
HAL Id: lirmm-01067483
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01067483v1

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Constraints in Distributed Constraint
Satisfaction and Optimization

Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer

To cite this version:
Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer. Global Constraints in Dis-
tributed Constraint Satisfaction and Optimization. The Computer Journal, 2014, 57 (6), pp.906-923.
�10.1093/comjnl/bxt088�. �lirmm-01067483�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01067483v1
https://hal.archives-ouvertes.fr

Global Constraints in Distributed Constraint
Satisfaction and Optimization

Christian Bessiere1 Ismel Brito2 Patricia Gutierrez2 Pedro Meseguer2

1 University of Montpellier
bessiere@lirmm.fr

2 IIIA - CSIC, Universitat Autònoma de Barcelona
ismel@iiia.csic.es, patricia@iiia.csic.es, pedro@iiia.csic.es

Abstract

Global constraints are an essential component in the efficiency of centralized
constraint programming. We propose to include global constraints in distributed
constraint satisfaction and optimization problems (DisCSPs and DCOPs). We de-
tail how this inclusion can be done, considering different representations for global
constraints (direct, nested, binary). We explore the relation of global constraints
with local consistency (both in the hard and soft cases), in particular for general-
ized arc consistency (GAC). We provide experimental evidence of the benefits of
global constraints on several benchmarks, both for distributed constraint satisfac-
tion and for distributed constraint optimization.

1 Introduction
With the rise of Internet, there are more and more opportunities to solve problems in
a distributed form. Distribution implies that different problem parts are handled by
different agents, and these parts cannot be joined in a single agent for a centralized
solving. This new setting requires the adaptation of existing solving strategies or the
generation of new ones. Often, problems are solved by message passing [1].

The same trend is observed in constraint programming. A strong motivation for
distributed constraint solving is privacy. Constraints contain information that agents
may desire to keep hidden from other agents, which could be seen as competitors.
Usually, it is assumed that a constraint is known by the agents involved in it, but not by
the other agents [2]. Distributed constraint reasoning appears as a natural extension of
the usual centralized approach to constraint reasoning, keeping its solving capabilities
but removing the implicit assumption that every detail of the instance is known by the
solving agent. In the last years a number of distributed algorithms have been proposed:
ABT [2], AFC [3] ADOPT [4], NCBB [5], among others.

In centralized constraint reasoning, global constraints have been an essential com-
ponent of the efficiency of constraint solvers [6]. A global constraint C is a class

1

of constraints that all have the same specific semantics but that can involve any (un-
bounded) number of variables. The standard example is the all-different constraint, that
requires that all the involved variables must take a different value. You can apply this
constraint to sets of variables of any size. Each application is considered as a constraint
instance. The exploitation of the semantics associated with a global constraint allows to
design specialized propagators able to reach local consistency levels (typically general-
ized arc consistency), usually with lower complexity than generic propagators. Current
constraint solvers include a list of global constraints, with propagators already imple-
mented, available for the user to model and solve her problem [7].

Often, it is implicitly assumed that distributed constraint reasoning precludes the
use of global constraints. The usual assumption is that an agent knows the constraint
with each of its neighbors separately, and nothing else [2, 4]. These constraints are
obviously binary. However, this interpretation is too restrictive because there are dis-
tributed applications for which it is natural to use global constraints. For example,
let us consider a distributed meeting scheduling problem where agent a1 is trying to
find an appointment with agents a2 and a3. Agent a1 may easily infer that there is an
all-equal constraint between a1, a2 and a3.

When adding global constraints in distributed reasoning we obtain several benefits.
First, the expressivity of distributed constraint reasoning is enhanced because there are
relations among variables with a particular meaning that cannot be expressed as a con-
junction of binary relations (there are global constraints that are not binary decompos-
able). Second, the solving process can be done more efficiently. Local consistency can
be enforced more efficiently when global constraints are involved [6]. Hence, assuming
a solving strategy maintaining some kind of local consistency, the inclusion of global
constraints improves the efficiency of the solving process, requiring less computational
resources.

Once the interest of global constraints in distributed constraint reasoning is ac-
cepted, another question naturally follows: since some global constraints can be de-
composed in simpler constraints, what is more efficient, to leave the global constraint
as it was initially posted or to decompose it? If several decompositions are possible,
which offers the best performance? We provide some answers to these questions, ex-
ploring two kinds of decompositions (binary [8] and nested for contractible constraints
[9]) against the global constraint without decomposition, in two contexts: complete
distributed search with / without unconditional GAC maintenance [10].

Previous paragraphs have introduced what we consider as the two main contri-
butions of this paper: (i) the inclusion of global constraints in distributed constraint
reasoning, and (ii) the exploration of different representations for global constraints
in a distributed context, looking for the most efficient one. To perform this task, we
use state-of-the-art distributed constraint solving algorithms, which have already been
combined with some form of local consistency [10, 11, 12].

All what we have said equally applies to hard global constraints (global constraints
which should mandatorily be satisfied, satisfaction case) and to soft global constraints,
(global constraints which should be satisfied as much as possible, optimization case).
Although the satisfaction case can be seen as a special case of the more general opti-
mization one, the former uses different algorithmic techniques. For this reason, in the
following, after giving motivation (Section 2) and background for this work (Section

a2: uses resource r

a1: uses resource r

a3: uses resource r

alldifferent(a1, a2, a3)

!

!

a2: uses resource r

a1: uses resource r

a3: uses resource r

Figure 1: Job-shop scheduling problem, where agents a1, a2, a3 share the same re-
source r. To determine its starting time, agent a1 knows it must be different from a2
and a3. But because they use the same resource r, a1 can deduce that there is a global
all-different constraint among them.

3), we treat separately the inclusion of hard global constraints in distributed constraint
satisfaction (Section 4) and the inclusion of soft global constraints in distributed opti-
mization (Section 5). In Section 6 we terminate with some conclusions of this work.

2 Motivation

2.1 Satisfaction Case
In distributed constraint satisfaction (DisCSP) agents cooperate to find a global solu-
tion. It is assumed that each agent knows a part of the problem (the variables owned
by the agent and the constraints in which they are involved) but no agent knows the
whole problem. Often it is also implicitly assumed that constraints are binary, under
the idea that an agent relates with another agent independently of how it relates with
others. However, this view precludes the use of global constraints. In some situations
global constraints naturally appear in the distributed context.

First, a global constraint appears in DisCSP when an agent can infer the existence
of a global constraint from the task it performs and from the existence of some other
constraints (usually binary). For example, consider the distributed job-shop scheduling
problem. If agent a1 is trying to set up the starting time of its task which uses resource
r, with other two agents a2 and a3 which also use the same resource, a1 may deduce
that there is an all-different constraint between a1, a2 and a3. This example appears in
Figure 1.

Second, a global constraint appears in DisCSP when the model designer informs the
agents of the existence of that global constraint. This information is needed to properly
accomplish the intended task. For example, let us consider the task of a PC configura-
tion, which consists in selecting a motherboard and a number of options according to
the user desires. A motherboard for PC contains the CPU plus slots for memory cards,
slots for disks (hard disks and DVDs), and slots for any other device. Configuring a
PC means deciding which motherboard to choose and which devices are connected to
the motherboard slots, satisfying the user specification. A natural constraint model of
this problem contains variables for the motherboard and its slots. A solution means

selecting the values for these variables, such that all constraints are satisfied. There
are a number of technical constraints: only 1 motherboard, binary constraints between
the motherboard and the other PC elements (memories, disks, etc.) ensuring compati-
bility, at least one hard disk is needed (to perform system bootstrapping). In addition,
there are a number of global constraints among variables representing elements of the
same type (or connecting to the same slot type) establishing the desired minimum and
maximum number of elements according to the user specification (atleast and atmost
constraints). Other global constraints may exist on the total desired capacity of a par-
ticular element and on the maximum budget (sum constraint).

Following with this example, let us consider a multi-agent context. There are
several agents providers of motherboards (C1, ..., Cp), memories (M1, ...,Mq), disks
(D1, ..., Dr), and other devices (O1, ..., Os). We group agents in four sorts, c,m, d, o,
for providers of motherboards, memories, disks and other devices. Each agent has four
vectors of variables id[1...Ks], type[1... Ks], capacity[1...Ks], price[1...Ks]. Ks al-
lows enough elements for the maximum number of slots of sort s in any motherboard;
for motherboard providers these vectors have 1 element only. The obvious meaning
of these vectors is: id[i] is an item of type type[i] with capacity capacity[i] and price
price[i]. This is ensured by a quaternary constraint on id[i], type[i], capacity[i] and
price[i], for all i in 1..Ks. There is a special value empty for id[i] and type[i], which
forces capacity[i] and price[i] to be zero. Typically, id contains the item identifier, ac-
cording to the provider catalog, while type indicates the type of device or connection,
with the following values: motherboard, memory card, hard disk, DVD, microphone,
speakers, printer, ethernet, USB. In capacity it is stored the processor speed, the mem-
ory card size or the hard disk capacity. For type = DVD, capacity is 0.

We use the following global constraints in the modelling: atleast [t, v](Vars)
(value v has to appear at least t times in the assignment of the variables in Vars),
atmost [t, v](Vars) (value v has to appear at most t times in the assignment of Vars),
exactly [t, v](Vars) = atleast [t, v](Vars)∧atmost [t, v](Vars), sum(Vars) ≤ bound
(the sum of Vars is lower than or equal to bound), sum(Vars) ≥ bound (the sum of
Vars is greater than or equal to bound).

Let us consider the following PC specification: CPU speed ≥ 2.5 GHz; memory
between 8GB and 16GB; at most 2 hard disks; total disk storage ≥ 1TB; 1 DVD; at
least 1 ethernet connection; at least 1 printer connection; at least 2 USB; maximum
budget $500. This specification is translated into the following constraints:

1. Unary constraint on capacity[1] variable of motherboard providers:
capacity[1] ≥ 2.5GHz.
2. Only one motherboard is required:
exactly [1,motherboard](type vars of C1, ..., Cp).
3. Binary compatibility constraints: between motherboard providers and providers of
any other element.
4. Assuming that memory cards for any provider are standard with the same size
(4GB), memory specifications can be translated into number of cards among all mem-
ory providers:
atleast[2,memory card](type vars of M1, ...,Mq)
atmost[4,memory card](type vars of M1, ...,Mq)

M1 Mq

[, . . . ,] [, . . . ,]

.

type vars

memory providers
at least 2

memory

cards

at most 4

memory

cards

Figure 2: Memory configuration in a multi-agent context, as explained in the text.
M1, ...,Mq are memory provider agents. Each has a vector of type variables, con-
taining the memory cards to be used in the configuration. Following user spec-
ification, there are two global constraints, atleast[2,memory card](type vars of
M1, ...,Mq), atmost[4,memory card](type vars of M1, ...,Mq). Since these con-
straints are not binary decomposable, there is no set of binary constraints on the prob-
lem variables with the same meaning.

