + m. Thanks to the (n — 1)m filler variables (3.5), we can ensure that
each value of these n values occurs exactly m + 1 times. Thus, O for B is consistent.
Now consider a solution of BALANCE. Since B = 0, every value occurs m+-1 times
or never. Since each X, ; must take a value, either the value ¢ or 7 must occur at least
once, hence m + 1 times. There are (n 4 1)(m + 1) variables in total and we identified
n + 1 values (counting the value 0) that must occur m + 1 times each. Therefore, the
other values must not occur at all. The model which contains the literal ¢ iff the value ¢
occurs m + 1 times, and 7 otherwise, is a model of . Indeed, for every clause c; € o,
since X3 ; (3.4) must be assigned a value, it follows that the model above has at least
one literal from c;. a

This proof also shows that ATMOSTBALANCE is NP-hard to propagate as it only re-
quires an upper bound on B. By comparison, it is easier to reason with BALANCE*,
ATLEASTBALANCE*, ATLEASTBALANCE, and ATMOSTBALANCE*. For the first three
constraints, we give complexity results in the form of an algorithm intended only to
prove polynomiality. For ATMOSTBALANCE®, we will present a practical filtering al-
gorithm.

Theorem 3. Enforcing DC on BALANCE*, ATLEASTBALANCE™ and ATLEASTBALANCE
takes polynomial time.

Proof. Consider a restricted case of BALANCE* where the least (most) occurring value
is required to be vjeqst (Umost) and must occur exactly ¢ times (¢ + b times). DC can
be enforced using GCC with D(O,,_,_,) = {c}, D(O,,,..,) = {¢+ b} and D(O,) =
[e, ¢+ b] for all values v € {Vjeast; Umost - To filter BALANCE™, one can test whether
a value v € D(X;) has a support in one of the restricted cases where b € D(B),
¢ € [0, — b, Vieast € [1,m], and vy, € [1,m]. Since there are O(|D(B)|nm?) such
cases, the filtering can be done in polynomial time.

For ATLEASTBALANCE, we set the domain D(O,,_. ,) = [1, ¢] to ensure that vjeqst
occurs at least once. We set D(O,,,,) = [c+ min(B), n] so that the balance is at least
min(B) and we set the domains of the other occurrence variables to O; € [0, n] for i ¢
{Vicast, Vmost +- There are O(nm?) restricted cases to test since vjeqst € [1, M), Vmost €
[1,m], and ¢ € [0,n — min(B)]. The restricted cases apply for ATLEASTBALANCE*
except that we set the domain D(O,,,..,) = [0, c] to allow the value vjeqst to occur O
times. a

4 Decompositions

We focus mainly on BALANCE and BALANCE”, as their decompositions can be used
also for the others by suitably constraining only the lower or upper bound of B. The
Global Constraints Catalog [2] proposes a decomposition of BALANCE that uses the
constraint SORTEDNESS ([X1, ..., X,], [Y1, ..., Ys]) to count the minimum and maxi-
mum length of stretches of equal value in the sequence [Y71, . . ., Y;,]. Then, it makes sure
that the difference between the length of the maximum and minimum stretch is equal to
B. We propose another decomposition of BALANCE using GCC. Let |J;_, D(X;) =

{1,...,m}:

GCC([X1,....X,],[01,...,0m]) &
P =max({0y,...,0,}) &

Q =min({01,...,0n}\ {0}) &
B=P-Q

As DC on BALANCE is NP-hard, it is no surprise that neither decomposition enforces
DC. However, Example 1 shows that, even if we assume perfect communication be-
tween the variables [Y7,...,Y,] and B in the decomposition using SORTEDNESS®,
then this decomposition is not stronger than the new decomposition using the GCC
constraint.

Example 1. m = 6,X; € {1,6},Xs € {2,5}, X3 € {3,4}, Y1 € {1,2,3,4},Y3 €
{2,3,4,5},Y3 € {3,4,5,6}, B = 1. The domains of occurrences variables O, are set
to {0, 1} by GCC, hence the variables P and () are both set to 1, and thus the constraint
is found inconsistent. However, the SORTEDNESS decomposition allows stretches greater
than 1. It is therefore consistent, irrespective of the reasoning used on Y; and B.

