Relational Concept Analysis: Mining Multi-relational Datasets for Assisted Class Model

Marianne Huchard

To cite this version:

Marianne Huchard. Relational Concept Analysis: Mining Multi-relational Datasets for Assisted Class Model. 2014. lirmm-01075525

HAL Id: lirmm-01075525
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01075525
Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Relational Concept Analysis (RCA)

Mining multi-relational datasets
Applied to class model evolution

SATTToSE 2014

Marianne Huchard

July 11, 2014
An introduction to RCA

RCA for model evolution
 In follow-up of model evolution
 In assisting model evolution
Brief presentation of FCA – Formal Concept Analysis

A methodology for:

- data analysis, data mining
- knowledge representation
- unsupervised learning

Roots:

- lattice theory, Galois correspondences (Birkhoff, 1940; Barbut & Monjardet, 1970)
- concept lattices (Wille, 1982)
Brief presentation of FCA – Formal Concept Analysis

Contexts and concepts

- Handled data
 - entities with characteristics
 - provided with a Formal Context (a binary table)

<table>
<thead>
<tr>
<th></th>
<th>flying</th>
<th>nocturnal</th>
<th>feathered</th>
<th>migratory</th>
<th>with_crest</th>
<th>with_membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>flying squirrel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>bat</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ostrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>flamingo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chicken</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- Concept: maximal group of entities sharing characteristics
- Concept lattice: concepts with a partial order relation
Brief presentation of FCA – Formal Concept Analysis
Brief presentation of FCA – Formal Concept Analysis
Brief presentation of FCA – Formal Concept Analysis
FCA and complex data

- many-valued contexts (integers, floats, terms, structures, symbolic objects, intervals, etc.)
 (Ganter/Wille, PolailIon, ...)
- fuzzy descriptions (Yahia et al., Belohlavek, ...)
- hierarchies on values (Godin et al., Carpineto/Romano, ...)
- logical description (Chaudron et al., Ferré et al., ...)
- graphs (Liquière, Prediger/Wille, Ganter/Kuznetsov, ...)
- Multi-relational data (Priss, Hacène-Rouane et al., ...)
- etc.
A flavor of Relational Concept Analysis

Pizza
- thin : boolean
- thick : boolean
- calzone : boolean

Ingredient
- fruitVegetable : boolean
- meat : boolean
- fish : boolean
- dairy : boolean
- cereal-legum : boolean
- Veg-oil : boolean

has-topping
A flavor of Relational Concept Analysis
A flavor of Relational Concept Analysis

régina
margherita
lorraine
okonomi
mozza
emmental
cream
mushroom
dairy
A flavor of Relational Concept Analysis

Pizza with dairy
regina
margherita
lorraine

mozza
dairy
emmental
cream

okonomi

mushroom
A flavor of Relational Concept Analysis
A flavor of Relational Concept Analysis
An introduction to RCA
RCA for model evolution

Relational Concept Analysis (RCA) [HHNV13]

- Extends the purpose of FCA for taking into account object categories and links between objects
- Main principles:
 - a relational model based on the entity-relationship model
 - integrate relations between objects as \textit{relational} attributes
 - iterative process
- RCA provides a set of interconnected lattices
- Produced structures can be represented as ontology concepts within a knowledge representation formalism such as description logics (DLs).

Joint work with:
A. Napoli, C. Roume, M. Rouane-Hacène, P. Valtchev
Relational Context Family (RCF)

A simple entity-relationship model to introduce RCA

Relational Context Family

- **object-attribute contexts**
 - Pizza
 - Ingredient

- **object-object context**
 - has-topping \subseteq Pizza \times Ingredient
Relational Context Family (RCF) / object-attributes contexts

<table>
<thead>
<tr>
<th>Pizza</th>
<th>thin</th>
<th>thick</th>
<th>calzone</th>
</tr>
</thead>
<tbody>
<tr>
<td>okonomi</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>alberginia</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>margherita</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>languedoc</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>four-cheeses</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three-cheeses</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frutti-di-mare</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quebec</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regina</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hawai</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lorraine</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kebab</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>fruit-vegetable</th>
<th>meat</th>
<th>fish</th>
<th>dairy</th>
<th>cereal-leguminous</th>
<th>veg-oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>tomato-sauce</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cream</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tomato</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>basilic</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>olive</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>olive oil</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soy</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mushroom</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eggplant</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onion</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pepper</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ananas</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mozza</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>goat-cheese</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>emmental</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fourme-ambert</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>squid</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrimp</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mussels</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marianne Huchard SATTToSE 2014
Relational Context Family (RCF) / object-object context / part 1

