
HAL Id: lirmm-01075534
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01075534

Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Page Personalization to Improve e-Accessibility for
Visually Impaired People

Yoann Bonavero, Marianne Huchard, Michel Meynard

To cite this version:
Yoann Bonavero, Marianne Huchard, Michel Meynard. Web Page Personalization to Improve e-
Accessibility for Visually Impaired People. WEB: Building and Exploring Web Based Environments,
IARIA, Apr 2014, Chamonix, France. pp.40-45. �lirmm-01075534�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01075534
https://hal.archives-ouvertes.fr

Web Page Personalization to Improve

e-Accessibility for Visually Impaired People

Yoann BONAVERO, Marianne HUCHARD and Michel MEYNARD

LIRMM, CNRS and University Montpellier II, Montpellier, France

bonavero or huchard or meynard @lirmm.fr

Abstract—Today’s assistive technologies aim to improve the
quality of information acquisition for visually impaired persons.
Screen readers and screen magnifiers are the main visual assis-
tive technologies that are currently proposed. However, due to
economical reasons, these technologies do not consider specific
needs of visually impaired people. In this paper, we propose
an approach to make Web pages more accessible for users
who have specific needs. User wishes, like text color, font size,
link color or even more complex wishes including wishes about
brightness or contrast are encoded as user preferences. We also
encode designer graphical choices as designer preferences. From
these preferences, a new Web page design is computed using
a resolution algorithm. We compare two distinct approaches to
make this computation: resolution algorithms from preference
theory domain and an evolutionary algorithm. The comparison
evaluates running time on automatically generated data and on
the sign in Facebook page.

Keywords-Web page, Personalization, visually impaired, evolu-
tionary algorithm.

I. INTRODUCTION

About 285 million people are estimated to be visually

impaired worldwide (39 million are blind and 246 have low vi-

sion) [1]. These figures are constantly growing mainly because

of increased life longevity due to medical advances. In France,

people with disabilities, especially visually impaired people,

use internet more frequently and have more computer devices

or interfaces than the average French sighted population [2].

Information and communication technologies are increas-

ingly used by everyone in everyday life. Unfortunately, it can

be a double-edged issue for people with visual impairment.

On the one hand, these technologies offer many solutions for

current life activities like online purchase or administrative

services. They give access to information that was previously

inaccessible. On the other hand, many issues remain, due to

the design, development and technologies used to make the

website content. As a consequence, these technologies which

are able to compensate user disabilities can also be a new

source of exclusion and discrimination.

Today’s technological environment offers numerous online

services and multiple data sharing capabilities. This data is

distributed in many places and under different formats. Data

can be a Web page, text based document, images, video,

sound, etc. Concerning websites, data is displayed on pages

according to a visual style defined by the author. The different

choices made by the designer create the graphical context

of the page which reflects the brand or the organization.

This graphical design is intended to influence the reader to

recognize, assimilate, guide, memorize a page and associate it

with the related brand or organization. It also determines the

page understanding and user’s navigation, and it is intended

to help the user in these tasks.

The W3C consortium publishes sets of technical specifica-

tions to make accessible websites. The conformity of websites

to these specifications assumes that they can be used by

assistive technologies. Tools and guidelines are provided to

developers and end users; Web Content Accessibility Guide-

line (WCAG 2.0 [3]), and other guidelines including User

Agent Accessibility Guideline (UAAG [4]), Authoring tool

Accessibility Guideline (ATAG [5]) and the Web Accessibility

Initiative - Accessible Rich Internet Application (WAI - ARIA

[6]). Organizations, like BrailleNet, have been created to

operationalize the different standards of the W3C guidelines

including “AccessiWeb”. Unfortunately e-accessibility is not a

main concern of website designers and developers. It is often

considered as a waste of time or an additional development

cost, giving unsightly results which are only targeting a small

part of the population.