5. Constraints on the number of hard disks:
atleast[1, hard disk](type vars of D1, ..., Dr)
atmost[2, hard disk](type vars of D1, ..., Dr)
6. Exactly one DVD: exactly[1, DV D](type vars of D1, ..., Dr)
7. Total hard disk storage:
sum(capacity vars of D1, ..., Dr) ≥ 1TB
8. At least one ethernet connection:
atleast[1, ethernet](type vars of O1, ..., Os)
9. At least one printer connection:
atleast[1, printer](type vars of O1, ..., Os)
10. At least two USB ports: atleast[2, USB](type vars of O1, ..., Os)
11. Budget limited to $500:
sum(price vars of all providers) ≤ $500

Constraints 2 and 4–11 are global constraints on the number, capacity or price of
the PC components.

A final example comes from the sensor network application reported in [13]. There
are a set of sensors and a set of mobiles. The goal is to track each mobile with 3 sensors,
under some constraints of visibility (between sensors and mobiles) and compatibility
(among sensors). In the model of [13], agents are mobiles, containing three variables
for the three tracking sensors. If global constraints are allowed it becomes possible to
provide a more natural model of this problem with sensors as agents, under an atleast
global constraint requiring at least 3 sensors to track each mobile.

In summary, an agent may be related by one or several global constraints together
with a subset of the agents. This information can be deduced by the agent, or pro-
vided by an external source. Although binary constraints are the obvious choice in dis-
tributed constraint reasoning, some global constraints can also be used for modelling
and solving these problems. In some cases, global constraints are needed for expressiv-
ity requirements. By exploiting global constrains some efficiency improvements can

x1 = {a}
x2 = {a, b}
x3 = {a, b}

x1 x2 x3 µvar
a a a 2
a a b 1
a b a 1
a b b 1

soft-all-differentx1,x2,x3(a, a, a) = 2

x1 x2 µvar
a a 1
a b 0

x1 x3 µvar
a a 1
a b 0

x2 x3 µvar
a a 1
a b 0
b a 0
b b 1

soft-all-differentx1,x2 (a, a) + soft-all-differentx1,x3 (a, a) + soft-all-differentx2,x3 (a, a) = 3

Figure 3: (Top) soft-all-different soft global constraint with µvar violation measure;
(bottom) its binary decomposition

be achieved.

2.2 Optimization Case
A soft global constraint is a global constraint plus a violation measure that defines
the costs of value assignments based on the semantics of the global constraint and
the amount of violation. For example, the soft-all-different(T) is associated with the
violation measure µvar, defined as the number of variables in T that have to change
their value to satisfy that all values are different. Another violation measure for soft-
all-different is µdec, defined as the number of pairs of variables in T with the same
value [14].

As in the satisfaction case, binary soft constraints is a common assumption. How-
ever, not every soft constraint can be decomposed into an equivalent set of binary ones.
For example, consider the soft-all-different soft global constraint in Figure 3 defined
over variables x1, x2, x3. The cost of every value tuple is defined by the violation mea-
sure µvar. Observe that the tuple {x1 = a, x2 = a, x3 = a} has a different cost in the
global formulation —involving all variables— and in the binary formulation. Hence,
this constraint is not binary decomposable with the violation measure µvar.1 In gen-
eral, most soft global constraints are not binary decomposable, so working with their
global formulations is crucial for their effective inclusion in DCOPs.

3 Background
In this section we introduce all the necessary material on distributed reasoning and
global constraints, both in the case of satisfaction problems and in the case of opti-

1Notice, however, that the soft-all-different constraint is binary decomposable with the violation measure
µdec [14].

mization problems.

3.1 Satisfaction
CSP. A Constraint Satisfaction Problem (CSP) consists in finding solutions to a con-
straint network. A constraint network is a tuple (X ,D, C) where X = {x1, . . . , xn}
is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of finite domains such that
D(xi) is the value set for xi, and C is a finite set of constraints. A constraint C(T) ∈ C
on the ordered subset of variables T = (xi1 , . . . , xir(i)) specifies the set of tuples on
xi1 , . . . , xir(i) allowed by C(T). The set of allowed tuples can be defined by a table
in extension, or by any Boolean function. A solution is an assignment of values to
variables which satisfies every constraint. Solving a CSP is NP-complete.
Generalized Arc Consistency. Given a constraint C(T), a pair (xi, a), xi ∈ T , a ∈
D(xi) is generalized arc consistent (GAC) with respect to C(T) if there exists a tuple
t on T such that the projection t[xi] of t on xi is a, t is allowed by C(T), and for every
xj ∈ T, j 6= i, t[xj] ∈ D(xj); t is a support of a with respect to C(T). Variable xi is
GAC if all its values are GAC with respect to every constraint involving xi; a CSP is
GAC if every variable is GAC.
Global Constraints. A global constraint captures a relation with a specific semantics
that can apply on any number of variables [6]. C is a class of constraints defined
by a Boolean function fC whose arity is not fixed. Constraints with different arities
can be defined by the same Boolean function. For instance, all-different(x1, x2, x3)
and all-different (x1, x4, x5, x6) are two instances of the all-different global constraint,
where fall-different(T) returns true iff xi 6= xj ,∀xi, xj ∈ T . In [9], Maher has defined
the property of contractibility. A global constraint C is contractible iff for any tuple t
on xi1 , . . . , xip+1

, if t satisfies C(xi1 , . . . , xip+1
) then the projection t[xi1 , . . . , xip] of

t on xi1 , . . . , xip satisfies C(xi1 , . . . , xip) [9].
In [8], Bessiere and Van Hentenryck defined the property of decomposability with-

out extra variables. A global constraint C is binary-decomposable without extra vari-
ables iff for any instance C(T) of C, there exists a set S of binary constraints involving
only variables in T such that the solutions of S are the solutions ofC(T) [8]. S is called
a binary decomposition of C(T).
DisCSP. A Distributed Constraint Satisfaction Problem (DisCSP) is a 5-tuple (X , D,
C, A, φ), where X , D and C form a CSP whose variables, domains and constraints are
distributed among automated agents. In addition, A = {1, . . . , p} is a set of p agents,
and φ : X → A is a function that maps each variable to its agent. We make the usual
assumption that each agents owns exactly one variable, so agents and variables can be
used interchangeably. We also assume that a constraint C(T) among several variables
is known by every agent that owns a variable of T [2]. The set of constraints known by
agent i is written Ci. As in the centralized case, a solution is an assignment of values
to variables satisfying every constraint. DisCSPs are solved by the coordinated action
of agents, which communicate through messages. It is assumed that the delay of a
message is finite but random. For each pair of agents, message delivery follows the
sending order.
ABT. Asynchronous Backtracking (ABT) [2] is the reference algorithm for DisCSPs,
with a role similar to backtracking in centralized CSPs. ABT is purely asynchronous,

each agent makes its own decisions, informs other agents about them, and no agent has
to wait for the others’ decisions. An ABT agent computes a global consistent solution
(or detects that no solution exists) in finite time; its correctness and completeness have
been proved [2, 15].

ABT requires a total order among agents, inducing a direction in the constraints. A
binary constraint causes a directed link between the two constrained agents: the value-
sending agent, from which the link starts, to the constraint-evaluating agent, at which
the link ends. Each ABT agent keeps its own agent view and nogood store. The agent
view of a generic agent self is the set of values that self believes are assigned to higher
priority agents (connected to self by incoming links). Its nogood store keeps nogoods
as justifications of inconsistent values. A nogood is a conjunction of assignments xi =
a ∧ xj = b ∧ . . . xk = c ∧ xp = d that is inconsistent, that is, it violates at least one
constraint. Often a nogood is written in directed form, as xi = a ∧ xj = b ∧ . . . xk =
c ⇒ xp 6= d, where xp should be considered after all other nogood variables in the
search tree. The left-hand side (lhs) of the nogood is the expression that appears at the
left side of the implication, while the right-hand side (rhs) appears at the right of the
implication. Agents exchange four types of messages:

• OK?(i, j, val): i informs j that it has taken value val;

• NGD(j, i, ng): j informs i that it has detected nogood ng that involves i as the
last agent in the order;

• ADDL(i, j): i asks j to set up a link from j to i;

• STOP(i, j): i informs j that the empty nogood has been generated and there is
no solution.

Agents inform of their assignments by sending OK? messages to lower priority agents,
which try to accommodate their assignments to the values taken by higher priority
agents. If this is not possible, the lower priority agent sends a NGD message to the
lowest higher priority agent in the new nogood generated [2]. If an unconnected agent
appears in the nogood, it is requested to set up a new link using the ADDL message.

When ABT starts, each agent assigns its variable, and sends OK? messages con-
taining its assignment to its neighboring agents with lower priority. When self receives
an OK? message, self updates its agent view with the new assignment, removes no-
goods which are inconsistent with this new assignment and checks the consistency of
its own current assignment with the updated agent view.

When self receives a NGD message, it is accepted if the contained nogood is con-
sistent with self ’s agent view (values of the common variables in the nogood and in
self ’s agent view are the same). Otherwise, self discards the nogood as obsolete. If the
nogood is accepted, the nogood store is updated, causing self to search for a new con-
sistent value (since the received nogood forbids its current value). If an unconnected
agent i appears in the nogood, it is requested to set up a new link with self , by the mes-
sage ADDL (sent from self to i). From this point on, self will receive the values taken
by i. When self cannot find any value consistent with its agent view, either because of
the original constraints or because of the received nogoods, new nogoods are generated
from its agent view and each one is sent to the lowest agent in it, by NGD messages.