<table>
<thead>
<tr>
<th>has-topping</th>
<th>tomato-sauce</th>
<th>cream</th>
<th>tomato</th>
<th>basilic</th>
<th>olive</th>
<th>olive oil</th>
<th>soy</th>
<th>mushroom</th>
<th>eggplant</th>
<th>onion</th>
<th>pepper</th>
<th>ananas</th>
</tr>
</thead>
<tbody>
<tr>
<td>okonomi</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alberginia</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>margherita</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>languedoc</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>four-cheeses</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>three-cheeses</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>frutti-di-mare</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quebec</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>regina</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hawai</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>lorraine</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>kebab</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relational Context Family (RCF) / object-object context / part 2

<table>
<thead>
<tr>
<th>has-topping</th>
<th>mozza</th>
<th>goat-cheese</th>
<th>emmental</th>
<th>fourme-ambert</th>
<th>squid</th>
<th>shrimp</th>
<th>mussels</th>
<th>ham</th>
<th>bacon</th>
<th>chicken</th>
<th>maple-sirup</th>
<th>corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>okonomi</td>
<td></td>
</tr>
<tr>
<td>alberginia</td>
<td></td>
</tr>
<tr>
<td>margherita</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>languedoc</td>
<td></td>
</tr>
<tr>
<td>four-cheeses</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>three-cheeses</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frutti-di-mare</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quebec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>regina</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>hawai</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>lorraine</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kebab</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Data patterns we would like to extract

Using a classification on ingredients by their categories of topping (fruit-vegetable, dairy, etc.)

▸ create groups
 ▸ The group of pizzas that contain at least one topping which is a vegetable
 ▸ The group of pizzas (four-cheese and three-cheese) that have all their topping in dairy ingredients

▸ find implications
 ▸ For pizzas: have meat ⇒ have dairy
 ▸ For pizzas: being thin ⇒ have at least dairy
 ▸ For pizzas: have only dairy ⇒ being thin
At the beginning, only the object-attribute contexts are used to build the foundation of the concept lattice family.
Given an object-object context $R_j = (O_k, O_l, I_j)$, there are different possible schemas between an object of domain O_k and concepts formed on O_l.

\begin{itemize}
 \item[*]{Existential} \hspace{1em}: an object is linked (by R_j) to at least one object of the extent of a concept
 \item[*]{Universal} \hspace{1em}: an object is linked (by R_j) only to objects of the extent of a concept
\end{itemize}

\exists and \forall are \textit{scaling operators}
RCA - Existential relational attributes

`margherita` has one topping in `Concept_10` extent: `mozza`. It has other links to other concept extents.

∃`has-topping`. `Concept_10` is assigned to `margherita`
Scaled relations with domain O_i are concatenated to K_i, the object-attribute context on O_i.

<table>
<thead>
<tr>
<th>Pizza</th>
<th>thin</th>
<th>thick</th>
<th>calzone</th>
<th>has-topping</th>
<th>Concept_7</th>
<th>Concept_5</th>
<th>Concept_6</th>
<th>Concept_8</th>
<th>Concept_9</th>
<th>Concept_10</th>
<th>Concept_11</th>
<th>Concept_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>okonomi</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alberginia</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>margherita</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>languedoc</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>four-cheeses</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>three-cheeses</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>frutti-di-mare</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quebec</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>regina</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>hawai</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>lorraine</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>kebab</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marianne Huchard
SATToSE 2014
Relational Concept Family / exists

Marianne Huchard SATToSE 2014
An introduction to RCA
RCA for model evolution

Relational Concept Family / exists

Concept_21: pizzas with at least one topping in dairy
Concept_18: pizzas with at least one topping in meat
have at least one meat topping ⇒ have at least one dairy topping

Marianne Huchard SATToSE 2014
RCA - Universal relational attributes

three-cheese has topping in and only in Concept_10 extent.

