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Evaluation of Clustering Algorithms:
a methodology and a case study

Abstract— Clustering is often cited as one of the most efficient ways to face the challenging scaling problem. Thousands of
different approaches for clustering have been proposed over the past decades. Hence, the problem of designing appropriate
clustering algorithm has been slowly replaced by the problem of choosing one implementation of one given algorithm amongst a
large number of choices. However, because of the complexity of the field, choosing the appropriate implementation can rapidly turn
into a dilemma. This paper introduces a methodology for the evaluation of clustering algorithms based on (1) theoretical
complementary quality measures proposed in a unified notation system, (2) empirical studies on original datasets and (3) new
technological instruments useful to both run experiments and visually analyze the results. Such a methodology is important not only
to facilitate the choice of a clustering algorithm but also to consolidate the validity of the results by enabling reproducibility and
comparison of experiments. By proposing a methodology with a case study, our aim is to bring to the scene new insights on the
evaluation and comparison of clustering approaches that hopefully help clarify the field.

Index Terms—Clustering evaluation, Evaluation Methodology, Parallel Coordinate Diagrams.
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It is often considered that using clustering is @vay of managing
and controlling large and complex networks at ahkiglevel of
abstraction. Therefore clustering is often used information
visualization as a pre-processing or interactivélpwever, anyone
eager to perform clustering has to make a poténitaitical choice
amongst thousands of algorithms. This choice cpidlabecome a

INTRODUCTION

2 METHODOLOGY

The choice of the appropriate algorithm is oftematter of trade-
offs for which the analysis of the quality of astering over varying
datasets and tasks is useful.

If we consider T: a set of tasks, D : a set of sletkg Q: a set of
quality measures and F : a set of clustering fonsti then an
evaluation problem can be considered as a pointtRe evaluation

real dilemma. First, clustering literature is valgnse, diverse, and space E such that:

sometimes complex. Reviews or meta-analysis areemums but

only partial. The evaluation of the quality of dieisng algorithms is

still difficult. Jain in his recent review on clesing [17], agreed that,
if one consider all potential criteria for qualitjthere is no best
clustering algorithm". Kleinberg [21] has shownttitds impossible

for a unique clustering algorithms to satisfy thlofwing set of basic
properties : (1) scale-invariance, (2) a richnesmirement and (3) a
consistency condition.

Our objective is to facilitate the understandingl arhoice of
appropriate clustering algorithm that might be usedior
visualization or while interacting. Our contributigs threefold: (1) a
methodology based on the combination of formalpieigal, and
technological backgrounds, (2) a case study usirmgrhethodology
to evaluate a selected set of 17 clustering algmstpublished in the
literature and (3) a system designed and developpadpport this
methodology and favor repetition and reproductibaxperiments.

We first introduce the methodology. Second, we gmeghe case
study by starting with transformations on datasfetowed by the
selection and presentation of clustering algorithiiée further
present a unified notation system to integrate taofeheoretical
quality measures found in a broad and heterogenétarature.
Then, we present the visual exploration of the ltesof the case
study. We further present MUSCA the system desigaed
developed to support the methodology and condwetcise study.
We finally conclude with lessons learned and futuoek.

E=TODOQUFand
P(td,gf0Eandt]T,dOD,q0Q, fOF.

It is a truism to say that E is large and that margthodologies
have been used to explore it. Benchmarking basedtiauelogies
can be considered as a mature way to address eaflyi subset of
E by limiting variations over T, D and possibly @ lietter study F.
A radically different methodological approach, pably even more
mature and more theoretically oriented, consist$osusing on F
possibly ignoring or making strong hypothesis atlibetnature of T,
D, and Q interactions with F. Many approaches iis tfirection
focus on comparing objective functions maximizedairclustering
method when they exist or focus on comparing ofigyortant
aspects of a clustering method characterizing Fadirg to
axiomatic approaches that can be seen as a geagémili in this
direction [41][21][2].

Our methodology can be seen as complementary teiope
approaches. It differs from them by making the hkpsis that
interactions between T, D, Q and F are importard ppssibly
chaotic.