This operation causes backtracking. There are several forms of how new nogoods are
generated. In [15], when an agent has no consistent value, it resolves its nogoods fol-
lowing a procedure described in [16]. In this paper we consider this version. For a
more detailed description, the reader is addressed to the original source [2] (or consult
[15]).

3.2 Optimization
COP. A Constraint Optimization Problem (COP) consists in finding optimal solutions
to a cost function network. A cost function network is defined by (X ,D, C) where:
X = {x1, . . . , xn} is a set of variables. D = {D(x1), . . . , D(xn)} is a set of fi-
nite domains such that D(xi) is the value set for xi. C is a finite set of cost func-
tions, where every cost function C(T) 7→ N ∪ {∞} on the ordered subset of variables
T = (x1, . . . , xr) specifies the costs of every combination of values on T . When a cost
function C(T) is evaluated on a value tuple t we follow the notation: C(T)(t). For ex-
ample, cost functionC(x1, x2) evaluated on the tuple (a, b) is denotedC(x1, x1)(a, b).

The cost of a tuple t is calculated aggregating all individual cost functions evaluated
on t. Considering> as the lowest unacceptable cost, a solution is a tuple t containing a
complete variable assignment with cost lower than>. An optimal solution is a solution
with minimum cost. In some cases, > is assumed unbounded and it is not explicitly
stated.
Soft Global Constraints. A soft global constraint C is a class of soft constraints
whose arity is not fixed, which is determined by a hard global constraint plus a viola-
tion measure µ. Soft global constraints with different arities can be defined by the same
class. For instance, soft-all-different(x1, x2, x3) and soft-all-different(x1, x4, x5, x6)
are two instances of the soft-all-different soft global constraint. A soft global con-
straint C with measure µ is contractible iff µ is a non-decreasing function [17].2 A
soft global constraint C with violation measure µ admits a binary decomposition iff
for any instance C(x1, . . . , xp) of C, there exists a set S of binary soft constraints
involving only variables x1, . . . , xp such that for any value tuple t on x1, . . . , xp,∑
C(xi,xj)∈S C(xi, xj)(t[xi, xj]) = µ(t). For example, consider the following soft

global constraints:

• soft-all-different(T). This soft global constraint expresses that all variable values
in T should be different. Costs are defined by violation measures µvar and µdec
[14]: µvar is the number of variables in T that have to change their values to
satisfy that all values are different, while µdec is the number of pairs of variables
with the same value. The soft-all-different constraint is contractible and binary
decomposable with measure µdec, and contractible but not binary decomposable
with measure µvar .

• soft-at-most[k,v](T). This soft global constraint expresses that at most k vari-
ables in T should take value v. Costs are defined by violation measure µvar,

2Function f on a sequence is non-decreasing if f(a) ≤ f(b), for every sequence a and b such that a is
a prefix of b [17].

which is the number of variables in T that have to change to satisfy this con-
dition. The soft-at-most[k,v] constraint with µvar is contractible but not binary
decomposable.

Often, soft constraints are implemented by cost functions (assuming the weighted
model of soft constraints [18]). A cost function maps each possible value tuple of its
variables into natural numbers including zero and∞. Completety permitted tuples have
zero cost, completely forbidden tuples have∞ cost, and partially permitted/forbidden
tuples have intermediate costs. In this model, the goal is to find the assignment of
values to all variables with minimum aggregated cost, where aggregation is ordinary
addition. From now on, we use cost functions to implement soft constraints.
Soft Arc Consistency. Let us consider a COP: (xi, a) means xi taking value a, > is
the lowest unacceptable cost, C(xi) is the unary cost function on xi values, Cφ is a
zero-ary cost function that represents a lower bound of the cost of any solution. As
[19, 20], we consider the following local consistencies:

• Node Consistency*: (xi, a) is node consistent* (NC∗) if Cφ + C(xi)(a) < >;
xi is NC∗ if all its values are NC∗ and there is a ∈ D(xi) s.t. C(xi)(a) = 0; a
problem is NC∗ if every variable is NC∗.

• Generalized Arc Consistency*: (xi, a) is generalized arc consistency (GAC) wrt.
a non-unary cost function C(T), if there exists a value tuple t on T such that
(xi, a) ∈ t and C(T)(t) = 0; xi is GAC if all its values are GAC wrt. every cost
function involving xi; a problem is GAC∗ if every variable is GAC and NC∗.

In the following we refer to NC∗ and GAC∗ as NC and GAC, without asterisk. GAC
can be reached by shifting costs from the problem and deleting values not NC. Cost are
shifted with equivalent preserving transformations in the following way: first project-
ing the minimum cost from non-unary cost functions to unary costs functions, and
then projecting the minimum cost from unary cost functions into Cφ. After projection,
node inconsistent values are deleted. When a value is deleted in xi, GAC is rechecked
on every variable that xi is constrained with, so a deleted value might cause further
deletions. The systematic application of these operations (projection and deletion of
node inconsistent values) does not change the optimum (for details on projections and
optimality, see [19]).
DCOP. A Distributed Constraint Optimization Problem (DCOP) [4] is defined by
(X ,D, C,A, α) where X ,D and C define a COP and: A = {a1, . . . , ap} is a set of
agents; α : X → A maps each variable to one agent.

Agents communicate and coordinate while looking for the optimal solution through
messages. It is assumed that: messages are never lost; messages are delivered in the
same order they were sent; only one variable is mapped to each agent, so we use the
terms variable and agent interchangeably.

In many cases, these problems are solved using a branch-and-bound schema, usu-
ally enhanced with sophisticated methods to improve lower bound computation (main-
taining some forms of local consistency at each node). This facilitates pruning of the
current branch and removal of future values, which improves performance.

BnB-ADOPT+. BnB-ADOPT [21] is a reference algorithm for optimal DCOP solv-
ing. Agents are arranged in a depth-first search (DFS) pseudo-tree. A DFS pseudo-tree
is an arrangement of the constraint graph with the following conditions: (1) There is
a subset of edges, called tree-edges, that form a rooted tree covering all variables; the
remaining edges are called back-edges. (2) Variables involved in the same cost func-
tion appear in the same branch of that tree. BnB-ADOPT asynchronously performs a
depth-first-branch-and-bound search until an optimal solution is found. Agents may
have a parent, children (connected by tree edges of the pseudo-tree), pseudo-parent
and pseudo-children (connected by back-edges of the pseudo-tree) [4]. Each agent
self holds a context that is updated with message exchange. The context holds a set
of assignments involving self ancestors. Agents exchange the following messages:

• VALUE(i , j , val , th), –agent i informs child or pseudo-child j that it has taken
value val with threshold3 th–,

• COST(k , j , context , lb, ub) –agent k informs parent j that with context its bound
are lb and ub–,

• TERMINATE(i, j), –agent i informs child j that agent i terminates–

A BnB-ADOPT agent executes the following loop: it reads and processes all in-
coming messages and assigns a value. Then, it sends a VALUE to each child or
pseudo-child and a COST to its parent. When BnB-ADOPT terminates, each agent
has assigned the optimum value for its variable. We use the BnB-ADOPT+ version
[22], which saves redundant messages. BnB-ADOPT+ can also be generalized to han-
dle non-binary constrains. It is required that each global cost function is evaluated by
the last of its agents in the partial ordering of the pseudo-tree, while other agents have
to send their values to the evaluator [4, 21]. For more details, see [21, 22].

4 Global Constraints in DisCSPs
As argued before, there are cases where it is really natural to use global constraints in
distributed constraint reasoning. In that case, this raises the question of how to handle
a global constraint in distributed reasoning.

4.1 Representing Global Constraints
We consider three different ways to model the inclusion of a global constraint in a
DisCSP.

The first way to represent a global constraint, that we call the direct representation,
is when the instanceC(T) of the global constraintC is posted in the DisCSP as a single
constraint that allows all tuples on T satisfying C. In this representation, each agent
self in T simply includes C(T) in its constraint set Cself .

3The definition and usage of thresholds in BnB-ADOPT is complex and goes beyond this short summary.
The interested reader may consult [21].

x
1

x
2

x
3

x
4

x
1

x
2

x
1

x
2

x
3

x
1

x
2

x
3

x
4

alldifferent

alldifferent

alldifferent

alldifferent

x
1

x
2

x
3

x
4

!

!

! !
! !

Figure 4: Representations considered for the global constraint
all-different(x1, x2, x3, x4): (left) direct representation, (center) nested represen-
tation, (right) binary representation.

The second way we propose to represent a global constraint, called the nested rep-
resentation, is applicable to all contractible global constraints. The nested represen-
tation of a global constraint C(T) with T = (xi1 , . . . , xip) is the set of constraints
{C(xi1 , . . . , xij) | j ∈ 2 . . . p}. For instance, the nested representation of all-different
(x1, x2, x3, x4) is the set S = {all-different(x1, x2), all-different (x1, x2, x3), all-different(x1, x2, x3, x4)}.
Since all-different is contractible, the set of solutions of S is exactly the same as the
set of solutions of the original constraint. The idea behind the nested representation is
to use some knowledge about the semantics of the global constraint C(T) to provide a
model where the handling of the constraint can be more distributed. In this representa-
tion, each agent self in T adds all constraints of the nested representation of C(T) that
involve xself to its constraint set Cself .

The third way we propose to represent a global constraint, called the binary rep-
resentation, is applicable to all global constraints that are binary decomposable. The
binary representation of a global constraint C(T) is the set of constraints of its binary
decomposition. For instance, the binary representation of all-different(x1, x2, x3, x4)
is the set S = {x1 6= x2, x1 6= x3, x1 6= x4, x2 6= x3, x2 6= x4, x3 6= x4}. Since
all-different is binary decomposable, the set of solutions of S is exactly the same as
the set of solutions of the original constraint. In this representation, each agent self
in T includes all constraints of the binary decomposition of C(T) that involve xself
in its constraint set Cself . The three representations for the all-different(x1, x2, x3, x4)
global constraint appear in Figure 4.