8 Such filtering can be obtained, for instance, through a REGULAR constraint.

Similar to BALANCE, the BALANCE* constraint can also be decomposed using the
GCC constraint. Let V = {1,...,m}.

vie{l,...,n}, X; €V
GCC([X1,...,X,],[01,...,0,]) &
P =max({01,...,0n}) &

Q =min({04,...,0,}) &

B=P—-Q
D(P) =[],
D(Q) = [07 L%J]

The domains of the variables P and () are based on the observation that the average
of the occurrence variables is exactly --. Consequently, the greatest occurrence should
be no smaller than the average and the smallest occurrence should be no greater than
the average. Example 2 shows that this decomposition does not maintain DC, even on
ATMOSTBALANCE™.

Example2. m = 4, B € [0,2], X; = X = 1, X3 € {1,2,3}, Xy € {1,3,4},
X5 € {1, 3,4}. After propagation, the domains of these variables remain the same and
we get:

01 S [2a3]7 02 € [07 1]) 03 € [0a3]7 04 € [0?2]7 Pe [2a3]7 Q S [O’ 1]

However, the only way for the occurrence variables to sum to 5 and have a balance of at
most 2 is to take their values in the multiset {2,2, 1,0} or {2, 1,1, 1}. In other words, a
value cannot occur three times and the value 1 should be removed from the domains of
Xg, X4, and X5.

In order to investigate the limits of a decomposition of BALANCE* based on the
GCC constraint, we consider another decomposition using the constraints together with
an automaton defined on the occurrence variables. Observe that we have perfect com-
munication from the X;’s domains to the O;’s bounds (through GCC) and perfect com-
munication between the O;’s and B (through REGULAR). However, we shall see that
this is still not sufficient to achieve DC on BALANCE™.

GCC([X1,...,Xn],[01,...,04]) &
REGULAR([Oy,...,0On, B],A)
The automaton A has O(n?) states. Non-final states are tuples (.S, ¢, p) which respec-
tively encode the current sum, the minimum value encountered, and the maximum value

encountered. The final state is denoted f. The starting state is (0, n, 0). The transition
function is:

[{84 x,min(q,), max(p,x)) if S+ z <n
5(<Saq7p>al’)—{f itS=nandez=p—gq

The total complexity to propagate the REGULAR constraint is O(mn?). This decompo-
sition is costly yet is still insufficient to maintain DC. Consider the following example.

Example 3. m = 4, B € [0,2], X1,Xs = 1, X3 € {1,2,3}, and X4, X5, X5 €
{1,3,4}. After filtering the REGULAR constraint, we obtain the domains O; € [2, 3],
O, € [0,1], O3 € [1,2],and Oy4 € [1,2] that do not allow the GCC to filter 1 from the
domain of X35.

In the rest of the paper, we will focus on the GCC decomposition of BALANCE®. In
addition to being cheaper than the REGULAR decomposition, it can be strengthened by
adding implied constraints, as we will show next.

4.1 Constraints Implied by BALANCE™

We can strengthen the GCC decomposition of BALANCE™* thanks to the following in-
equality: P 4+ (m — 1)Q < n. This is true because at least one value will occur P
times, and at most m — 1 values will occur () times, where n is the total number of
occurrences. We have) = P — B, hence P + (m — 1)(P — B) < n, that is:

mP—(m—-1)B<n “4.1)
In other words, we have an upper bound P < L%J + B. Consider again Example 2
which shows that the GCC decomposition of BALANCE* does not maintain DC. Due

to (4.1), we discover that P < WJ < LWJ = 2 and the upper bound

of P, O1, and O3 is reduced to 2. Therefore, the constraint GCC removes 1 from the
domains of X3, X4, and X5.

We can make a similar argument to obtain a lower bound on). We have: Q + (m —
1)P > n which is equivalent to:

mQ+ (m—1)B>n 4.2)

= 4
1 and the lower bound of @), O, and O3 are increased to 1, and the variable X35 is set
to 2.

It is possible to add implied constraints providing even stronger level of filtering.
The following constraints are implied by the decomposition whilst being stronger than
constraints (4.1) and (4.2).

Again in Example 2, thanks to (4.2), we discover that Q > Vf(”:nfl)B > L5_3XOJ —

m

ZmaxP B,0;))<n mePO 4.3)
j=1

Zmln Q+ B,05)) >n ZmaXQ 0,)) (4.4)
Jj=1 j=1

Indeed, consider the following example.