3 DATASETS AND TASKS

The task studied in this paper is a basic taskxploeing large
datasets based on multi-level visual exploratiachtéques. These
techniqgues make the hypothesis that the datasetlustered
automatically and that the resulting clusters mewiifferent levels
of abstraction such that at each level a clusterbm considered as
an abstraction of a set of similar elements andemdifit clusters
discriminates the elements they contain.

The fixed chosen datasets are based on representeter data
sets, e.g. ad-hoc datasets of various naturesfifBheataset used in
the case study is extracted from "Jeux de Motsg, @inthe largest
lexical network of the French language [14]."JeexMots" is built
cooperatively by users playing a coordination gaRwe. example, a
player is asked to provide as many terms as pesgblen a
specification and a target term. For example, "fiakhted terms to



"bateau" (e.g boat). The answers of two playerstteea compared. The second dataset comes from a collection of relsgaapers
The two players earn points based on how many camnterons they gathering ten years of the SIGIR conference pafdrs.similarities
spontaneously proposed. These terms and the redabietween the between each pair of documents is computed usiegT#-IDF
terms are then appended to the lexical networkodsilg a measure [32] and a Pearson's correlation. A compéege graph
cumulative weighting system [22]. "Jeux de Mots'wnoontains network is then obtained, where nodes are documents
more than 200,000 lexical terms and 1,200,000 &xielations similarities are weighted links.

including more than 20 different types of lexicalations.
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Figure 1: Parallel Coordinate Diagrams for Evaluating the Quality of Algorithms on JDM2000 (top), JDM200 (bottom)




The first step in our methodology consists in exang raw
datasets at different scales without any clusterifr@ur datasets
are built from the dataset "Jeux de Mots": (1) JdincAntaining
111701 lexical terms from "Jeux de Mots", (2) JOBR
containing 2000 lexical terms, (3) Jdm200 contar2®0 terms
from Jdm2000, and finally (4) Jdm20 containing 2énts from
Jdm 200.

In the case of the SIGIR conference papers, gikenimited
amount of nodes and potentially large number ofesdgcaling
dataset is based on controlling the number of edbesrefore we
consider Sigl000 and Sigl10000 by considering resede the
subset of 1000 and 10000 edges from the computatidmest
similarity relations.

Table 1 summarizes the main characteristics ofitiasets by
providing name, number of nodes N, total numbegdifes E, the
exponenty of power law distribution when relevant, the graph
diameter D, averaged clustering coefficient C, &Ldescribing
the different datasets and proposing a link for cloading the
datasets. As can be read from this table, the elstaare
heterogeneous, jdm20 is a tree, Jdm200, Jdm2000AIDGNd
Sigl000 are power law networks and sigl0000 is msele
network. With the exception of jdm20,
characteristics are known to be challenging fosteting and at
the same time, illustrative of real user data likel be clustered.

Table 1. Datasets Characteristic Distributions

Name IN| |E| Yy D c URL

JDM 20 20 19 8] 6 0.0 Anonymized for
Review

Anonymized for

JDM 200 200 265 -1,58 11 0.1140 .
Review

IDM Anonymized for

2000 2000 3476 -1.8 13 0.1357 Review

DMALL | 111701 | 441854 | -1.9 | 13 | 01933 | Anonymizedfor
Review

SIG Anonymized for

1000 378 903 -1.48 20 0.3928 Review

SIG Anonymized for

10000 626 10000 O 5 0.4002 Review

4 QUALITY CRITERIA

Measuring the quality of the results of a clustgraigorithm is
challenging. Given the task and datasets, we fagu<riteria
defined in the literature to represent how similae elements
inside clusters are and how dissimilar the clustees one from
another. These criteria may vary widely in termsofations and
subtlety in terms of concept.

To make further analysis and discussion over maitgria,
our first work consisted in setting up a notatioapable of
embracing several of the various criteria founthim litterature in
various forms considered as target criteria. Weshihen rewritten
these target criteria in this unifying notation. rOuotation is
designed to make the expression of criteria aslsimp possible
while maintaining a potential for expressiveness. #oted by
Green designing a notation [13] is, in the geneade, both
important and challenging. This work is a prelinmneffort in the
long effort needed to come up with a notation dednat the
evaluation of clustering. Our notation is basedgoaph theory
basic concepts since many datasets can be abdtesctgaphs.