4.2 Searching with Global Constraints
In this section, we use ABT as the basic search algorithm for DisCSP solving. It is
worth noting that the basic ABT algorithm, originally proposed for binary constraints,
can be easily generalized to handle constraints of any arity. Let C(xi, xj , xk) be a
ternary constraint. The last agent in the ABT ordering among the agents in the con-
straint is in charge of evaluating C(xi, xj , xk) when it is totally instantiated, while the
others have to send their values to that evaluating agent [23]. In the following, we as-
sume that this simple idea has been incorporated into ABT, so it can handle constraints
of any arity. Therefore, we can run ABT on any of the three representations presented
in Section 4.1.

In the direct representation, the instance C(T) of the global constraint C is posted

in the DisCSP as a single constraint. Thus, each agent self in T includes C(T) in its
constraint set Cself . If agent self is the agent of T with lowest priority in the ABT order,
it will be the one in charge of evaluating C(T). In this case, links are put between the
other agents in T and self .

In the nested representation, the global constraint C(T), with T = (xi1 , . . . , xip),
is represented by the set of constraints S = {C(xi1 , . . . , xij) | j ∈ 2 . . . p}. Thus,
each agent self in T includes all constraints of S that involve xself in its constraint set
Cself . Thanks to these extra constraints that are posted in addition to C(T), constraint
handling can be done in a more distributed way. One could think that the order of vari-
ables in T must coincide with the ABT priority order. This is not needed to guarantee
the correctness of the nested representation (although it is desirable for efficiency), as
explained in the following. Suppose a contractible global constraint C(x3, x4, x2, x1)
in a DisCSP where the ABT agent ordering is, from first to last, x1, x2, x3, x4. If
the order of the variables does not matter in C (for example, in the all-different con-
straint) we can reorder the scope as (x1, x2, x3, x4), following the ABT agent ordering.
The nested representation will contain the constraints C(x1, x2), C(x1, x2, x3), and
C(x1, x2, x3, x4), which is the best distribution for handling the constraint (evaluators
of the new constraints are intermediate agents in T because any intermediate agent is
the lowest priority agent of one of the constraints in the set S). If the order of the
variables matters in C (for example, in the increasing-by-one constraint, which is sat-
isfied iff each variable in C is one more than the previous variable in the scope of C),
we cannot reorder the scope of C. The nested representation will then contain the con-
straintsC(x3, x4), C(x3, x4, x2), andC(x3, x4, x2, x1), which will all be evaluated by
the agent x4 only, which is the lowest priority agent in each scope of the constraints of
the nested representation. Observe that for the (few) contractible constraints in which
the order of the variables in T matters, the fact that the ordering in T is different from
the total ordering of the agents does not cause any problem: the nested representation
remains correct and applicable in the same way. Previous discussion considers static
variable ordering. In the case of ABT with dynamic variable ordering [24], the same
arguments apply: At each time, one agent in the scope of each constraint will be the
one with lowest priority in the current ABT agent ordering. That agent is in charge
of evaluating that constraint. Changing dynamically the evaluator agent of each con-
straint may have impact in efficiency, but the nested representation remains correct. In
addition, nogoods can be sent more directly to the real cause of failure.

In the binary representation, the global constraint C(T) is represented by the set
of constraints of its binary decomposition. Thus, each agent self in T includes all
constraints of the binary decomposition of C that involve xself in its constraint set
Cself .

These three ways of representing a global constraint are equivalent from the se-
mantic point of view. So they produce the same solutions. However, they may cause
different ABT executions.

Let us consider the all-different(x1, x2, x3, x4) of Figure 4 with the following do-
mains D(x1) = {a, c, d}, D(x2) = D(x3) = {a, b}, D(x4) = {a, b, c, d} and lets
analyze how ABT runs on the three representations (since ABT may perform different
executions, we follow one possible execution for each representation). ABT ordering
is x1, x2, x3, x4 and values are chosen lexicographically. The ABT trace on the three

representations appears in Figures 5-6.

x1 x2 x3 x4

x1 ← a x2 ← a x3 ← a x4 ← a
ok? to x4 ok? to x4 ok? to x4

ngd to x3

x1 = a ∧ x2 = a⇒ x3 6= a
x4 ← a

x3 ← b
ok? to x4

addl to x1,x2

ngd to x3

x1 = a ∧ x2 = a⇒ x3 6= b
x4 ← a

ngd to x2

x1 = a⇒ x2 6= a
x3 ← a
ok? to x4

addl to x1 ngd to x3

x2 ← b x1 = a ∧ x2 = a⇒ x3 6= a
ok? to x3, x4 x4 ← a

ngd obsolete
ok? to x4

ngd to x3

x1 = a ∧ x2 = b⇒ x3 6= a
x4 ← a

x3 ← b
ok? to x4

ngd to x3

x1 = a ∧ x2 = b⇒ x3 6= b
x4 ← a

ngd to x2

x1 = a⇒ x2 6= b
x3 ← a
ok? to x4

ngd to x1 ngd to x3

⇒ x1 6= a x1 = a ∧ x2 = b⇒ x3 6= a
x2 ← a x4 ← a
ok? to x3, x4

x1 ← c ngd obsolete
ok? to x2, x3, x4 ok? to x4

ngd to x3

x1 = c ∧ x2 = a⇒ x3 6= a
x4 ← a

x3 ← b
ok? to x4

x4 ← d

Figure 5: Trace of ABT in the example, with three representations of all-different:
direct.

Direct representation: Variables x1, x2, x3 assign the first values in their domains,
informing repeatedly to x4, which backtracks repeatedly to x3, this to x2 and this to
x1, until value a is removed unconditionally from D(x1). Then, x1 takes value c and
informs x4, x2 and x3. They all have value a. Then, x4 will backtrack on x3 which
will change its value to b and will inform x4, which will take value d. At this point, all
constraints are satisfied, the network is quiescent, a solution (c, a, b, d) has been found.

Nested representation: Variables x1, x2, x3 assign the first values in their domains.
Variable x1 informs to variables x2, x3 and x4. Variable x2 informs to variables x3
and x4. Variable x3 informs to variable x4. This causes that x3 and x4 start sending

x1 ← a x2 ← a x3 ← a x4 ← a
ok? to x2, x3, x4 ok? to x3, x4 ok? to x4

x2 ← b ngd to x2 ngd to x3

ok? to x3, x4 x1 = a⇒ x2 6= a x1 = a ∧ x2 = a⇒ x3 6= a
x3 ← a x4 ← a
ok? to x4

ngd obsolete ngd obsolete ngd to x3

ok? to x3 ok? to x4 x1 = a ∧ x2 = b⇒ x3 6= a
ngd to x2 x4 ← a
x1 = a⇒ x2 6= b
x3 ← a
ok? to x4

ngd to x1 ngd to x2 ngd to x3

⇒ x1 6= a x1 = a⇒ x2 6= b x1 = a ∧ x2 = b⇒ x3 6= a
x2 ← a x3 ← a x4 ← a
ok? to x3, x4 ok? to x4

x1 ← c ngd obsolete ngd obsolete ngd to x3

ok? to x2, x3, x4 ok? to x3 ok? to x4 x1 = a ∧ x2 = a⇒ x3 6= a
x4 ← a

ngd obsolete ngd to x3

ok? to x4 x1 = c ∧ x2 = a⇒ x3 6= a
x3 ← b x4 ← a
ok? to x4

ngd obsolete x4 ← d
ok? to x4

x1 ← a x2 ← a x3 ← a x4 ← a
ok? to x2, x3, x4 ok? to x3, x4 ok? to x4

x2 ← b x3 ← b x4 ← b
ok? to x3, x4 ok? to x4

ngd to x2 x4 ← c
x1 = a⇒ x2 6= b
x3 ← b
ok? to x4

ngd to x1

⇒ x1 6= a
x2 ← a
ok? to x3, x4

x1 ← c
ok? to x2, x3, x4

x4 ← d

Figure 6: Trace of ABT in the example, with three representations of all-different:
nested (top), binary (bottom).

backtracking messages to x2 and x3 respectively. At some point, x2 backtracks to
x1 removing unconditionally value a. Then, x1 takes value c, x2 and x3 had already
value a, x3 changes to b and x4 takes value d. The network is quiescent, the same
solution (c, a, b, d) has been found. Differences with the direct representation come
from the number of constraints (1 in direct, 3 in nested) which determine the number
of backtracking operations that could be performed simultaneously. In this sense, the
nested representation does more work in parallel than the direct one.

Binary representation: All variables assign value a and inform their lower priority
agents in the binary constraints. Variables x2 and x3 change to b, and x4 changes to c.
There is a backtrack message from x3 to x2, which takes value a, and another backtrack
from x2 to x1, which now takes value c. At this point x4 takes value d. Again, the
network is quiescent, the same solution (c, a, b, d) has been found. Differences with
the direct and nested representation come from the number of constraints (1 in direct, 3

in nested, 6 in binary). This indicates the number of concurrent backtracks performed
and also the number of variables which could adjust its value (the last variable in each
constraint). In addition, the binary representation allows to backtrack to the real culprit
of the inconsistency (to change x1 value from a to c binary needs 2 backtrack only,
while nested needs 7 and direct needs 10).

4.3 Propagating Global Constraints
Independently of the way a global constraint is included into ABT, this algorithm can
be enhanced by maintaining some form of local consistency during search. This was
already investigated in [10], where limited/full forms of arc consistency (AC) were
maintained during ABT execution for binary DisCSPs. While in [10] a limited form
of AC causing unconditional deletions and full AC causing conditional deletions were
considered, in this paper we maintain a limited form of GAC that causes unconditional
deletions only. Clearly, this limited GAC, that from now on we call UGAC, is less pow-
erful than full GAC. However, maintaining full GAC in the distributed context would
cause a substantial load of extra communication which could overcome the benefits of
domain pruning.

The basic idea is as follows: if during ABT execution agent self receives a NGD
message justifying the removal of value v with a nogood with an empty left-hand side
(see [2, 16, 10] for details), v can be unconditionally deleted fromD(xself). A deletion
on D(xself) is propagated maintaining UGAC on the constraints connecting xself to
other variables, which may cause further deletions. Since the initial deletion is uncon-
ditional, deletions caused by the propagation are also unconditional.

To maintain UGAC during ABT search, a number of modifications is needed over
the basic ABT algorithm. They are:

• The domain of variables constrained with self by constraints in Cself has to be
represented in self .