Example4. m = 7,X1,X2 € {1}, X3,X4 € {2}, X5,X6 € {3}, X7,Xs,Xg €
{4,5,6,7}, B € {1,2}. The domains of occurrences variables O1, O3, O3 are set to 2

and Oy, Os, Og, O7 to [0, 3] by GCC, hence the variables P and () are set respectively
to [0, 1] and [2, 3], and thus the GCC decomposition as well as constraints (4.1) and
(4.2) are DC. However, P = 3 is not consistent with the constraint (4.3) and Q) = 1 is
not consistent with the constraint (4.4). Therefore we can deduce B = 2.

Notice that these two extra constraints require a dedicated, albeit rather straightforward,
filtering algorithm because using SUM and MIN/MAX constraints would hinder prop-
agation. The algorithm proceeds by shaving the bounds of the variables P and (). For
instance, after having temporarily fixed P to its upper bound, we find a support for the
relation (Z;nzl max(P — B,0;)) < n by using the maximum value for B and the
minimum value for each O;. If this is not sufficient to keep the sum below n, then we
can deduce that P = max(P) is inconsistent. In Example 4, assuming P = 3, we have
P —max(B) = l,andZ;'L:lmax(P—B,Oj) =2+24+2+14+1+14+1>0.
Last, we can add another cheap implied constraint. If the number of values (m) does
not divide the number of variables (n), then B cannot be equal to 0. Conversely, if n =
mk, then B cannot be equal to 1. Indeed, suppose that the balance is 1. Furthermore,
suppose that a value occurs k£ — 1 times or less. Then since n = mk, at least one other
value occurs k + 1 times or more, hence the balance is greater or equal to 2. The same
contradiction arises if we suppose that a value occurs £+ 1 times or more. Therefore, the
value of B cannot be equal to 1. These two rules can be combined together as follows:

n n
1+ 2] - [2]#B 4.5)
m m

As we will show later in the empirical results, the implied constraints presented in
this section turn out to be very effective in propagating BALANCE™.

4.2 Special Cases of BALANCE*

There exist some special cases of the BALANCE* where we have a simple encoding that
does not hurt DC propagation. For instance, if B = n then all variables must be equal.
We can thus post: X; = X, for 1 < i < n. Another case is when m = 2. In this case,
the implied constraints (4.1) and (4.2) reveal that: P < ”;B ,Q > %. Since there
are two values, one occurs P times, and the other () times, and P + Q = n. Therefore,
we have P = # and) = %. It follows that the value of B must be even if and
only if n is even. Moreover, we can safely assume that the two values are 0 and 1 since
any binary domain can be mapped to these values. Therefore, the expression Y., X;
gives either P or (). Thus, we post:

Bmod2=nmod2 A ZXZ-E{”;B,”—;B}
i=1

There are other cases where the decomposition with the implied constraints is sufficient.

Proposition 1. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on BALANCE* if B < 1.

Proof. When B = 0, the implied constraints (4.1) and (4.2) entail that: P < %, Q >
%. This enforces the occurrence variables O,, for all v € V of the GCC decomposition
to be set to % Since P, and B are fixed, the constraint is now equivalent to GCC.

When B = 1, the implied bounds are:

elrtforstal el el

m m

This will enforce D(O,) = [| 2], [2]] forall v € V of the GCC decomposition. We
know that either m does not divide n or B = 1 is inconsistent. Since the latter case as
already been treated, we check the former. In this case, constraint (4.5) implies that a
balance of 0 is not consistent, hence D(B) = {1}. However, any assignment consistent
with GCC with the bounds given by P and @ will have a balance of 1. Therefore, in

either case, we achieve DC on BALANCE®. O
Another special case is as follows.

Proposition 2. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on ATMOSTBALANCE* if m < 2.

Proof. Letb = max(B). The implied constraints (4.1) and (4.2) put an upper bound on
P of L”’bJ + b, and a lower bound on () of [’%ﬂ — b. Hence:

m

b -b
max(P) — min(Q) < 2b— FH_-‘ + {n J
m m
<op MAE b gy 2
m m m

Now, suppose m < 2. Then max(P)—min(Q) < bandforany 1 < j < m, max(0;)—
min(O;) < b. Thus, any solution of the GCC also satisfies ATMOSTBALANCE*. O

To summarize the results of this section, we have shown that our decomposition
with the introduced implied constraints achieves DC on BALANCE* if B < 1, and on
ATMOSTBALANCE® if m < 2. Moreover, there exists another decomposition achiev-
ing DC on BALANCE* if m < 2. In the general case, however, the decomposition
does not achieve DC on BALANCE* and ATMOSTBALANCE* given that even a perfect
communication between the variables O;, P, Q) and B is not enough (see Example 3).