Assistive technologies have existed for several years and

are widely used by disabled people. Screen readers allow the

user to get information in another communication way: vocal

synthesis or braille display are used to vocalize information or

display it in braille. Visually impaired people with low vision,

use their partial sight as the principle means to access infor-

mation. Screen magnifiers are applications that improve visual

comfort and increase information acquisition. With these tools,

it is possible to use zoom and color filters to compensate visual

issues. These tools are useful but not sufficient to ensure e-

accessibility because they have a general purpose, and they

are not adapted to specific needs. This is mainly due to an

important maintenance cost to maintain compatibility with

some applications like browsers, and to after-sales technical

issues.

In this paper, we address the problems of adapting Web page

design to the specific needs of a visually impaired person. Our

approach proposes replacing the current pixel-level treatment

process (in magnification filters) by an adaptation process

based on the knowledge of the HTML element types and their

properties. The adaptation is performed from a set of user

wishes also called preferences. These preferences are the basis

for a dynamic adaptation. Firstly, the users specify their spe-

cific needs in terms of wishes. Then, some Web page elements

are adapted by solving the preference set. In Section II, we

explain how existing visual assistive technologies work, and

we highlight their main drawbacks. Section III presents our

approach in detail and proposes a user wishes representation.

We present in Section IV the user’s preference theory as a

basis of this work. We develop in Section V a new approach

allowing us to deal with real simple pages. We conclude in

Section VI.

II. EXISTING WORK AND PROBLEM STATEMENT

In this section, we explore several hardware and software

solutions developed to improve website accessibility for visu-

ally impaired people with low vision. We distinguish between

two main categories of approaches and tools. Some of them

are used as development tools whilst others are used by end-

users.

The World Wide Web Consortium (W3C) is the origin of

HTML and CSS standardization. It also works on accessibility

via several initiatives including the Web Accessibility Initiative

- Accessible Rich Internet Application (WAI-ARIA [6]). These

standards have evolved through many versions to address

the emergence of new technologies. They have two main

objectives. The first is to ensure that resources can be parsed

and used by external assistive technologies. The second is

to provide a minimal access to contents for people who

don’t use assistive technologies. These standards do not target

a specific programming language (HTML, JavaScript, CSS,

etc.). In addition to the standards, guidelines like WCAG [3],

UAAG [4] or ATAG [5] framework and tools are published to

ease the use of the standards. We can mention “AccessiWeb”,

developed by the BrailleNet organization which provides a

simple operational interpretation of standards. The rules and

standards are classified according to their importance in mak-

ing websites accessible. Three increasing accessibility levels

have been defined (A, AA and AAA). The first level (A) gives

basic mandatory advice to ensure information accessibility.

The second level (AA) notifies important recommendations

to be respected to avoid difficulties in accessing information.

The third and latest level (AAA) is about additional and

optional ways to improve information access quality. When

Web designers and developers include accessibility dimension

in their websites, they mainly try to reach the intermediary AA

level. Only a few websites which are very specialized require

the highest level AAA.

Many existing tools allow developers to improve accessibil-

ity of their websites. These tools analyze the HTML source

code and automatically rewrite it, or assist the developer

to correct it in accordance with the standards [7]. These

tools can be split into two categories: evaluation tools and

transformation tools. The main drawback of these tools is

that they do not permit adaptation for all user’s needs. Some

user needs can contradict each other. Conflicts can appear

due to dependencies between needs. Consequently, automated

evaluation and transformation tools can only assist developers

to reach a general scope accessibility but are limited to

implementation of the minimum recommended by standards.

Some kinds of applications which are improving accessibil-

ity tools are available to get information from websites and

report it to the user through another communication protocol.

For example, for users with low vision, it is possible to retrieve

information by transforming visual output with magnification

applications or accessibility browser options and extensions.

Magnification programs allow the user to zoom on windows.