• Only the agent owner of a variable can modify its domain (i.e., only self can
modify D(xself)). If agent i deduces that a value has to be deleted in D(xj), it
does nothing because that deduction will be done in j at some point.

• There is a new type of message, DEL, to notify of value deletions. DEL(self , k, v)
–informing that self removes v from D(xself) – is sent from self to every agent
k constrained with it.

• All constraints are made GAC before ABT starts, by a suitable preprocess. Its
pseudocode appears in Figure 7.

These changes do not modify ABT correctness and completeness. Regarding cor-
rectness, the only UGAC action is to remove values that will not be in any solution, so
correctness is maintained. Regarding completeness, we consider two cases: (i) remov-
ing a value that is not currently assigned, and (ii) removing a value that is currently
assigned. Case (i) trivially maintains completeness. Case (ii) also maintains com-
pleteness, because the asynchronous ABT allows agents to change their value at any
time.

procedure GAC-preprocess() /* quiescence: all constraints are GAC */
for each C(T) ∈ Cself do GAC(self , C(T));
while (¬end) do /*if end is true, empty domain detected */
msg ← getMsg();
switch(msg.type)
Del: ValueDeletedPre(msg.sender ,msg.value);
Stop: end← true;

procedure ValueDeletedPre(j, a) /* j has deleted value a*/
D(xj)← D(xj)− {a};
for each C(T) ∈ Cself s.t. xj ∈ T do GAC(self , C(T));

procedure GAC(self, C(T))
if revise(xself , C(T)) then

if D(xself) = ∅ then sendMsg:Stop(system);
else Delval ← set of deleted values in D(xself) by revise(xself , C(T))

for each v ∈ Delval and xk ∈
⋃
T |C(T)∈Cself , k 6= self do

sendMsg:Del(self, k, v);

Figure 7: GAC preprocess

Differences between ABT-UGAC and ABT are (see Figures 8-9):

• ABT-UGAC. It uses the DEL message, which notifies that a value has been
deleted in some domain. If self receives that message, it calls the ValueDeleted
procedure.

• Conflict. If self accepts a NGD message containing a nogood with empty
left-hand side, it calls the DeleteValue procedure.

• ValueDeleted(j, a). Agent j has deleted value a fromD(xj) and sent a DEL
message to self . Agent self registers this in its D(xj) copy, and enforces AC
on all the constraints including self and xj in their scope. If the value of self is
deleted in this process, the CheckAgentView procedure is called (looking for
a new compatible value; if none exists it backtracks). Deletions in D(xself) are
propagated.

• DeleteValue(a, j). Agent self must delete its currently assigned value a be-
cause a nogood with empty left-hand side has been received from agent j. Value
a is deleted from D(xself). If, as a consequence of a’s deletion, D(xself) be-
comes empty, there is no solution so a STOP message is produced. Otherwise,
a’s deletion is notified to all agents constrained with self except j via DEL mes-
sages, and the procedure CheckAgentView is called.

• Backtrack. After self computes and sends a new nogood, it checks if its left-
hand side is empty. If so, self knows that the value that forbids the new nogood
will be removed in the domain of the variable that appears in the right-hand side
of the new nogood. Then self calls ValueDeleted, as if it had received a
DEL message.

procedure ABT-UGAC() /* ABT with unconditional GAC */
Γ = Γ−0 ∪ Γ+

0 ; Γ− = Γ−0 ; Γ+ = Γ+
0 ;

myV alue← empty; end← false; CheckAgentView();
while (¬end) do
msg ← getMsg();
switch(msg.type)
Ok?:ProcessInfo(msg); AddL:SetLink(msg);
Ngd:Conflict(msg); Stop: end← true;

new Del: ValueDeleted(msg.sender,msg.value);

procedure Conflict(msg)
if Coherent(msg.nogood,Γ− ∪ {self}) then

new if lhs(msg.nogood) = empty then
new DeleteValue(myV alue,msg.sender);

else
CheckAddLink(msg);
add(msg.nogood ,myNogoodStore);
myValue ← empty;
CheckAgentView();

else if Coherent(msg.nogood, self) then
sendMsg:Ok?(msg.sender,myV alue);

Figure 8: The ABT-UGAC algorithm (part 1); only procedures with new lines (new)
with respect to ABT are shown. Γ− and Γ+ are higher and lower priority agents con-
nected to self ; Γ−0 and Γ+

0 are those sets at the beginning of execution.

The difference that a global constraint instance C(T) makes with respect to any
other generic constraint is when executing the GAC procedure. Since C(T) has a well-
defined semantics, it is often possible to generate specific propagators able to achieve
the required level of local consistency polynomially whereas the generic propagator
based on table lookups is exponential in the size of T . In particular, we have imple-
mented the popular flow-based propagator for the all-different constraint, following
[25], which reduces propagation to matching theory.

Considering the running example of Figure 4 with the domains D(x1) = {a, c, d},
D(x2) = D(x3) = {a, b}, D(x4) = {a, b, c, d}, after applying GAC-preprocess
on the direct or nested representations the following values are deleted: (x1, a)(x4, a)(x4, b).
However, this preprocess does not filter any value in the binary representation. From
this on, ABT-UGAC on the direct and nested representations has a relatively simi-
lar performance: the first value of x1 and x2 are part of the solution, a backtracking
from x4 causes x3 to change to value b (direct) while x3 is able to adjust its value
to b (nested). ABT-UGAC on the binary representation does the same execution as
described in Section 4.2.

4.4 Experimental Results
To evaluate the impact of global constraints in DisCSPs, we compare ABT with and
without UGAC on random DisCSPs created as follows. We first generate random bi-
nary instances using model B [26], and then add some global constraints. In model B,

new procedure ValueDeleted(j, a) /* j has deleted a from D(xj) */
new D(xj)← D(xj)− {a};
new for each C(T) ∈ Cself s.t. j ∈ T do GAC(xself , C(T));
new if myV alue 6∈ D(xself) then
new myV alue← empty; CheckAgentView();

new procedure DeleteValue(a, j) /* self deletes a from D(xself) */
new D(xself)← D(xself)− {a};
new if D(xself) = ∅ then sendMsg:Stop(system);
new else
new for each k ∈ Γ0, k 6= j do sendMsg:Del(self, k, a);
new CheckAgentView();

procedure Backtrack()
newNogood← solve(myNogoodStore);
if (newNogood = empty) then end← true; sendMsg:Stop(system);
else
sendMsg:Ngd(newNogood);
Update(myAgentV iew,rhs(newNogood)← unknown);

new if lhs(newNogood) = empty then
new ValueDeleted(rhs(newNogood));

else CheckAgentView();

Figure 9: The ABT-UGAC algorithm (part 2); only procedures with new lines (new)
with respect to ABT are shown. Γ− and Γ+ are higher and lower priority agents con-
nected to self ; Γ−0 and Γ+

0 are those sets at the beginning of execution.

a random binary CSP class is characterized by 〈n, d, p1, p2〉, where n is the number of
variables, d is the domain size of each variable, p1 is the problem connectivity defined
as the ratio of existing constraints and p2 is the constraint tightness expressed as the
ratio of forbidden value pairs. Hence, every instance contains p1 · n(n − 1)/2 binary
constraints and each of them has p2 · d2 forbidden value pairs. From a binary instance,
we can generate two types of benchmarks: the all-different benchmark and the atmost
benchmark. In the all-different benchmark, each binary instance includes 2 all-different
constraints, each involving 5 randomly chosen variables. We also performed this exper-
iment with 10 —instead of 2— all-different constraints per instance, obtaining similar
results. Direct, nested and binary representations are used with these all-different. In
the atmost benchmark, each binary instance includes 10 atmost[k,v] constraints, each
involving from 3 to 10 randomly chosen variables. The value v whose occurrences are
bounded is also randomly chosen in the set of values occurring in domains and its max-
imum number of occurrences k is 1 or 2. Only direct and nested representations are
used on these atmost constraints because atmost is not binary decomposable. In both
benchmarks, since the order in which variables appear in the global constraint does not
matter, we assumed the ABT priority order.

For the all-different benchmark, we have performed two experiments: sparse 〈20, 5, 0.2, p2〉
and dense 〈20, 5, 0.7, p2〉, where p2 varies between 0.1 and 0.9 in steps of 0.1. For
each experiment, we evaluate performance as the number of messages exchanged and
the number of non-concurrent constraint checks (NCCCs) [27], considering the three
representations. UGAC enforcing uses generic table lookups when testing binary con-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

102

103

104

p2

m
es

sa
ge

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT(binary)
ABT−UGAC(direct)
ABT−UGAC(nested)
ABT−UGAC(binary)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

p2

N
C

C
C

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT(binary)
ABT−UGAC(direct)
ABT−UGAC(nested)
ABT−UGAC(binary)

Figure 10: Results in #messages and NCCCs for the all-different benchmark described
in the text. p1 = 0.2. Observe that for large values of p2 some lines superpose. Top
plot: ABT(direct) with ABT(nested), ABT-UGAC(direct) with ABT-UGAC(nested).

straints and it executes a special propagator when testing the global all-different con-
straints (as described in [25]). Each time this propagator is called it computes a max-
imum matching in a graph; then, the NCCC counter increases in the number of nodes
of that graph.