5 A Filtering Algorithm for ATMOSTBALANCE*

We present now a filtering algorithm that achieves DC on ATMOSTBALANCE*. The
algorithm (see Algorithm 1) proceeds in two steps. First, it finds a support by iteratively
reducing the balance of a support for GCC until it is minimal. Second, it computes
the union of the supports over each possible window of width max(B) for the values’
occurrences. The resulting union can be computed efficiently and corresponds to the
domain consistent values.

Algorithm 1: FilterAtMostBalance([V, [X1, ..., X,], B)

b < max(B);
D(X;) + D(X;) forall i = 1..n;
Find a support o for ATMOSTBALANCE™ whose balance is minimal and let ¢ be the
occurrence of the least occurring value;
Set min(B) to be the balance of the support o;
D(O;) + [q,q + b] for all i = 1..m;
2 filter GCC([D(X1),...,D(X,)],[O1,--.,0m]);
if no filtering occurred then return;
if filtering occurred because of a Hall set then k <+ 1;
else k +— —1;
D(0;) + [¢+k,g+b+ k] foralli=1..m;
filter GCC([D(X1),...,D(X})],[O1,...,0m]);
D(X;) < D(X;) UD(Xj) forall i = 1..n;

—

5.1 Finding a Support

To find a support, the algorithm computes a flow in a graph similar to the one used for
the GCC. There is one node X; per variable, one node v per value, a source s, and a
sink ¢. Each edge has a capacity [a,b], i.e. a lower capacity a and an upper capacity
b. There is an edge of capacity [0, 1] between s and each variable node X;. There is
an edge of capacity [0, 1] between each node X; and value v for v € D(X;). Finally,
there is an edge of capacity [0, n] between each value v and ¢. Let f(a, b) be the amount
of flow that circulates from node a to b. A maximum flow [1] from s to ¢ corresponds
to an assignment of the variables, i.e. X; = v <= f(X;,v) = 1. The value v
occurs exactly f(v,t) times in the assignment. To modify the assignment so that it
satisfies the ATMOSTBALANCE™ constraint, the algorithm finds a path in the residual
graph from the most occurring (or least occurring) value v to any value v’ such that
f(@',t) < f(v,t) — 2 (or such that f(v',t) > f(v,t) + 2). The algorithm pushes
a unit of flow along this path to modify the assignment. The algorithm repeats this
operation until no such path exists. If no such path exists and if the balance of the
current assignment is strictly greater than max(B), then no support exists. To prove
correctness, we show that if there is a solution of ATMOSTBALANCE?*, then there is a
sequence of such paths leading to it from any maximum flow. In other words, if no such
path exists, then the gap between the maximum and minimum flow going through an
edge for a value node to the sink node is a lower bound of B.

Lemma 1. Ifv is the most occurring value and there is no value v’ such that f(v',t) <
f(v,t) — 2 and that v can reach v’ in the residual graph and if w is the least occurring
value and there is no value w' such that f(w',t) > f(w,t) + 2 and that w can reach
w’ in the residual graph, then the balance of the current assignment is minimal.

Proof. We prove the contraposition. Suppose there is a flow f* whose corresponding
assignment has a smaller balance than the assignment given by f. Let the most occur-

ring and least occuring values in each flow be:

Umost = argmax f(v,t), Vleast = argmin f (v, t),
vey veY

U ost = argmax f*(v,t), Vogst = argmin (v, t).
veY veY

Necessarily, we have f(Umost; t) > f*(Uhost> t) V f (Vieast, t) < [* (V] qst,) Suppose
that f(vmost,t) > f*(Uh0st:), We have f(vmost, 1) > [(Vnosts t) = f* (Vmost, t).-
Since both flows have the same flow value, the difference of the vectors f* — f de-
scribes a circulation, i.e. a collection of cycles on which the flow circulates. Since
F*(Vmosts t) — f(Umost,t) < 0, the flow circulates from ¢ to v,,0s¢ in the circula-
tion which means that there is a value v’ for which the flow circulates from v’ to ¢
which implies f* (v, t) — f(v',¢) > 0. We conclude that f(vimost, t) > f*(U0sts 1) =
fr@'t) > f(V,t) thus f(vmoest,t) > f(v',¢) + 2. Finally, the edges (v/,) and (¢, v)
lie on the same cycle in the circulation. Hence there is a path that connects v to v’ in
the residual graph. A symmetric reasoning applies if we suppose that f(vjeast,t) <