A graph G is composed of a set of nodes denoted bypd a
set of edges denoted by E that represent links dsetwnodes.
Applying clustering to G usually results in k clerist denoted by
{C1...Ck} as k subsets of N.

Our notation is summarized by:

n number of nodes in G

e number of edges in G

k number of clusters after clustering
n, number of nodes in the cluster Ci

we number of edges within the cluster Ci

oe number of edges outgoing from the cluster Ci

be; number of edges between two clusters Ci and Cj

pe number of possible edges in Ci. For an undirected
graph: pei= ni(ni-1)/2. For a directed
graph:pei=ni(r-1).

me number ofmissing(e.g. non-represented) edges in
Ci. mei=pei - wei.

we be pe total number of within-cluster edges, between-
andme cluster edges, possible edges and missing edges.

Ratio of between-edges over within-edges is usedh&

k k k
be = E be;me = E me; we = E we;
i=1 i=1 i=1

such datasets definition of four (e.g. Cut, Cov, Cond and Mod)taf the six

criteria presented below. However these ratio ave exactly
computed the same way and small differences irr thefinition
may have important impact on the results. With ¢hestations,
the six criteria selected for the evaluation can viréten as
follows:

Cut [6] is computed as the number of between-edgk®
called extra-edges) over the number of within-edgéso called
intra-edges). One frequent expectation is that driteria be
minimize in best clustering results.

Cut(G) = be
we

Perf [7] takes into account the number of undekrauiges
that can be considered as errors compared to ah dtlestering.
These undesirable links are considered as edgesdémetclusters,
as well as missing edges within clusters. The nurbenissing
edges is equivalent to the number of couples okaatouped in
the same cluster without any edge relating themf Really
measures the ratio of undesirable edges over tmebeu of
possible edges and compares it to 1. Best valuesPfof
correspond to highest values.

Perf(G) = 1 — et me

Cond [7] criterion equals an average over the corhece of
each pair of clusters. The conductance of a pattusfters Ci and
Cj is the proportion of edges between Ci to Cj dizd by the
minimum number of edges within Ci and Cj. Loweslues are
expected to characterise best clustering resultsveider, some
particular cases of clustering results can't besomes with this
definition of Cond. For example, when singletonstduis are part
of a clustering result, the number of within-edge singleton is
arbitrarily replaced by a value of one. Other casbgre stable
can be found as clusters cannot be measured vdtmgutation
of Cond. However, these cases are not expectee tvelguent
considering the aims of algorithms studied in thisk.

Z:’Lj 3 (be”. )
nd _ i<j min(we;,we;
Cond(G) hE-12

Cov [7] is the ratio of the number of within-edgesthe total
number of edges in the graph. Cov can be considasethe
inverse of a normalized version of cut.

Cou(G) = 2°




Mod [8] can be considered as a measure of Cov etkfialbove
corrected by the value of a Cov for a random chirsgeof the
same graph denoted as rCov. Therefore, the higradses for
Mod correspond to best clustering results accordin@ov and
values below 0 correspond to clustering that carcdresidered
worse than a random clustering according to the @iberia.

Mod(G) = Cov —rCouv
MQ [25] is a difference between the average wittlirster
edge density and between-cluster edge density efdrerit varies
between -1 and +1, and highest values correspondett

clustering results. In the case of a singletontelysveé and pée
equal 0. In this case, we do not compute Wwpé but use the

value of 1 instead.
, k
’ > icj(besj/ming)

_ > g (we; /pe;)
MQ(G) = k  (k(k—1))/2

5 CLUSTERING ALGORITHMS SELECTION

Clustering has a huge and multidisciplinary histgince it has
been used in many scientific fields including imf@tion retrieval
[38][36], data visualization [1], physics [8], etBeveral surveys
have partially reviewed this literature [39][17][33n order to
choose the algorithms to be tested in our studyhae three
criteria in mind. First, authors either provide smicodes for the
proposed algorithm or the description of the alhoni is
sufficiently clear, complete and precise to be enptnted.
Second, the algorithm is relevant to clusteringadatich as
complex networks. Third, the set of algorithms edsshould be
representative of the variety of approaches oftetirgy found in
the literature. Table 2 summarizes the choices niaderms of
algorithms and indicates the URL of the implemeéataused in
the experiment.