Some of them propose font smoothing to avoid blurred char-

acters, and mouse pointer modification to improve tracking

movements. As a last example, magnification programs can

apply filters on the window. Filters include “grey scale”, “one

color scale”, “black and white”, or “color inversion”. The

browser options and extensions enable us to manipulate style

sheets. It is possible to completely remove style sheets or to

define a unique style sheet that will be applied to all Web

pages. To facilitate modifications, many browsers provide a

graphical interface to help configuration of such properties as

background color, text color and size or link color.

With the two solutions defined previously (screen magnifier

and style sheet redefinition), we can theoretically adapt almost

all pages to be suitable for a large part of the impaired popu-

lation. However, in practice it is more complex. These pages

could be even better modified for the population, and there is a

requirement for additional tools to meet more needs of visually

impaired people. For various reasons, the existing solutions are

not suitable for everyone. For example, magnification tools

perform treatments on global images. Hereafter, we develop a

small practical example.

Text
Text

Text Text

Text
Text

Text Text

Ct=2.5
Ct=2.5

Ct=2.5 Ct=1

A
B

C D

Ct : Contrast
A : Original
B : grey scale filter

C : invert color filter
D : black & white filter

Figure 1. Filter application

Figure 1 illustrates in A an original text and its background.

In B, we apply color inversion to A; C is obtained by applying

grey scale filter to A; D is obtained by applying black and

white filter to A. The contrast between two graphical elements

is a value between 1 and 21, 1 is the null contrast and 21 the

maximum contrast. The problem is that if there is low initial

contrast between text and background, a filter cannot increase

it to improve readability, except the black and white filter.

However, in the “black and white” filter case, if both text and

background are too light or too dark, both will become equal

to white or dark. Thus the contrast is reduced to 1. This is

due to the conversion threshold of the application when all

elements are both below or both higher than this threshold.

To avoid this, the filter software should have an adjustable

threshold but this is not often the case in practice.

The most currently used browsers have modules, extensions

or simply options to transform Web pages. This is based on

style sheet rewriting or disabling. Disabling the style sheet

only keeps the content, and a lot of information about the

context of the page, the brand image, etc. is lost. An incon-

venience of this solution is that if developers don’t respect a

proper separation between source code and style sheet, several

problems of overlap, missing, or unreadable information can

occur. Style sheet rewriting is another alternative where the

page design is changed. In this alternative, the user can define

some properties like text color, background color, link color.

More advanced users can define their own style sheet and

use it for all the Websites they browse. This solution allows

the user to keep the page layout and to change properties

such as colors, but the context is still lost when important

modifications have been done in order to compensate the user

disabilities. Moreover, in this solution, the user often has to set

many properties, including text color, link color, visited link

color, hovered link color, title level 1 color, title level 2 color,

etc. As a result, he has to manipulate a set of technical terms

and a lot of options, and this task often is cumbersome and

time consuming. Furthermore, these property changes have to

be done through interfaces that may be difficult to manipulate

by an impaired person.

Beyond these modules or extensions, some more evolved

proposals try to enhance them with the widest physical char-

acteristics configuration support [8]. In these applications, real

time transformations are applied on Web pages in order to

address these needs. These end-user side applications allow the

user to configure text properties such as size, letter spacing,

or line spacing, colors of the text, background and links. They

also allow the user to configure the image display (show or

hide) and table display. Once the modifications are applied,

almost all information about website colors may disappear.

Then, the chosen site ambiance may be lost. In our approach,

our objective is to adapt a page in accordance with its original

appearance, with its structure and with the user’s preferences.

Even if some navigation problems can be avoided when

webmasters respect all standards, statistics tell us that less than

10% of public websites would be fully accessible [9]. Other

problems only depend on user vision. For example, if a user

needs to have a dark text on a light background and if the

page already contains both situations which are one menu with

light text on dark background as well as a dark text on a

light background, it is impossible with classical filters to get

a relevant adaptation. If we use inversion color filter to make

the menu accessible, the page content becomes inaccessible.