∀∃ has-topping. Concept_10 is assigned to three-cheese
RCA - Relational extension

Scaled relations with domain O_i are concatenated to K_i, the object-attribute context on O_i

<table>
<thead>
<tr>
<th>Pizza</th>
<th>thin</th>
<th>thick</th>
<th>calzone</th>
<th>has-topping</th>
<th>Concept_7</th>
<th>Concept_5</th>
<th>Concept_6</th>
<th>Concept_8</th>
<th>Concept_9</th>
<th>Concept_10</th>
<th>Concept_11</th>
<th>Concept_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>okonomi</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alberginia</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>margherita</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>languedoc</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>four-cheeses</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>three-cheeses</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>frutti-di-mare</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>quebec</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>regina</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>hawai</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>lorraine</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>kebab</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
An introduction to RCA
RCA for model evolution

Relational Concept Family / forall

Marianne Huchard
SATToSE 2014
An introduction to RCA
RCA for model evolution

Relational Concept Family / forall

Concept_13: pizzas with only dairy topping
Concept_1: thin pizzas
have only dairy topping \Rightarrow thin

Marianne Huchard SATToSE 2014
General Entity-Relationship diagram may have circuits

∃\ prefers \ ∀∃\ has-topping \ ∀∃\ has-category \ ∀∃\ is-produced-by
Example of possible learned knowledge

- $\forall \exists \text{has-category. Vegetable} \iff \forall \exists \text{is-produced-by.Organic farmers}$
- A subgroup of organic farmers prefer at least one pizza with only vegan topping ingredients and produced only by organic farmers
The RCA schema

Input
RCF: \(n \) object-attribute contexts, \(m \) object-object contexts

Initialization step
Build the concept lattice for each object-attribute context

Step \(p \)
▷ Apply relational scaling to all object-object contexts
▷ Build relational extension of each object-attribute context:
 object-attribute context + scaled object-object contexts
▷ Build the concept lattice for each relational extension

Output (fix point)
The concept lattice family obtained when no new concepts are added
A synthesis on RCA

- an iterative method to produce interconnected classifications
- converges after a number of iterations that depends on the structure
- a variety of scaling operators
- reduced structures can be used instead of lattices: AOC-posets, iceberg lattices

Tools

- Galicia: http://galicia.sourceforge.net/
- eRCA: http://code.google.com/p/erca/
- RCAexplore: http://dolques.free.fr/rcaexplore/site_web/
An introduction to RCA

RCA for model evolution
 In follow-up of model evolution
 In assisting model evolution
Context and Problematic

Environment and Territory domains

- Development of Information System involves many actors and scientists: *EIS-Pesticides*
- Meeting after meeting, the designer has to merge various viewpoints in a global UML that evolves progressively
- During the analysis phase, models are archived after each major change

Joint work with B. Amar, X. Dolques, F. Le Ber, T. Libourel, A. Miralles, C. Nebut, A. Osman-Guédi
RCA for class model normalization

- Class
- Role
- Association
- Attribute
- Operation
- Person
- Car
- UML
- RCF

Marianne Huchard
SATToSE 2014
RCA for class model normalization

Strong properties of the resulting class model

- No redundancy
- All abstractions are created
- All specialization links are present

Approach

Develop methods using the class model normal form obtained with RCA for class model construction and evolution:

- monitoring
- assisting

Marianne Huchard SATToSE 2014
An introduction to RCA

RCA for model evolution

In follow-up of model evolution

In assisting model evolution
Model evolution monitoring

Classical model indicators
The domain experts mainly used the number of elements of various kinds (classes, methods...)
▷ Do not reveal complex evolution:
 ▷ precision in the description of model elements
 ▷ level of abstraction and factorization

Proposal
Develop indicators based on the application of RCA
As RCA produces a unique normal form, our metrics are based on the comparison of these normal forms (here with configuration C1)
Evolution of the different model elements

- #Classes
- #Attributes
- #Associations
- #Elements

Marianne Huchard
SATTtoSE 2014
Lattice indicators evolution: \#Merge/\#Model Elements

