Evaluation of Clustering Algorithms: a methodology and a case study

Mountaz Hascoët 1 Guillaume Artignan 1
1 LIRMM/HE - Hors Équipe
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Clustering is often cited as one of the most efficient ways to face the challenging scaling problem. Thousands of different approaches for clustering have been proposed over the past decades. Hence, the problem of designing appropriate clustering algorithm has been slowly replaced by the problem of choosing one implementation of one given algorithm amongst a large number of choices. However, because of the complexity of the field, choosing the appropriate implementation can rapidly turn into a dilemma. This paper introduces a methodologyfor the evaluation of clustering algorithms based on (1) theoretical complementary quality measures proposed in a unified notation system, (2) empirical studies on original datasets and (3) new technological instruments useful to both run experiments and visually analyze the results. Such a methodology is important not only to facilitate the choice of a clustering algorithm but also to consolidate the validity of the resultsby enabling reproducibility and comparison of experiments. By proposing a methodology with a case study, our aim is to bring to the scene new insights on the evaluation and comparison of clustering approaches that hopefully help clarify the field.
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01070127
Contributeur : Mountaz Hascoët <>
Soumis le : mardi 30 septembre 2014 - 15:58:49
Dernière modification le : jeudi 11 janvier 2018 - 06:26:09
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:59:18

Fichier

infovis2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01070127, version 1

Citation

Mountaz Hascoët, Guillaume Artignan. Evaluation of Clustering Algorithms: a methodology and a case study. RR-14008, 2014. 〈lirmm-01070127〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

474