Results in number of exchanged messages and NCCCs appear in Figures 10-11, av-
eraged on 100 instances per each p2. Since sparse (p1 = 0.2) and dense (p1 = 0.7) in-
stances show similar results, we discuss them jointly. Considering #messages of sparse

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

102

103

104

p2

m
es

sa
ge

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT(binary)
ABT−UGAC(direct)
ABT−UGAC(nested)
ABT−UGAC(binary)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

105

p2

N
C

C
C

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT(binary)
ABT−UGAC(direct)
ABT−UGAC(nested)
ABT−UGAC(binary)

Figure 11: Results in #messages and NCCCs for the all-different benchmark de-
scribed in the text. p1 = 0.7. Observe that for large values of p2 some lines su-
perpose. ABT(direct) with ABT(nested) with ABT(binary), ABT-UGAC(direct) with
ABT-UGAC(nested) with ABT-UGAC(binary).

instances and p2 < 0.5 (dense instances and p2 < 0.3, resp.) we observe that the
curve of plain ABT with a particular global constraint representation follows closely
the curve of ABT-UGAC with the same representation. This shows that maintaining
UGAC when constraints are loose does not pay off and it is the type of representation
that makes the difference in efficiency. The most efficient representation is binary, fol-
lowed by nested and finally direct representation. The direct representation causes in-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

102

103

104

105

106

p2

m
es

sa
ge

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT−UGAC(direct)
ABT−UGAC(nested)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

102

103

104

105

106

107

p2

N
C

C
C

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT−UGAC(direct)
ABT−UGAC(nested)

Figure 12: Results in #messages and NCCCs for the atmost benchmark described in the
text. p1 = 0.2. Observe that for large values of p2 some lines superpose. ABT(direct)
with ABT(nested), ABT-UGAC(direct) with ABT-UGAC(nested).

efficient chronological backtracking (which causes many useless messages —see ABT
trace in Figure 5), and nested representation implies sending extra OK? messages. In
this setting where not much pruning occurs, the binary decomposition appears as the
most efficient, because although it sends many OK? messages, it performs backtrack-
ing directly to the culprit.

For sparse instances and p2 > 0.5 (dense instances and p2 > 0.3, resp.) the situa-
tion changes and ABT curves are grouped according to UGAC enforcement: maintain-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

102

103

104

105

p2

m
es

sa
ge

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT−UGAC(direct)
ABT−UGAC(nested)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
102

103

104

105

106

p2

N
C

C
C

s
(lo

g
sc

al
e)

ABT(direct)
ABT(nested)
ABT−UGAC(direct)
ABT−UGAC(nested)

Figure 13: Results in #messages and NCCCs for the atmost benchmark described in the
text. p1 = 0.7. Observe that for large values of p2 some lines superpose. ABT(direct)
with ABT(nested), ABT-UGAC(direct) with ABT-UGAC(nested).

ing UGAC is now the most discriminant element. The analysis of this fact is simple: for
medium to high tightnesses, UGAC maintenance really decreases the size of the search
space, so algorithms including UGAC terminate faster and thus require less messages
(much less, observe the logarithmic scale) than plain ABT. On the relative performance
of the three representations for global constraints, the less efficient representation is the
binary, clearly dominated by the direct and nested ones, which practically use the same
number of messages. We explain this as the combined effect of two facts: a high num-

ber of constraints (a single all-different becomes a quadratic number of constraints in
binary; a linear number of constraints in nested; one constraint in direct) and the fact
that the problem has no solution. In the absence of solutions, ABT necessarily gen-
erates nogoods to prove inconsistency and agents in binary will tend to send a higher
number of NGD messages because they belong to more constraints than in the other
representations. Some of these NGDs are useless and become obsolete.

Regarding NCCC, the observed pattern is similar to that observed for the number
of messages. Differences among representations are due to the different number of
constraints existing in each representation.

Results for the atmost benchmark appear in Figures 12-13. We experimented with
it because atmost is an example of non binary decomposable constraint. This explains
why only the direct and nested representations are reported. Evaluation was similar to
the one done on the all-different benchmark: two experiments: sparse 〈20, 5, 0.2, p2〉
and dense 〈20, 5, 0.7, p2〉, where p2 varies between 0.1 and 0.9 in steps of 0.1, count-
ing the number of messages exchanged and the number of non-concurrent constraint
checks (NCCC) on the available representations. Results are averaged on 100 instances
per p2.

The number of exchanged messages shows a similar pattern to the one observed
in the all-different benchmark. For sparse instances and p2 < 0.5 (dense instances
and p2 < 0.3, resp.) we observe that UGAC has no much effect and the dominant
factor is the representation of the global constraint: as in the all-different benchmark,
the direct representation is much worse than the nested one. For sparse instances and
p2 > 0.5 (dense instances and p2 > 0.3, resp.) the situation changes. As in the
case of the all-different benchmark, maintaining UGAC becomes the main reason for
efficiency, more important than the type of representation of the global constraints.
Thus, ABT curves are closely related, while ABT-UGAC curves are also closely joined.
The explanation of this fact is the same as in the all-different benchmark: For medium
to high tightness, UGAC maintenance really decreases the size of the search space,
so algorithms including UGAC terminate faster and require much less messages to
explore that space than plain ABT.

Regarding NCCC, they show a pattern similar to the number of messages. Differ-
ences among representations are due to the different number of constraints existing in
each representation.

5 Global Cost Functions in DCOP
In this section we consider the introduction of global cost functions in distributed con-
straint optimization problems. The section is organized exactly as Section 4.

5.1 Representing Global Cost Functions
We consider three different ways to model the inclusion of a global cost function in
DCOPs. The user chooses one of the three representations and the solving is done on
that representation.

The first way is the direct representation. An instance C(T) of a global cost func-
tion C is posted as a single cost function. Only the last agent (among the agents in T)
in the branch of the pseudo-tree evaluates the cost function.

In the DisCSP case, we had the nested representation when C was contractible.
Contractibility is a notion also defined in the optimization case. Unfortunately, the
technique of the nested representation used for DisCSPs no longer works. When
we create copies of the global cost function C(T) on subsets of the variables in T ,
costs are duplicated and the model remains no loger equivalent. Take for instance the
global cost function soft-all-different(x1, x2, x3, x4) and its nested representation S =
{soft-all-different(x1, x2), soft-all-different(x1, x2, x3), soft-all-different(x1, x2, x3, x4)}.
Consider the assignment x1 = a, x2 = a, x3 = b, x4 = c. The cost of assigning
x1 = a, x2 = a will be counted in all three cost functions in the nested representation,
leading to a higher cost than that in the original soft-all-different(x1, x2, x3, x4) global
cost function, thus losing equivalence. However, we still have the interesting property
that each cost function in S taken separately produces costs that never exceed the cost
of the original global cost function. This property can be used to still use the nested
representation in DCOPs provided that we slightly modify the algorithms so that when
an agent receives costs from several cost functions from the same nested representation,
it does not sum them but takes their maximum.

Finally, the binary representation works the same as in DisCSPs. If C is binary
decomposable, instead of C(T), the binary decomposition of C(T) is included in the
problem.

5.2 Searching with Global Cost Functions
We have extended the distributed search algorithm BnB-ADOPT+ [22] to support
global cost functions with a direct, nested and binary representations. Some modifi-
cations of the original algorithm are needed, explained below.

In the case of the binary representation, there is no need for any modification: BnB-
ADOPT+ works as usual since the global cost function has been expressed as a set of
binary cost functions. For the nested and direct representations, we apply the following
modifications:

1. Every agent self keeps a global cost function set with all the global cost functions
in which self is involved. Every global cost function C(T) implicitly contains
the agents involved in T (neighbors of self). For some cost functions, additional
information can be stored. For example, for the soft-at-most[k,v] cost function,
parameters k (number of repetitions) and v (domain value) are stored.

2. During the search process, every time self needs to evaluate the cost of a given
value v, all local costs are aggregated. Binary cost functions are evaluated as
usual, and global cost functions are evaluated according to its violation measure.

3. VALUE messages are sent to children and pseudo-children involved in any kind
—binary or global— of cost functions. In the case of direct representation,
VALUE messages are sent only to the deepest agent in the DFS tree involved
in the global cost function (no VALUES are sent to intermediate agents because

(1) procedure CalculateCost(value)
(2) cost = cost+ BinaryCostWithValue(value);
(3) cost = cost+ GlobalCostWithValue(value);
(4) return cost;

(5) function BinaryCostWithValue(value)
(6) for each (xi , di) ∈ context do
(7) binaryCost = binaryCost+ C(xi, self)(di, value);
(8) return binaryCost;

(9) function GlobalCostWithValue(value)
(10) cost =0;
(11) for each global ∈ globalCtrSet do
(12) for each (xi , di) ∈ context do
(13) if xi ∈ global .vars then globalContext.add(xi, di);
(14) if globalContext .size == global .vars.size then //self last evaluator
(15) cost = cost+ EvalGlobal(global , globalContext ∪ (self , value));
(16) else //self is an intermediate agent in the restriction
(17) if DIRECT representation then cost = cost+ 0;
(18) if NESTED representation then
(19) for each xi ∈ global .vars do
(20) if lowerGlobalEvals.contain(xi) then cost = cost+ 0;
(21) else cost = cost+ EvalGlobal(globalContext ∪ (self , value));
(22) return cost;

(23) function EvalGlobal(global, varAssignments)
(24) return global.µ(varAssignments);

Figure 14: Aggregating costs of binary and global cost functions.

they are not able to evaluate the global cost function). In the case of nested
representation, VALUE messages are sent to all children and pseudo-children
involved in the global cost function, since they are all able to evaluate it.

4. COST messages include a list of all the agents that have evaluated a global cost
function. This is done to prevent duplication of costs and is explained in the next
paragraphs.

Figure 14 shows the pseudocode for cost aggregation of binary and global cost
functions in BnB-ADOPT+ (lines 1-4). Binary costs are calculated as usual, aggregat-
ing all binary costs evaluated on self value and the assignments of the current context
(lines 5-8). Global costs are calculated in lines 9-20. Although there is no need to
separate binary cost aggregation from global cost aggregation, we have presented them
in separate procedures for a better understanding of the new modifications.

For every global cost function of the global cost function set (globalCtrSet) self
creates a tuple with their assignment in the current context (globalContext, lines 11-
13). If self is the deepest agent in the DFS tree (taking into account the variables
involved in the global cost function) then self evaluates the cost function (lines 14-
15). If self is an intermediate agent, it does the following. If representation is direct,
self cannot evaluate the global cost function and cost is not incremented (line 17). If

representation is nested, it requires some care, as we said when presenting the nested
representation. A nested global cost function is evaluated more than once by interme-
diate agents and if these costs are simply aggregated duplication of costs may occur.
To prevent this, COST messages include the set of agents that have evaluated their
global cost functions (lowerGlobalEvals). When a COST message arrives, self knows
which agents have evaluated their cost functions and contributed to the lower bound. If
some of them appear in the scope of C, then self does not evaluate this cost function
(lines 18-21). By doing this, the deepest agent in the DFS tree evaluating the global
cost function precludes any other agent in the same branch to evaluate the cost func-
tion, avoiding cost duplication. Preference is given to the deepest agent because is the
one that receives more value assignments and can perform a more informed evalua-
tion. When bounds coming from a branch of the DFS are reinitialized (this happens
under certain conditions in BnB-ADOPT, for details see [21]), the agents in the set
lowerGlobalEvals lying on that branch are removed.