The CNM algorithm [8]

Communities are made for each node and further ederg
iteratively with others to increase the Mod criterCNM results
can be represented by a hierarchical clusteredhgoa@ simple
clustered graph depending on how merging is handled

The BGLL algorithm [5] approach is very similar @\NM,
but the definition of modularity differs and it mek the

has a bottom-up approach.

hierarchical clustered graph explicit as well as ligvel at which
the clusters are extracted from the hierarchicadteled graphs.

The CMJA algorithm [4] has a different approachnirdéhe
two previous ones. CMJA is proposed for detectiogmunities
in small world networks by identifying weak edg@&he algorithm
operates in two steps. Firstly, it processes aesoareach edge,
this score is proportional with the number of 44egand 3-cycles
containing the edge. Secondly it removes the k ®dgéh the
lowest scores. Clusters are the resulting connaziaghonents.

The InfoMap approach [31] treats the problem ofdifiry
community structures in networks as an informatoding
problem. The approach has three steps: (1) Infoptagesses a
random walk on the graph and generates the randam [(2)
assigns a codeword to each node in the random psisg
Huffman coding [15], (3) searches a clustering miming the
average number of bits useful to describe it.

The MCL Algorithm [37] detects communities usinilarkov
Matrix. The algorithm computes random walks by flow
simulation. An operator named “Expansion” computes
multiplications of the matrix with itself. An opeéoa named
“Inflation” computes the Hadamard matrix [34].

K-Means Algorithm [24] is one of the most frequgntised
algorithms for clustering and many slightly diffeteversions
have been proposed. The main principle is to stath an
arbitrary partition of the dataset and try to meaeh element to a
better cluster as long as possible to improve theradl within
cluster cohesion. It is one very efficient and ve@mple algorithm
to implement. However, it's based on centroid cotapon.
Therefore it requires that as a prerequisite ovileeroalgorithms
that meaningful centroids can be computed for titasbts.

LinLog Algorithm [27] is a layout algorithm based on an
energy model that aims at geometrically exhibitelgsters. Its
principle is to optimize the layout accounting ntgifor attraction
and repulsion forces between nodes.

The NCut Algorithm[35] comes from the image segmentation
domain but can be adapted to graphs. Its prinégpie optimize a
criterion named “Normalized Cut”, using a specteghnique.

The Cluto Toolkit[42] is a toolkit made of several clustering
algorithms. Four approaches are tested in thisrpébp The rb-
based clustering approach proposed clustering ctedpay K-1
bisections, (2) the direct-based clustering apgrpa@) an
agglomerative approach, (4) the graph-based approased on a
similarity graph and a min-cut criterion.

Table 2. Algorithms and implementations used in the case studies

Algorithm Name Article |mplementation

CNM [8] http://www.cs.unm.edu/~aaron/research/fastoiarity.htm
SPK-MEANS [9] http://www.cs.utexas.edu/users/dmtiégiaining/spkmeans.html
Cluta [42] http://glaros.dtc.mn.edu/gkhome/views/clu

LinLog [27] http://www.informatik.tu-cottbus.de/~#BD/
InfoMap [31] http://www.tp.umu.se/~rosvall/code.htm

CMJA [4] our implementation (link removed for blimeviews)
BGLL [5] http://sites.google.com/site/findcommuesi
Simple K-Means [24] our implementation (link remdver blind reviews)
NCut Algorithm [35] http://www.cis.upenn.edu/~jssoftware/

MCL [37] http://www.arbylon.net/projects/

GraClus [10] http://www.cs.utexas.edu/ushmd/Software/graclus.html
WalkTrap [28] http://igraph.sourceforge.net/dowrnldgmi

GN [12] http://igraph.sourceforge.net/download.html
MeTis [18][19] http://glaros.dtc.umn.edu/gkhome/views/r

LPA [29] http://igraph.sourceforge.net/download.r

LEA [26] http://igraph.sourceforge.net/download.htm
SpinGlass [30] http://igraph.sourceforge.net/dowdlbitml




The Spherical K-Means algorithf#] is an extension of the well- example, Figure 1 corresponds to different data@ets variations
known Euclidian K-Means algorithm. This algorithrarfitions the along D), where axes represent different critegag.( variations
dimension using great hyper-circles. along Q) and lines represent different clusterimgo@hms (e.g

The GraClug10] clustering algorithm is a multilevel algorithm.variations along F).