f*(vl*easﬁ t) O

5.2 Filtering the Domains

First, we filter the lower bound of B to the balance value of the support found in the
first phase. The balance of this solution is, by Lemma 1, the maximum lower bound
on B. Next, we set ¢ = min, f(v,t) to be the frequency of the least occurring value.
Let b = max(B). We then run the filtering algorithm of the GCC with the domains
of the occurrence variables set to [¢, g + B]. If this does no filtering, then each value in
the domains belongs to a support where the occurrences of the values lie between g and
q + b. All these supports satisfy the ATMOSTBALANCE* and we are done. However, if
the filtering algorithm detects that the assignment X; = v is inconsistent for the GCC,
it is not necessarily inconsistent for ATMOSTBALANCE®. The assignment X; = v can
occur in a support where the maximum and minimum number of occurrences do not
belong to [q, ¢+ b]. Therefore, we need to test for a support with different domains such
as[¢g—1,q+b—1]and [¢+1, g+ b+ 1]. Fortunately, we do not need to test all possible
intervals of size b. A Hall set is a set of values H for which exactly (¢ + b) x |H]|
variable domains are subset of H, since q + b is the maximum allowed occurrences
for any value in H. Conversely, an unstable set is a set of values U for which exactly
q x |U] variable domains intersect U. From [8], an assignment X; = v is filtered either
because v belongs to a Hall set or the domain of X; intersects with an unstable set. The
following lemmas restrict search to two windows.

Lemma 2. [f H is a Hall set for a GCC with occurrences bounded by q and q + b and
k a positive integer, then the bounds q — k and q + b — k are inconsistent.

Proof. Since H is a Hall set when the upper bound is equal to ¢ + b, then there are
(q + b) x |H| variables whose domains are included in H. Therefore the total number
occurrences of values in H is at least (¢ + b) x |H|. Therefore at least one value must
occur at least ¢ 4 b times. This is a contradiction with the upper bound ¢ +b — k. O

The dual result for unstable sets can be obtained in a similar way (proof omitted):

Lemma 3. If U is an unstable set for a GCC with occurrences bounded by q and q + b
and k a positive integer, then the bounds q + k and q + 1 + k are inconsistent.

Using these two lemmas, we can show that we only need to check the window
[¢+1, ¢+ b+ 1] if the pruning was due to Hall sets only, the window [q — 1, ¢+ b— 1] if
it was due to unstable sets only, and no other window otherwise. The following theorem
follows.

Theorem 4. Enforcing DC on ATMOSTBALANCE* takes O(n*m) time.

Proof. First, the pruning on B is correct by Lemma 1. Since B is only an upper bound,
its own upper bound is never pruned. It follows that the pruning on B is complete and
a support is found if and only if the constraint is not disentailed. Now, consider Algo-
rithm 1. Let b = max(B) and g be the minimum occurrence of any value found in the
support (Line 1). We compute all consistent values for a GCC constraint where occur-
rence variables are bounded by [g, ¢ + b]. Suppose first that no pruning occurs. Then
every value is consistent for GCC. Each support is such that the difference between
maximum and minimum occurrence is less than or equal to b. Hence it is a support for
ATMOSTBALANCE*.

Suppose now that there is at least one Hall set. Then by Lemma 2, we know that a
GCC on the same variables but with all occurrence variables bounded by [g—k, g+b—Fk]
would be inconsistent. In other words, these values have no support for ATMOSTBALANCE*
on lower windows. By Lemma 2, since the GCC is consistent for the window [g, ¢ + 13],
there will not be any Hall set on higher windows. It follows that values inconsistent for
GCC on the window [g, ¢ + b] are inconsistent for ATMOSTBALANCE* only if they
are pruned because of an unstable set on [¢ + 1,¢ + b + 1] and all higher windows.
However, by Lemma 3, if there is an unstable set on the window [¢+ 1, ¢+ b+ 1], then
all higher windows will be inconsistent. It follows that values pruned by GCC on the
windows [g, ¢ + b] are inconsistent if and only if they are also pruned on the window
[g+1,q+ b+ 1]. The second case is when there is at least one unstable set when setting
the occurrence variables to the window [q, ¢+ b]. Symmetrically, values are inconsistent
if and only if they would be pruned also for the window [q — 1, ¢ + b — 1]. Finally, if
the window [g, ¢ + b] has both a Hall and an unstable set, then all other windows are
inconsistent.