Finally, a procedure for evaluating the global cost functions according to its viola-
tion measure is presented in lines 23-24.

5.3 Propagating Global Cost Functions
When introducing soft local consistency, the solving process is improved. The quality
of the bounds obtained as the result of applying local consistency is often better when
the problem contains global constraints than when it contains an equivalent binary for-
mulation. For example, consider the case of the soft-all-different(x1, x2, x3) with vio-
lation measure µdec and its equivalent binary formulation: {soft-all-different(x1, x2),
soft-all-different(x2, x3), soft-all-different(x1, x3)}with the domain set {a, b} for every
variable (Figure 15). If UGAC is applied on the global formulation it can be inferred a
lower bound of 1 for the optimal solution. Since there are three variables and only two
domain values, any ternary tuple (with a combination of x1, x2, x3 values) will cost at
least 1 (Figure 15, left). However in the binary formulation we can only infer a lower
bound of 0, if looking independently at every binary tuple (Figure 15, right).

Specific propagators exploiting the semantics of global cost functions has been
proposed in the centralized case. These propagators allow to achieve the generalized
arc consistency level more efficiently than using generic propagators. In both cases
—binary or global cost functions— soft local consistency is based on equivalent pre-
serving transformations where costs are shifted from binary/global cost functions to
unary cost functions.

These same technique can be applied in distributed COP. We project costs from
binary and global cost functions to unary cost functions and finally project unary costs
to Cφ. After binary/global projections are made, agents check their domains searching
for inconsistent values. For this, some modifications are needed:

• The domain of neighboring agents (agents connected with self by cost functions)
are represented in self .

• A new DEL message is added to notify value deletions.

• COSTs and VALUEs contain extra information.

x1 x3 μdec

a a 1
x1 x2 μdec

a a 1

x1 x1
a a 1
a b 0
b a 0

a a 1
a b 0
b 0 b a 0

b b 1
b a 0
b b 1

x2 x3
x x x μ

x2 x3

x2 x3 μdec

a a 1

x1 x2 x3 μdec

a a a 3
b 1

min cost = 0 min cost = 0

a a 1
a b 0
b 0

a a b 1
a b a 1

b a 0
b b 1

a b b 1
b a a 1
b a b 1
b b a 1

min cost = 0

b b b 3
min cost = 1

Figure 15: (Left) soft-all-different(x1, x2, x3) with µdec violation measure; (right) its
binary decomposition

Following the technique proposed in [11], we maintain the GAC consistency level
during search, but performing only unconditional deletions, so we call it unconditional
generalized arc consistency (UGAC). An agent self deletes a value v unconditionally
if this value is guaranteed to be sub-optimal and does not need to be restored again dur-
ing the search process. If self contains a value v not NC (C(self)(v) +Cφ > >) then
v can be deleted unconditionally because the cost of a solution containing the assign-
ment self = v is necessarily greater than >. We also detect unconditional deletions
in the following way. Let us consider agent self executing BnB-ADOPT+. Suppose
self assigns value v and sends the corresponding VALUE messages to children and
pseudo-children. As response, COST messages arrive. We consider those COST mes-
sages whose context is simply (self , v). This means that the bounds informed in these
COST messages only depend on self assignment (observe that the root agent always
receives such COST messages). If the sum of the lower bounds contained in those
COST messages exceeds >, v can be deleted unconditionally because the cost of a
solution containing self = v is necessarily greater than >.

As in [11], messages include information required to perform deletions, namely >

BnB-ADOPT+-UGAC messages:
VALUE(sender , destination, value, threshold ,>,Cφ)

COST(sender , destination, context [], lb, ub, subtreeContr

agents contributing lb)

TERMINATE(sender , destination, emptydomain)

DEL(sender , destination, value)

Figure 16: Messages of BnB-ADOPT+-UGAC. New parts wrt. BnB-ADOPT+ are
underlined.

(1) procedure ProjectFromAllDiffToUnary(global, v)
(2) graph = alldiffGraphs.get(global);
(3) minCost = minCost+ graph.getMinCostF low();
(4) for each xi ∈ global.vars do
(5) minCost = minCost+

graph.residualGraph.shortestPathWith(xi, v);
(6) if minCost > 0 then
(7) graph.getArc(xi, v).cost = cost−minCost;
(8) if xi = self then C(self)(v) = C(self)(v) +minCost;

Figure 17: Projection with soft-all-different global cost function.

(the lowest unacceptable cost), Cφ (the minimum cost of any complete assignment),
and the subtree contribution to Cφ (each node k computes the contribution to the Cφ
of the subtree rooted at k). These three elements travel in existing BnB-ADOPT+

messages (the two first in VALUE messages, the last in COST messages). In addi-
tion, a new message DEL(self , k, v) is added, to notify agent k that self deletes value
v. The structure of these new messages appears in Figure 16. When self receives a
VALUE message, self updates its local copies of > and Cφ if the values contained in
the received message are better (lower > or higher Cφ). When self receives a COST
message from a child c, self records c subtree contribution toCφ. When self receives a
DEL message, self removes the deleted value from its domain copy of the sender agent
and performs projections from the cost functions involving the sender agent to its unary
costs and to Cφ. When > or Cφ change, D(xself) is tested for possible deletions.

This mechanism described to detect and propagate unconditional deletions is sim-
ilar to the one proposed in [11], avoiding simultaneous deletions [12]. However, to
reach the UGAC level, agents need to project costs not only from binary cost func-
tions, but from global cost functions as well. In the following, we describe how to
project binary and global costs specifically from the soft-all-different and soft-at-most
global cost functions.

(1) procedure ProjectFromAtMostToUnary(global, v)
(2) if global.k = v and D(xself).contains(v) then
(3) for each xi ∈ global.vars do
(4) if D(xi).contains(v) and D(xi).size() = 1 then
(5) singletonCounter = singletonCounter + 1;
(6) if singletonCounter > global.n then
(7) cost = singletonCounter − global.n;
(8) if cost > global.minCost then
(9) cost = temp;
(10) cost = cost− global.minCost;
(11) global.minCost = temp;
(12) if global.vars[0] = self then
(13) C(self)(v) = C(self)(v) +minCost;

Figure 18: Projection with soft-all-atmost[k,v] global cost function.

Projecting Costs with Binary Cost Functions
As in [19], we project costs from binary cost functions to unary in the following way.
The projection of costs from the binary cost function C(xi, xj) to the unary cost func-
tion C(xi) is a flow of costs defined as follows. Let αa be the minimum cost of value
a in xi with respect to C(xi, xj) (namely αa = minb∈D(xj)Cxi,xj

(a, b)). The projec-
tion consists in adding αa to Cxi(a) (namely, Cxi(a) = Cxi(a) + αa) and subtracting
αa from Cxi,xj (a, b) (namely, Cxi,xj (a, b) = Cxi,xj (a, b) − αa,∀b ∈ D(xj)). This
process is done for all values a in D(xi).

Every pair of agents xi and xj sharing a binary cost function perform projections
following a fixed order (projections are done first over the higher agent in the DFS and
after over the lower agent). As result of these projections binary and unary cost func-
tions are updated in both agents.

Projecting Costs with soft-all-different
We follow the approach described in [20] for the centralized case, where it is able to
enforce GAC on the soft-all-different global cost function in polynomial time, some-
thing that is exponential for a generic non-binary cost function. A graph for every
soft-all-different is constructed following [28]. This graph is stored by the agent and
updated during execution. Every time a projection operation is required, instead of ex-
haustively looking at all tuples of the global cost function, the minimum cost that can
be projected is computed as the flow of minimum cost of the graph associated with the
cost function [20]. Minimum flow cost computation is based on the successive shortest
path algorithm, which searches shortest paths in the graph until no more flows can be
added to the graph. Pseudocode appears in Figure 17.

Projecting Costs with soft-at-most
For the soft-at-most global cost function we propose the following technique to project
costs from the global cost function soft-at-most[k,v](T) to the unary cost functions
C(xi)(v). Agent xi counts how many agents in T have a singleton domain {v}. If the
number of singleton domains is greater than k a minimum cost equal to the number of
singleton domains minus k can be added to the unary cost C(v) in one of the agents of
the global cost function. We always project on the first agent of the cost function. In
order to maintain equivalence, the soft-at-most stores this cost, that will be decremented
from any future projection performed. Pseudocode is presented in Figure 18.

5.4 Experimental Results
To evaluate the impact of including global cost functions in DCOPs, we tested several
random DCOPs including soft-all-different and soft-at-most global cost functions.

We consider binary random DCOPs with 10 variables and domain size of 5. The
number of binary cost functions is p1 · n(n− 1)/2, where n is the number of variables
and p1 is the network connectivity that varies in the range [0.2, 0.9] in steps of 0.1.
Binary costs are selected from an uniform cost distribution. Two types of binary cost
functions are used, cheap and expensive. Cheap cost functions extract costs from the
set {0, ..., 10} while expensive ones extract costs from the set {0, ..., 1000}. The pro-
portion of expensive cost functions is 1/4 of the total number of binary cost functions

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

104

105

106

p1

m
es
sa
ge
s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

105

106

107

p1

N
C
C
C
s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)

Figure 19: Experimental results of random DCOPs including soft-all-different global
cost functions with the violation measure µvar.