This algorithm operates in three steps: (1) thesarang phase, (2) A Pareto optimal solution is a solution where ampiovement in
the initial clustering phase and (3) the refineme@hase. The one criterion can only occur through the worsenifigt least one
coarsening phase takes the initial graph and rediiceto a smaller other criterion. A Pareto set is composed of alteRa optimal
graph. When the graph is sufficiently coarseneg@extsal approach solutions and is usually considered as importanminti-criteria
is used for clustering [40]. The refinement phasguilds the initial decision. Using parallel coordinate makes Paret® easily visible.
graph. The WalkTrap algorithrf28] computes a distance measuré-or example, a polyline that always appear beloattear polyline
between each pair of adjacent nodes. At each tte@lgorithm: (1) can be considered non Pareto optimal. Reciprocallpolyline A
chooses two adjacent communities according to timglasity with no polyline always above it in the diagram ¢e@nconsidered as

measures (2) merges these two communities and g@ates the
distances between communities. The algorithm textagywhen only
one cluster remains.

Pareto optimal.
From these diagrams, some specificities that somestintroduce
noise are also visually salient. For example, Wtissially striking that

The GN [12] algorithm is a generic algorithm computingCMJA algorithm exhibits extreme variations alongT@ese extreme

communities in two steps: (1) the computation afcare for each
edge, (2) the removal of the edge with the bestescbhese two
steps are repeated until a number of X edges isved In[12] the
authors propose three measures: the shortest patisune, the
network resistor measure and the random walk meadire used
implementation processes the shortest path medEikemeasure is
inspired from the vertex betweeness measure [1d]isadapted for
edges. In the used implementations all the edgesreanoved in
order to build a dendrogram of communities to mehgeadaptation
version of the algorithm we made, we used a parmiedicating
the number of wished clusters instead.

The MeTis Clustering algorithni18][19] is also a multilevel
algorithm and operates also in three steps. Irstibye of coarsening,
MeTis uses a method named HEM (Heavy Edge Matchifgyr

algorithms are presented for the partitioning & toarsened graph:

a spectral bisection algorithm, a KL algorithm [20fraph growing
partitioning (GGP) or a greedy graph growing pimtiing (GGGP).
The refinement is then done using a edge-cut measur

The Label Propagation Algorithm (LPA99], was introduced for
discovering communities in web pages. Web pagesemesented
by nodes, hyperlinks are represented by edgeddrextraction of
the initial graph, the authors construct a grapimfian initial set of
documents. The algorithm sets a weight on each modeputed
from both a non-negative authority-weight and a-negative hub-
weight. For a node the authority-weight is updadtgdsumming all
hub-weight of the neighbors referring the node. ity the hub-
weight of a node is updated by summing the autheviight of all
referenced nodes. The Leading Eigenvector Algori(tuBA) [26]
computes a graph clustering using modularity measurhis
modularity measure is expressed in term of eigdnegaand eigen
vectors of matrix call modularity matrix.

The SpinGlass algorithm [30] is an algorithm basmd a
SpinGlass model and simulated annealing. The asitti@monstrate
also the equivalence between their Hamiltonian oreasind the
modularity measure introduced by Newman and Giftah

6 VISUALLY EXPLORING RESULTS

Parallel coordinate diagrams also called Inselbetigigrams [16] are
automatically created to display results. A sepaffallel coordinate
diagrams makes possible the exploration of vanat@ong three of
the four dimensions of the evaluation space consigeone

dimension is kept invariant. With such an approach diagram
corresponds to variations along one dimension, eaah on a
diagram corresponds to variations along the sechmension and
each line corresponds to variations along the tHirdension. For

variations over Q are relatively invariant over IBdeed, in most
datasets, CMJA is best according to MQ, while & slame time
being worse according to Mod and varying widelyarding to other
criteria see Figure 1 for example. A closer exatimaat CMJA
clustering results shows that it leads to clusiétls disproportionate
sizes, ranging from singletons to very large clsstehich can
explain this variability over Q.