The running time is bounded by the time to find a support. This requires finding
O(n — max(B)) augmenting paths, each with a depth-first search (DFS) in O(nm)
time. The two calls to the filtering algorithm of GCC take O(n®/?m) time. Finding
what caused the filtering uses a DFS in the transposed residual graph that marks nodes
that can reach the sink ¢. If the value v was filtered out of the domain of X; and that
v cannot reach the sink, then the filtering occurred because of a Hall set. Otherwise, it
occurred because of an unstable set. The total complexity is thus O(n?m). ad

In practice, the complexity can be considerably reduced. For instance, the support
o can remain valid for multiple consecutive calls to the filtering algorithm. In such a
situation, the running time is equivalent to executing the filtering algorithm of GCC
twice. If the support is no longer valid, it can usualy be updated rather than computed
from scratch. This involves finding much fewer than n — max(B) augmenting paths.

6 Experimental Results

We evaluate our DC algorithm for ATMOSTBALANCE™ and its decompositions on the
Balanced Academic Curriculum Problem (BACP) and a shift scheduling problem. All
experiments are carried out using Choco (version 2.1.5) running under Linux on a 3Ghz
processor with 12 GB of ram.

6.1 Balanced Academic Curriculum Problem

In BACP (prob030 in CSPLib.org), a set of n courses must be assigned to m time
periods, such that (1) a lower and an upper bound on the number of courses per period
must be respected; (2) some courses are prerequisite for others; (3) the load (i.e., the
sum of the credits of the assigned courses) of each period should be balanced.

The “standard” model [5] has a variable X; for each course ¢, whose value is the
period allocated to this course. A variable O; for each period j gives the load on this
period. In order to channel these two sets, {0, 1} variables Y; ; are introduced and con-
strained such that X; = j < Y;; = land O; = Y1, ¢(i) - Y; ; where ¢() stands
for the the number of credits of a course . Constraint (1) is modeled by a GCC con-
straint on {X1,...,X,}, constraints (2) are simple precedences between the corre-
sponding X; and X ;. For the objective (3), a criterion is minimized representing how
balanced the set {O1,...,O,,} is. In [5], the criterion is the maximum load. We here
consider the gap between the minimum and maximum load, denoted L(oo) in [13]. We
thus have three variables P,) and B with the constraints P = max({O1,...,0n}),
Q = min({04,...,0,,}) and B = P — @, and we minimize B.

We propose an alternative model which respects L(oco) using our BALANCE* con-
straint. We have the same variables {X, ..., X,,} with the same constraints for (1)
and (2). However, we do not need Y; ; and O;. We can directly post BALANCE* using
V ={1,...,m} and B on the multiset of variables containing ¢(¢) times each X.

We report the results obtained by running 7 models on three real instances involv-
ing 8, 10 and 12 periods. Standard is the first model described above. The following
four models correspond to the alternative model using BALANCE*. The first uses the
basic GCC decomposition for BALANCE* (Decomp.), the second uses the decom-
position with the implied constraints (4.1) and (4.2) (Implied), the third uses the
implied constraints (4.3) and (4.4) (Implied™), and the fourth uses the DC algorithm
(Balance™). Finally, in the two last models we balance the load using the DEVIATION
constraint [13] on the load variables O,. The way that DEVIATION is used differs in two
models. In the former model (Deviat .), following [13], O; variables are channelled
to the original X; variables via the Y; ; variables as done in the standard model. In the
latter model (Gcc+Deviat.), the O; variables are channelled to the duplicated X;
variables using a GCC. That is, we use a GCC and a DEVIATION constraint together to
balance the load. We then report the L(co) value of the best solutions provided by these
two models. Notice that (almost) perfectly balanced solutions exist for the instances we
used, thus the L(co) and deviation criteria are very close to each other.

As branching strategy, we use Impact Based Search [9] in all cases. Each instance is
run 20 times with a 900s cutoff by each method after randomly shuffling the variables so
that initial ties are broken randomly. We report in Table 1 the average observed balance

Table 1: Balanced Academic Curriculum Problem

Standard|| Decomp. Implied ||Implied™||Balance* || Deviat. ||Gcc+Deviat.
B |#|Time|| B |# | Time || B | # | Time || B | # | Time || B | #| Time || B | #| Time || B | #| Time