(this is done to introduce some variability among binary tuple costs [11]). In addition to
binary cost functions, global cost functions are included. The first experiment includes
2 soft-all-different(T) global cost functions in every instance, where T is a set of 5 ran-
domly chosen variables. Two types of violation measures are used for soft-all-different:
µvar and µdec. The second experiment includes 2 soft-at-most[k,v](T) global cost
functions in every instance, where T is a set of 5 randomly chosen variables, k (number
of occurrences) is randomly chosen in the set {0, ..., 3} and v is randomly selected in
the variable domains. The violation measure used is µvar. To balance binary and global
costs, the cost of the soft-all-different and soft-at-most is calculated as the amount of
the violation measure multiplied by 1000. Results are averaged over 50 instances for

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

104

105

106

p1

m
es

sa
ge

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

105

106

107

p1

N
C

C
C

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

Figure 20: Experimental results of random DCOPs including soft-all-different global
cost functions with the violation measure µdec.

each experiment.
We tested the extended versions of BnB-ADOPT+ and BnB-ADOPT+-UGAC able

to handle global cost functions using a discrete event simulator. Computational effort is
evaluated in terms of non-concurrent constraint checks (NCCCs) [27]. Network load is
evaluated in terms of the number of messages exchanged. We have considered the dif-
ferent ways to incorporate global cost functions. For soft-all-different and soft-at-most
with µvar we tested on two representations: direct and nested representation because
these global cost functions are not binary decomposable with violation measure µvar.
For soft-all-different with µdec we tested on the three possible representations: direct,
nested and binary.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

104

105

p1

m
es
sa
ge
s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

105

106

107

p1

N
C
C
C
s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)

Figure 21: Experimental results of random DCOPs including soft-at-most global cost
functions with the violation measure µvar.

Specifically for UGAC enforcement, computational effort is measured as follows.
For the sets including soft-all-different global cost functions, we use the special prop-
agator proposed in [20]. Every time a projection operation is required, instead of ex-
haustively looking at all tuples of the global cost function (which would increment the
NCCC counter for each tuple), we compute the minimum flow of this graph based on
the successive calls to the shortest path algorithm. We assess the computational effort
of the shortest path algorithm as the number of nodes of the graph where this algorithm
is executed (this looks reasonable for small graphs, which is the case here). Each time
the shortest path algorithm is executed, we add this number to the NCCC counter of
the agent.

For the experiments including the soft-at-most global cost functions, every time the
cost of the violation measure is computed as the number of singleton domains minus
k, the NCCC counter is incremented.

Figures 19-20 contain the results of the first experiment including soft-all-different
with violation measures µvar and µdec. Figure 21 contains the results of the second
experiment including soft-at-most with violation measure µvar.

In general, we observe that the nested representation is better than the direct one in
terms of messages and NCCCs, for both BnB-ADOPT+ and BnB-ADOPT+-UGAC.
In the direct representation, VALUE messages are sent only to the last agent of the
global cost function whereas in the nested representation VALUE messages are sent to
every agent in the scope of the cost function that is below the current one. However the
early detection of dead-ends compensates by far these extra messages that are sent in
the nested representation.

It is of special interest to observe the behavior of the binary decomposition. We
can observe that the nested representation is consistently better than the binary de-
composition, especially on high density problems. For BnB-ADOPT+-UGAC this
can be explained by the fact that applying UGAC on global cost functions may prune
more values than applying UGAC on its binary decomposition. This was confirmed
by comparing the number of DEL messages generated by every representation. For
BnB-ADOPT+, we see that it is also better to represent the global cost functions by
the nested representation than by the binary decomposition.

Considering the impact of maintaining UGAC we observe that it really pays-off
in terms of messages, especially for low and medium connectivities. As expected,
UGAC maintenance sometimes requires a higher number of NCCCs because more
computation must be done to make the problem UGAC.

6 Conclusion
We have introduced the use of global constraints in distributed constraint reasoning.
We have proposed three different ways to represent global constraints in a distributed
constraint network, depending on whether the constraint is contractible and/or binary
decomposable. This approach applies similarly to DisCSPs and DCOPs. We have
evaluated the performance of ABT on DisCSPs and of BnB-ADOPT+ on DCOPs,
both with or without unconditional generalized arc consistency using different repre-
sentations for global constraints. Maintaining some form of local consistency is never
harmful in terms of messages and almost never in terms of NCCCs. Regarding the
different representations of global constraints, the direct representation often is the less
efficient one, followed by the binary representation. The nested representation seems
to offer a good compromise: it is never worse than direct, and in some cases it is bet-
ter than binary. This is good news because there are many more constraints that are
contractible (the condition for nested representation) than constraints that are binary
decomposable.

Acknowledgments
Christian Bessiere is partially supported by the French Agence Nationale de la Recherche
project ANR-10-BLA-0214, and by the European Community project FP7-284715
ICON. The work of Ismel Brito, Patricia Gutierrez and Pedro Meseguer has been
partially supported by the Spanish project TIN2009-13591-C02-02 and Generalitat
de Catalunya 2009-SGR-1434. This work was started from a bilateral CNRS-CSIC
project (CSIC number: 2010FR0040).

References
[1] Lynch, N. A. (1996) Distributed Algorithms. Morgan Kaufmann, New York.

[2] Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K. (1998) The distributed con-
straint satisfaction problem: Formalization and algorithms. IEEE Tr. Know. Data
Engin., 10, 673–685.

[3] Meisels, A. and Zivan, R. (2007) Asynchronous forward-checking for discsps.
Constraints, 12, 131–150.

[4] Modi, P. J., Shen, W. M., Tambe, M., and Yokoo, M. (2005) Adopt: asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence,
161, 149–180.

[5] Chechetka, A. and Sycara, K. P. (2006) No-commitment branch and bound search
for distributed constraint optimization. Proc. AAMAS-06, Hakodate, Japan, 8-12
May, pp. 1427–1429. ACM Press, New York.

[6] van Hoeve, W. J. and Katriel, I. (2006) Global constraints. In van Beek, P., Rossi,
F., and Walsh, T. (eds.), Handbook of Constraint Programming, pp. 205–244.
Elsevier, Amsterdam.

[7] Michel, L., Schulte, C., and Van Hentenryck, P. (2007) Constraint programming
tools. In Benhamou, F., Jussien, N., and OSullivan, B. (eds.), Trends in Constraint
Programming, pp. 41–57. Wiley, New Jersey.

[8] Bessiere, C. and Van Hentenryck, P. (2003) To be or not to be ... a global con-
straint. Proc. CP-03, Kinsale, Ireland, 29 September - 3 October, pp. 789–794.
Springer-Verlag, Berlin.

[9] Maher, M. (2009) Open contractible global constraints. Proc. IJCAI-09,
Pasadena, USA, 11-17 July, pp. 578–583. AAAI Press, Menlo Park.

[10] Brito, I. and Meseguer, P. (2008) Connecting ABT with arc consistency. Proc.
CP-08, Sydney, Australia, 14-18 September, pp. 387–401. Springer-Verlag,
Berlin.

[11] Gutierrez, P. and Meseguer, P. (2010) BnB-ADOPT+ with several soft AC levels.
Proc. ECAI-10, Lisbon, Portugal, 16-20 August, pp. 67–72. IOS Press, Amster-
dam.

[12] Gutierrez, P. and Meseguer, P. (2012) Improving BnB-ADOPT+-AC. Proc.
AAMAS-12, Valencia, Spain, 4-8 June, pp. 111–222. ACM Press, New York.

[13] Bejar, R., Domshlak, C., Fernandez, C., Gomes, C., Krishnamachari, B., Selman,
B., and M., V. (2005) Sensor networks and distributed csp: Communication, com-
putation and complexity. Artificial Intelligence, 161, 117–147.

[14] Petit, T., Regin, J. C., and Bessiere, C. (2001) Specific filtering algorithms for
over-constrained problems. Proc. CP-01, Paphos, Cyprus, 26 November - 1 De-
cember, pp. 451–463. Springer-Verlag, Berlin.

[15] Bessiere, C., Brito, I., Maestre, A., and Meseguer, P. (2005) Asynchronous back-
tracking without adding links: a new member in the ABT family. Artificial Intel-
ligence, 161, 7–24.

[16] Baker, A. B. (1994) The hazards of fancy backtracking. Proc. AAAI-94, Seattle,
USA, 31 July-4 August, pp. 288–293. AAAI Press, Menlo Park.

[17] Maher, M. (2009) Soggy constraints: Soft open global constraints. Proc. CP-09,
Lisbon, Portugal, 20-24 September, pp. 584–591. Springer-Verlag, Berlin.

[18] Meseguer, P., Rossi, F., and Schiex, T. (2006) Soft constraints. In van Beek, P.,
Rossi, F., and Walsh, T. (eds.), Handbook of Constraint Programming, pp. 279–
326. Elsevier, Amsterdam.

[19] Larrosa, J. and Schiex, T. (2003) In the quest of the best form of local consistency
for weighted CSP. Proc. IJCAI-03, Acapulco, Mexico, 9-15 August, pp. 239–
244. AAAI Press, Menlo Park.

[20] Lee, J. H. M. and Leung, K. L. (2009) Towards efficient consistency enforce-
ment for global constraints in weighted constraint satisfaction. Proc. IJCAI-09,
Pasadena, USA, 11-17 July, pp. 559–565. AAAI Press, Menlo Park.

[21] Yeoh, W., Felner, A., and Koenig, S. (2010) BnB-ADOPT: An asynchronous
branch-and-bound DCOP algorithm. JAIR, 38, 85–133.

[22] Gutierrez, P. and Meseguer, P. (2010) Saving redundant messages in BnB-
ADOPT. Proc AAAI-10, Atlanta, USA, 11-15 July, pp. 1259–1260. AAAI Press,
Menlo Park.

[23] Brito, I. and Meseguer, P. (2006) Asynchronous backtracking for non-binary
DisCSP. ECAI-06 DCR workshop, Riva del Garda, Italy, 28 August.

[24] Zivan, R. and Meisels, A. (2006) Dynamic ordering for asynchronous backtrack-
ing on discsps. Constraints, 11, 179–197.

[25] Regin, J. C. (1994) A filtering algorithm for constraints of difference in CSPs.
Proc. AAAI-94, Seattle, USA, 31 July-4 August, pp. 362–367. AAAI Press,
Menlo Park.

[26] Palmer, E. M. (1985) Graphical Evolution. Wiley, New Jersey.

[27] Meisels, A., Kaplansky, E., Razgon, I., and Zivan, R. (2002) Comparing perfor-
mance of distributed constraint processing algorithms. AAMAS-02 DCR work-
shop, Bologna, Italy, 16 July, pp. 86–93.

[28] van Hoeve, W. J., Pesant, G., and Rousseau, L. M. (2006) On global warming:
flow-based soft global constraints. Journal of Heuristics, 12, 347–373.