A further visual analysis, consists in studyingigons of F and
Q while keeping D invariant. To provide an overviefvgroups of
algorithms exhibiting satisfactory results over @g start by
removing CMJA from the analysis, because its spp#iefs not only
do not fit the task, they also interfere with oWlerain/max values.
We further focus on remaining algorithms on SIG1D66e Figure 2
(top). The intervals of values for each axe arematically updated
to reflect new min/max values after CMJA min/maxues have
been removed and axes are automatically scaledrdiegty.
Differences between remaining algorithms becomeeés identify
and algorithms with similar behaviors along Q cam \bsually
grouped in six groups (cf Figure 2 - middle): (@jomap and ncut
(k=37), (2) Spherical 37 means and 37 means, (3)LB&hd Linlog,
(4) 6 Means, NCut (k=12, 11), Spherical 6-meanp1(512 Means,
Spherical 11-12 Means and (6) CNM and nCut (k=6).

Table 3. Average Rankings

Algorithm | MQ | PERF | COV | CUT | COND | MOD | Average
CNM | 450 | 433 | 1.66 | 4.50 3.16 233 3.41
BGLL | 4.16 | 3.16 | 3.50 | 3.00 333 2.00 3.19

CMJA | 1.00 | 4.50 | 2.83 | 350 3.16 6.00 3.50
InfoMap | 2.16 | 1.33 | 5.00 | 1.83 4.33 4.00 3.11
LinLog | 433 | 3.66 | 2.50 | 3.83 333 1.50 3.19
K-Means | 3.83 | 2.83 | 3.66 | 2.50 2.16 | 4.16 3.19

The two groups (2) and (5) are not Pareto optirmadesthey are
dominated respectively by group (1) and (3). Howetlee diagram
also shows how similar the results of group (5) amdup (3)
correlate. Considering the important differenceswken their
algorithmic approaches this result cannot posshi#yfound with
methodologies only based on the comparison of Facheristics.
Removing non Pareto optimal groups of algorithnsults in Figure
2 bottom diagram that shows the Pareto set fod#taset sigl0000
grouped in 4 categories of algorithms.
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Figure 2:Parallel Coordinate Diagrams for SIG10000 without CMJA: detailed view of results (top), clustered view of
results (middle), clustered view of Pareto set (bottom).



The first group is optimal for MQ, Perf and Conec8nd group
optimal for Mod. The third group is not optimal fany criteria but is
not dominated on all criteria by any other grouytetestingly, this is
the only group where the grouping of the resultsassistent with
the similarity between the algorithmic approachesstly, the fourth
group is optimal in terms of Cov/Cut.

A second analysis aims at comparing quality cateaver
datasets. Average ranking according to each aitefialgorithms
tested on all datasets is summarized in Table3.a@dt1/Cov are
strictly covariant, because Cov can be consideseth@ normalized
version of 1/Cut.

Analytical definitions of Cov and Mod further sugg¢hat these two
criteria are partially correlated. As mentionedliear Mod can be
considered as a measure of Cov corrected by rand@bis.can be
confirmed by the empirical results. Spearman’s elation is

considered poor compared to the second. The fattMi® accounts
for the number of clusters prevents it from thatsbi Also,
experiments showed no correlation at all with ciatsuch as Cov or
Mod and these results suggest that using MQ captdiféerent
aspects of the quality of clustering. Using MQ onginction with
Cov can be useful to balance other biases sucforasxample, the
bias coming from varying numbers of cluster.

Perf is probably the most debatable criteria amboribsse
reported in this paper. Perf captures the numbearmis compared
to a clustering that would ideally lead to a diseected set of
cligues. However, the fact that the computatiorPeff computes a
ratio of the number of errors (between edges ansking within
edges) over the total number of possible edgesleam to very
misleading interpretations in many real situatioRer example,
previous experiments showed that random clustezarg get better

computed for each pair of criteria over all datasetd reported as a Perf ratings than other clustering algorithms.

graph where nodes are criteria and weighted edmyesspond to the
average Spearman's correlation for all datasets Kggure 4). The
partial correlation between Mod and Cov is alsdblgsin Figure 6
where the two Mod and Cov axes are juxtaposed.