The metrics based on the ratio of merged concepts:
\#Merge / \#Model Elements

- Merged Concepts have a proper extent that contains more than one element
- They merge several formal objects with the same description
Example of merged concept
Lattice indicators evolution: \#New/\#Model Elements

The metrics based on the ratio of new concepts:
\#New / \#Model Elements

- New Concepts have an empty proper extent
- They factorize formal attributes
Example of new concept

Lattice concepts

UML Classes

Marianne Huchard SATToSE 2014
Indicators on Classes : Merged Classes

▶ V5, V6 : Package duplication
Indicators on Classes : New Classes

- Progressive decrease even if the number of classes increases
- The abstraction level of the model improves
- V5, V6 : the package duplication degrades the abstraction level
Discussion

Classical metrics to analyze

- Evolution of data encapsulation (\simeq number of classes)
- Evolution of the completion of the model (\simeq number of attributes)
- Evolution of the relational aspect (\simeq number of roles / associations)

RCA-based metrics complete the analysis

- Evolution of the merged ratio indicates if identical or badly described model elements are introduced
- Evolution of the new ratio indicates the level of abstraction
An introduction to RCA

RCA for model evolution
 In follow-up of model evolution
 In assisting model evolution
Traditional RCA approach

Issue
The final model contains many merged or new elements, this is difficult to analyze to keep the relevant part
Exploration path

Fighting against possible high number of concepts to be analyzed by choosing good configurations by bringing concepts step by step

Auto path: all contexts are considered, but the process stops at each step and presents the concepts to the designer
Exploration path

Fighting against possible high number of concepts to be analyzed by using parts of the RCF

Path 1: each step considers a specific part of the RCF
Exploration path

Fighting against possible high number of concepts to be analyzed by using parts of the RCF - cumulative

Path 2: Begin by class/attributes, add roles, add associations
Path 3: A variant that begins by class/roles
Quantitative analysis: ex. with class concepts to be analyzed at each step

RCA application on Pesticides: 171 classes before, 265 concepts

<table>
<thead>
<tr>
<th>step tr.</th>
<th>Auto</th>
<th>Path 1</th>
<th>Path 2</th>
<th>Path 3</th>
<th>step tr.</th>
<th>Auto</th>
<th>Path 1</th>
<th>Path 2</th>
<th>Path 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>32</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>10 -> 11</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1 -> 2</td>
<td>13</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>11 -> 11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 -> 3</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>20</td>
<td>12 -> 13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 -> 4</td>
<td>6</td>
<td>0</td>
<td>18</td>
<td>13</td>
<td>13 -> 14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4 -> 5</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>14</td>
<td>14 -> 15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 -> 6</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>15</td>
<td>15 -> 16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6 -> 7</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td>16 -> 17</td>
<td>Auto</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7 -> 8</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>17</td>
<td>17 -> 18</td>
<td>Auto</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 -> 9</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 -> 10</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marianne Huchard
SATTToSE 2014
Class concept number evolution
Discussion

- Exploration divides the burden of the analysis
- The process is controlled by the expert
- Paths cannot be chosen by chance, cumulative paths ensure completeness
- Perspectives: define a complete methodology and tools
General Conclusion

- RCA: an opportunity for analyzing more deeply dataset composed of objects and relations
- Can be mixed with other FCA extension (to numerical data for example)
- Exploratory RCA allows us step-by-step analysis, considering a subset of the dataset and changing structures (lattices, AOC-posets, iceberg)
Perspectives

- A querying mechanism and navigation tools
- Comparing AOC-poset and lattice in the applications
- Studying effect of exploration on the method convergence
Class concept number evolution

Questions?
Michel Dao, Marianne Huchard, Mohamed Rouane Hacene, Cyril Roume, and Petko Valtchev.
Improving Generalization Level in UML Models Iterative Cross Generalization in Practice.

Jean-Rémy Falleri.
Contributions à l’IDM : reconstruction et alignement de modèles de classes.

Jean-Rémy Falleri, Marianne Huchard, and Clémentine Nebut.
A generic approach for class model normalization.

Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, and Petko Valtchev.
Relational concept analysis: mining concept lattices from multi-relational data.

Cyril Roume.
Analyse et restructuration de hiérarchies de classes.