08{[16.3] - |{1.0{20| 116{[1.0120] 112({1.0{20| 120(|1.0[20| 174(|1.3]19| 388|[1.0]20 579
10(|15.2| - |1.0{20| 2626|[1.0|20| 2665|/1.0{20|21261||1.0/20{17509(|1.1|19|63100]|(1.6|18 9850
12([31.6] - ||2.1{15|19104/]2.0{15]21984|1.4|19|28999||0.0|2045503(|0.1|19| 2832|(0.2|18| 15023

(B = L(c0)) over the 20 runs, and the number of runs where optimality was proven (#).
Moreover, when possible, we report the average run time in milliseconds (Time) over all
completed runs (i.e., in which optimality was proven). In other words, CPU times can be
compared only when the same set of instances have been solved by all methods. As also
shown in [5], the standard model rarely solves the instances to optimality which renders
difficult the computation of averages for which optimality is proven by all methods. We
use bold to highlight the best results. When multiple methods solve the same instances,
we also highlight the best average CPU time.

We observe that the standard CP model has extremely poor performance, the solu-
tions found are all suboptimal. Notice that the criterion optimized by the DEVIATION
models is different. Several symmetric solutions for the L(oo) criterion have a differ-
ent deviation. Indeed, we can see that the Deviat . model, which is the same as the
standard model where the simple objective function is replaced by DEVIATION , greatly
outperforms the standard model. However, neither of the DEVIATION models is able to
find an optimal solution and prove it in every case. The models using the decomposi-
tions of the BALANCE™ constraint is very efficient on instances 08 and 10, however,
only the filtering algorithm is able to find an optimal solution and prove it within the
cutoff time in all cases.

6.2 Shift Scheduling

In order to better assess the advantages of the propagator over the different decompo-
sitions with or without implied constraints, we ran another series of tests (done in the
same conditions).

We consider a task assignment problem. We have m tasks per day. Each task re-
quires a separate worker so we have m workers. Over the n days of the schedule, we
want each worker to receive an assignment as balanced as possible. We have one vari-
able X; ; per worker ¢ and per day j. We make sure that on any day j, all tasks are per-
formed by distinct workers through an ALL-DIFFERENT constraint over the variables
[X1j,...,Xm,;|. We bound the balance of the tasks assigned to each worker ¢ by a
shared variable B which we minimize with ATMOSTBALANCE* over [X; 1, ..., X; »].
To make problems hard, we ensure that not all workers are available for every task every
day. Given a ratio 0 < a < 1, we randomly forbid [an?m/| triples (i, j, k) for which
we remove the value k from the variable X; ; (so that worker i cannot do task & on
day j). We make sure that ¢ € X ; for all 7 and j, to ensure a feasible solution exists.
We randomly generated instances for 6 to 8 workers/tasks (m) and 16 to 20 days (n).
For each pair (m, n), we generated 25 instances with a ratio of unavailability « ranging
from 0.1 to 0.58 by increments of 0.02.

Table 2: Shift Scheduling.

mon Decomp. Implied Implied+ Balance”
#| B | Time Bkt #| B |Time| Bkt |[#| B |Time| Bkt ||#| B | Time| Bkt

6 16| 8|1.92| 6634 87398(25/1.88 37 472(|125(1.88 35 423(|125(1.88 33 260
6 17(/11|2.16| 60637|1073765||25(2.16 78| 1123]|25(2.16 63 877||25|2.16 36 249
6 18||16| 3.2| 8869| 166146((25|1.84| 127| 1903||25|1.84| 114| 1617(|25|1.84 36 279
6 19| 8/3.24/106003|1352600((25|2.64| 607| 6983(/25(|2.64| 504| 6923(25|2.64 61 408
6 20| 7|3.04| 2302| 27839((25/2.80| 910| 10027||25|2.80| 734| 8221|[25|2.80| 169| 1085
7 16| 6|1.44| 32540| 476847|(25(1.44| 2361| 29767|[25(1.44| 2112| 28382|[25|1.44| 1828| 12383
7 17| 9|2.04|159790|1542016(|25]1.96| 8416| 90680(|25|1.96| 6697| 72236((25|1.96| 1576| 9378
7 18|| 3|2.36]135580(1439674|22|1.76|19432|236671|22|1.76]14300|183069 ||24|1.68| 13920| 90665
7 19|| 4|2.04| 80636| 804503(22|1.88|21981|230327(|22|1.88|13840(151262(|23|1.76| 6378| 36822
7 20| 2|2.72| 25779| 290430((23|1.56 (46267600434 |24|1.52|55260|715789|(23|1.68|18772|116406
8 16|| 8[2.12]128618(2109236(|122(0.92|17420(231594((23[0.72(34216(462257((25[0.44| 3797| 14999
8 17| 3|1.84|154183|1271700(|21|1.68|55193|716866]|21|1.68|49859|689151(|25|1.28|12900| 68059
8 18|| 1/1.76] 4033| 35971||15|1.56|56785|542326(|16|1.52|84438|745177||16|1.56| 5264| 15636
8 19]| 2|2.12{176092|1675776||24|1.40|64074|665200||24|1.40|51899|544990|(24|1.40|31092|201842
8 20|| 2|5.84{242901|2082063(|11|2.76|51041|468643||11(2.68|35712|316148|(15|2.32|12654| 52741