Figure 4. Spearman Rank Correlation on Quality Measures

Cut and Cond use ratio of between-edges over witiges. Cut
has a global computation of the ratio, whereas Cand only
computes the ratio at the cluster level but alsesicters only the
minimum number of within-edges in each cluster.sTtifference
between the two criteria has an important impactherfinal results.
Spearman’s average correlation between Cond anis@u.20. Most
parallel coordinate diagrams show that there apssings between
Cond and Cut but not too many, confirming a partielation
between the criteria. Note that Cond and Cut aetily two criteria
that have to be minimized and not maximized. Tloeeef
Spearman’s correlations have been computed withtld@d 1/Cond
instead of Cut and Cond. It is also the reason wayhave reversed
their axis in the parallel coordinate diagrams tsat for all criteria
best values are on top, worst values at the bottom.

Mod

[-0,45;0,32] Ccut

Cov 043;1]

[-0,32;-0,25]

Figure 5: Groups of criteria

The particularity of MQ, is that it explicitly acaats for the
number of clusters. The number of clusters cleampacts the
number of possible between-edges and thereforevitrall values of
other criteria. When comparing clustering with vedjfferent
numbers of clusters, MQ is very useful. Other catecan exhibit
severe bias. For example, in the extreme case wheadlestering
results in a single cluster, and is compared to wchmbetter
clustering that provides 10 clusters, no betweegeedlill be found
in the first clustering and most criteria will coatp a high quality
measure despite the fact that the first clusteriesults can be

MQ Cov.

Spherical 173-Means

Spherical 57-Means

(‘infoMap

NCut (K=172)

172-Means

25-Means

M Cov.
Spherical 173-Means P " .

Spherical 57-Means

)
.
°
.
H

((nfomap )

NCut (K=172)

172-Means

LinLog
NCut (K=56)
BGLL

Spherical 25-Mean:

CNM

Spherical 26-Mean:

25-Means
NCut (K=25.

56-Means

InfoMap

I'g/ﬂl

NCut (K=172;

LinLog
NCut (K=56)
BGLL *

CNM

NCut (K=25,

Figure 3: Parallel Coordinate Diagrams for Evaluating the Quality of
Algorithms on JDM2000

From the analysis of both analytical definitions asiteria and
ranking of the selected sets of algorithms oversttlected data, we



can extract groups of criteria. Figure 5 depictseeehgroups an
edges between groups is labeled with min and maawrage
Spearman's correlation on all datasets and for paghof criteria
with one criteria in each group. For example, M@dt and Cov ar
considered to be part of the same group with bet-0,32 and -0,25
correlation with MQ.

A third visual analysisims at comparing clustering results
JDM2000 with specific quality criteria in mind. Wfocus on
algorithms with best values for dd (Figure 3, top) and find foi
clustering algorithms : NCUT(K=56), CNM, BGLL andrnlog.

Now, we consider that worsehes for Perf are problematic
we remove CNM from our selection and further coesithe grouy
of three remaining algorithms NCUT(K=56), BGLL ahthlog as
our reference (Figure 3, middle). We further remallealgorithms
that have results below therf@mance of the reference group ¢
we keep the remaining algorithms of Figure 3, butt

Two sets of algorithms are available (see Figurbddiom): the
reference group (NCUT(K=56), BGLL and Linlog) andn
alternative group with behaviors potentiallyeful in case of a sligl
change in the quality criteria selection: Infomalut (K=251 anc
K=172) and CNM. Indeed, if we consider the presgialiscussiot
and the groups of criteria extracted from the pesistudy, it i
obvious that the reference atgbhms of Figure 3 correspond to t
family of criteria Mod-Cut€ov depicted in Figure 5. However ti
reference group is really poorly ranked comparethéoalternative i
we consider the criteria of the two other groupg, MQ, perf anc
cond. Considéng that these criteria are also of importance
imply that Infomap and nCut (K= 172) are good aleive choices

7 EVALUATION TooOL

The results previously exposed are obtained thamksur system
namedMUSCA (M ulti- Scale Application for Graph Visuzzation).
Three different types of functionalitiese available irMUSCA: (1)

transformation and clustering of heterogeneous, afacomputatior
of metrics and chartfor each dataset, (3) visuexploration and
interaction with experimental results.

