D. Abramson, B. Bethwaite, C. Enticott, S. Garic, and T. Peachey, Parameter Space Exploration Using Scientific Workflows, Computational Science ? ICCS, pp.104-113, 2009.
DOI : 10.1007/978-3-642-01970-8_11

E. Bickel and R. Bratvold, From Uncertainty Quantification to Decision Making in the Oil and Gas Industry, Energy, Exploration & Exploitation, vol.1, issue.2, pp.311-325, 2008.
DOI : 10.1260/014459808787945344

L. Bouganim, D. Florescu, and P. Valduriez, Dynamic load balancing in hierarchical parallel database systems, Proceedings of the 22nd International Conference on Very Large Databases, pp.436-447, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00073877

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, HaLoop, Proceedings of the VLDB Endowment, vol.3, issue.1-2, pp.285-296, 2010.
DOI : 10.14778/1920841.1920881

S. Danforth and P. Valduriez, A FAD for data intensive applications, IEEE Transactions on Knowledge and Data Engineering, vol.4, issue.1, pp.34-51, 1992.
DOI : 10.1109/69.124896

E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi, Pegasus: Mapping Large-Scale Workflows to Distributed Resources. Workflows for e-Science, pp.376-394, 2007.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae et al., Twister, Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC '10, p.810, 2010.
DOI : 10.1145/1851476.1851593

E. Elmroth, F. Hernández, and J. Tordsson, Three fundamental dimensions of scientific workflow interoperability: Model of computation, language, and execution environment, Future Generation Computer Systems, vol.26, issue.2, pp.245-256, 2010.
DOI : 10.1016/j.future.2009.08.011

S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, Spinning fast iterative data flows, Proc. VLDB Endow, pp.1268-1279, 2012.
DOI : 10.14778/2350229.2350245

J. Freire, D. Koop, E. Santos, and C. Silva, Provenance for Computational Tasks: A Survey, Computing in Science & Engineering, vol.10, issue.3, pp.11-21, 2008.
DOI : 10.1109/MCSE.2008.79

G. Guerra, F. A. Rochinha, R. Elias, D. De-oliveira, E. Ogasawara et al., UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE, International Journal for Uncertainty Quantification, vol.2, issue.1, pp.53-71, 2012.
DOI : 10.1615/Int.J.UncertaintyQuantification.v2.i1.50

G. M. Guerra, S. Zio, J. J. Camata, F. A. Rochinha, R. N. Elias et al., Numerical simulation of particle-laden flows by the residual-based variational multiscale method, International Journal for Numerical Methods in Fluids, vol.234, issue.1, pp.73729-749, 2013.
DOI : 10.1002/fld.3820

M. Jarke and J. Koch, Query Optimization in Database Systems, ACM Computing Surveys, vol.16, issue.2, pp.111-152, 1984.
DOI : 10.1145/356924.356928

W. M. Johnston, J. R. Hanna, and R. J. Millar, Advances in dataflow programming languages, ACM Computing Surveys, vol.36, issue.1, pp.1-34, 2004.
DOI : 10.1145/1013208.1013209

G. Laszewski, M. Hategan, D. Kodeboyina, K. Java-cog, and . Workflow, Workflows for e-Science, pp.340-356, 2007.

E. Meiburg and B. Kneller, Turbidity Currents and Their Deposits, Annual Review of Fluid Mechanics, vol.42, issue.1, pp.135-156, 2010.
DOI : 10.1146/annurev-fluid-121108-145618

P. Missier, K. Belhajjame, and J. Cheney, The W3C PROV family of specifications for modelling provenance metadata, Proceedings of the 16th International Conference on Extending Database Technology, EDBT '13, pp.773-776, 2013.
DOI : 10.1145/2452376.2452478

J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari, and M. B. Fornarino, A data-driven workflow language for grids based on array programming principles, Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science, WORKS '09, pp.1-710, 2009.
DOI : 10.1145/1645164.1645171

URL : https://hal.archives-ouvertes.fr/hal-00677806

M. Mosconi and M. Porta, Iteration constructs in data-flow visual programming languages, Computer Languages, vol.26, issue.2-4, pp.67-104, 2000.
DOI : 10.1016/S0096-0551(01)00009-1

H. Nguyen and D. Abramson, WorkWays: Interactive workflow-based science gateways, 2012 IEEE 8th International Conference on E-Science, pp.1-8, 2012.
DOI : 10.1109/eScience.2012.6404428

K. A. Ocaña, F. Oliveira, J. Dias, E. Ogasawara, and M. Mattoso, Designing a parallel cloud based comparative genomics workflow to improve phylogenetic analyses, Future Generation Computer Systems, issue.8, pp.292205-2219, 2013.

E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez et al., An Algebraic Approach for Data-Centric Scientific Workflows, Proc. of VLDB Endowment, pp.1328-1339, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640431

M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems, 2011.

R. Reuillon, M. Leclaire, and S. Rey-coyrehourcq, OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models, Future Generation Computer Systems, vol.29, issue.8, pp.291981-1990, 2013.
DOI : 10.1016/j.future.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00840744

S. N. Srirama, P. Jakovits, and E. Vainikko, Adapting scientific computing problems to clouds using MapReduce, Future Generation Computer Systems, vol.28, issue.1, pp.184-192, 2012.
DOI : 10.1016/j.future.2011.05.025

I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for e-Science: Scientific Workflows for Grids, 2007.
DOI : 10.1007/978-1-84628-757-2

J. Wozniak, T. Armstrong, K. Maheshwari, E. Lusk, D. Katz et al., Turbine, Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET '12, 2012.
DOI : 10.1145/2443416.2443421

D. Xiu and J. S. Hesthaven, High-Order Collocation Methods for Differential Equations with Random Inputs, SIAM Journal on Scientific Computing, vol.27, issue.3, pp.1118-1139, 2005.
DOI : 10.1137/040615201