We compare the basic GCC decomposition (Decomp .), the decompositions with
implied constraints (Implied)and (Implied™), and the DC algorithm (Balance*).
We report the same statistics as for BACP, however, the averages are obtained over
the values of « instead of over random runs. A static variable and value ordering was
used so that the decrease in number of backtracks is only due to stronger propagation.
Consequently we also report the average number of backtracks, again only computed
on instances solved to optimality within the cutoff.

We can clearly see that the implied constraints have a huge impact for a very low
overhead. On the smaller instances, while the filtering algorithm saves backtracks, it is
almost twice as slow (in terms of backtracks per second) as either decomposition with
implied constraints. It is nevertheless almost always faster, but only by a small margin.
As the instances get larger, the benefits of the algorithm over the decompositions, and
of the stronger decompositions over the weaker ones, become more evident. Indeed,
the algorithm allows to prove optimality in 84% of the cases for m = 8, whereas
the decompositions (Decomp., Implied, Implied™) can only do it in 13%, 74%
and 76% of the cases, respectively. Moreover, still for m = 8 the objective value is
decreased 48%, 16% and 12% in average with respect to these three decompositions.

7 Conclusions

We have studied constraints for ensuring solutions are balanced. We first proved that en-
forcing domain consistency on the ATMOSTBALANCE and therefore on the BALANCE
constraint is NP-hard. This is due to the disjunctive choice in the semantics of BALANCE
that ignores a value which does not occur. We therefore introduced a variant, BALANCE*
with a similar semantics in which all values are considered. We provided a special-
ized propagation algorithm, and a powerful decomposition both of which work in low
polynomial time. Experimental results demonstrated the promise of these new filtering
methods.

References

10.

11.

12.

13.

14.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Networks Flows, Theory, Algorithms, and
Applications. Prentice Hall, 1993.

. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global Constraint Catalogue: Past,

Present and Future. Constraints, 12(1):21-62, 2007.

. C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh, editors, Hand-

book of Constraint Programming. Elsevier, 2006.

. M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, and F. Malucelli. Improving Quality and

Efficiency in Home Health Care: an application of Constraint Logic Programming for the
Ferrara NHS unit. In /CLP, pages 415-424, 2012.

. B. Hnich, Z. Kiziltan, and T. Walsh. Modelling a Balanced Academic Curriculum Problem.

In CPAIOR, pages 121-131, 2002.

. G. Pesant. A regular language membership constraint for finite sequences of variables. In

CP, pages 482-295, 2004.

. G. Pesant and J.-C. Régin. SPREAD: A Balancing Constraint Based on Statistics. In CP,

pages 460-474, 2005.

. C.-G. Quimper, A. Golynski, A. Lépez-Ortiz, and P. van Beek. An Efficient Bounds Consis-

tency Algorithm for the Global Cardinality Constraint. Constraints, 10:115-135, 2005.

. P. Refalo. Impact-Based Search Strategies for Constraint Programming. In CP, pages 557—

571, 2004.

Jean-Charles Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
IAAI pages 209-215, 1996.

P. Schaus. Solving Balancing and Bin-Packing problems with Constraint Programming. PhD
thesis, Universite Catholique de Louvain, 2009.

P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. Simplification and Extension of the
SPREAD Constraint. In Proc. of the 3rd Int’l Workshop on Constraint Propagation and
Implementation, held alongside CP-06, pages 77-91, 2006.

P. Schaus, Y. Deville, P. Dupont, and J.-C. Régin. The Deviation Constraint. In CPAIOR,
pages 260-274, 2007.

P. Schaus, P. van Hentenryck, and J.-C. Régin. Scalable Load Balancing in Nurse to Patient
Assignment Problems. In CPAIOR, pages 248-262, 2009.