Architecture.  MUSCA is a distributed system mair
implemented in Java. The application makes possitdeupload b
different users of datasetbcated on th Web. Datasets are
referenced in a MySQL databased shared among experiments
users. Datasetswd results from clustering algorithms encoded in
GraphML format. This formatvas chosen because it can enc
both the representation of directed graphs, undirecteaphs,
multivariate graph(used to store original datasets) aclustered
graphs, hierardbal graphs, compound graphs (used to store re
of clustering algorithms applied on datas. Necessary
transformations of datasets from Graphhito the input format of
the studied clustering algorithms as welltlas interpretation of th
algorithms output formats are all procesdgdVIUSCA.MUSCAIis
extensible to enable the integration of additidagbuts, clusterin
algorithms, graphical elements, etc.

JDM Undir

P

CNM Clustering { ‘ LinLog Clustering ‘ { MCL Clustering

Figure 7: A Sample of Transformation Tree

Transformations. Datasetsare organized following a tree
transformations where each node is a dataset and each
represents the transformation appliedhte parent nodto generate
the child node. Figure Presents a sample stree with a dataset
named “JDM20” transformedo an undirected graph arfurther
transformed into threeclustered graphs using three differ
clustering algorithms.

Computation of metrics. For each dataset the computation of
metrics is done once for all. The system architectmplies that :
dataset will be never modified. Indeed, all time thensformation:
build new datasets, keeping the previous one inladhis case, th
computation of the metrics of each dataset canobe dnce and ce
be stored in the database in order to make iilable instantly for
the other users.
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Figure 6: MUSCA environment
Visual Analysis. Visual analysis over both datasets

experimental results can be performed either bypgusinselberg’s
diagrams or style-shebased views. The resulting zoomable vit
are displayed in the central part of MUS. For example, a style-
sheet based view of the results of a clusteringratgn on JDM200(
using a simple stylsheet is displayed in Figure 6 (top) while
Inselberg'sview can alternatively be displayed to represeatsame
results using quality criteria and parallel cooedeinstead. A set «
style-sheets displayed the rightwindow of MUSCA (see Figure 6)
canbe applied to compatible datas and make the graphical coding
of the datasetzompletely configurab. Thanks to a style-sheet
language described in [3jew style sheets can be created and a
to MUSCA to providenew types of display

8 LESSONS LEARNED AND PERSPECTIVES

In order to compare clustering resultwe have proposed a
methodology. We make the hypothesis that the eaptor space i
potentially chaotic as soon as we consider real meeds an
therefore casider interaction between the four dimensions TQ[
and F of the evaluation space.

Amongst the results that can be extracted fromctme study
some are very specific to the parts of T, D, Q Rrithat have bee



studied but other can probably be generalized. fifse group of

criteria mod-cut-cov (Figure 5) has analytical grds so it can be
expected to generalize to most cases even thowghehaviour of

mod and the rest cut-cov might be different on sdatasets. Future
work could be useful to see how the two other gsogeneralize to
other datasets. Another issue is to investigatetivénghese groups
of criteria correlate or not with some quality estion made by
experts. Such an approach can be performed eitheegroducing

similar experiments with benchmarks containing han@uster

evaluation [23]. More generally, studying how résudomputed on
benchmarks correlates with results computed onagdloc datasets
is also left to future work.

Another important result from our case study isekhibiting
groups of similar algorithms according to their &ebur with the
studied datasets and criteria. How these grougjegsralize to other
datasets is left for future work. However, the fabat similar
clustering approaches can exhibit important vameti given our
datasets and criteria, and that conversely, difterelustering
approaches can behave similarly according to theesdatasets and
criteria suggests that the methodology chosen is paper is
worthwhile.

Another preliminary finding worth considering fartéire work is
that our results suggests that Cov and MQ usednjunction could
probably capture most of what the six selecteciiatcould capture
altogether considering the dataset and criteridiestuin this paper.
Finding the minimal set of criteria given a setcdferia is probably
an open issue in the general case. However, ektghidundancies
amongst different criteria as well as importantcdminating power
of combinations of several criteria is probably tbaiseful and
generalizable to other datasets.
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