Moreover, this kind of manipulation can generate dazzle from

other parts of the website.

This last example shows us that it is not relevant to deal with

a global image. To adapt the previous page we have to split

it into two parts, the menu and the content, thus considering

the type of the manipulated elements. We propose in the next

section a new approach to separately process page elements

according to their semantics.

Two research works close to ours deserve to be mentioned.

In [10], authors propose to configure Web page display ac-

cording to user actions and behavior. In our case, we want to

propose an accessible Web page using user’s needs considering

the initial page. In [11], they propose to personalize Web

display (shopping gallery) to a specific user or user group.

The analysis of user usage on existing websites allows user

pages to be shown with different structure and navigation. In

our case, we want to apply adaptation in the client-side on

original pages which initially are identical for all users. Our

approach is led by all these observations and aims at proposing

a personal adaptation following the wishes of users. The main

principles of this approach are developed in the next section.

III. OUR APPROACH

We aim to develop a general approach which is independent

from specific pages and which is able to respond to any

specific user’s wish. This new approach attempts to solve the

principles problems shown in the previous section.

To solve the global treatment problems described in section

II, our approach considers the following four components:

Objects and properties (HTML elements and style) of the

page written in the HTML and CSS files; Variation points

(for example the color of a specific element); User’s wishes;

Algorithms for finding an adaptation from initial Web page

according to the user’s wishes.

Web pages are composed of HTML elements. These ele-

ments are organized within a tree structure. Each element has

physical properties that determine its appearance, including

its size or its color and more abstract properties that define

the element type (menu, content, image, etc.). From HTML

5 version, there are tags to describe semantic types including

navigation blocks (menu), articles, sections, Thus, if the

page is implemented in HTML 5, we have adequate high-level

information, but where the page is written in an older HTML

version, it is necessary to detect some important parts of the

page particularly the menu and the main content section.

We define a set of objects {O1, O2, .., On} that represent all

HTML elements that are important in the page modification

process. Elements that will not be updated or that will not be

used in computing are excluded from the object set.

The variation points are a set of variables {V1, V2, .., Vm}
induced by properties which are either basic properties written

in the HTML or CSS files, or computed from these basic

properties. For example, height, width or color are basic

properties found in the HTML or CSS files, while area is

a computed property derived from height and width.

To be able to change the value of the red color component

of an object, a variable is added to the variation points. This

variable domain is the value set of the red color component

of the object. A pair composed of an object and a feature is

associated with one and only one variable.

On these variables, a user can make choices that are called

preferences or wishes {C1, C2, .., Ck}. For instance a user

can say: “I prefer light background to dark background for

the main body page”. This preference only concerns the main

body background and ignores the background of other page

elements. With this page element segmentation we can define

different preferences for each object. All choices made on

one or more variables constitute user’s preferences. The main

difference to existing work using user’s preferences is that our

preferences are not direct values for features like in [8], but

constraints to determine such values.

We have considered different levels in the description

of preferences. The basic preferences are represented as

Vi op xi >p Vj op yj , where Vi and Vj are two variables

(with possibly Vi = Vj), >p the preference symbol (A >p B

means A preferred to B), op is a boolean operator like = and

xi (resp. xj) is in the domain of Vi (resp. Vj). To represent

the user’s wish “I prefer black text to blue text”, we use the

variable cT to represent the color of a text object T . The

domain of cT is {white, red, blue, black}. The user’s wish is

expressed as: cT = black >p cT = blue.

This representation can be improved by adding conditional

preferences to be able to represent: “I prefer bold font to

normal font if the font color is yellow”. Here, we introduce a

new variable wT for representing the weight of the text, and a

new operator ’:’ to represent the condition. This wish can be

represented as cT = yellow : wT = bold >p wT = normal.

This representation is considered in Section IV. In this paper

we do not explore how to obtain the user’s wishes. It is another

research element that will be explored in future work. For

example, we may be able to ascertain a user’s wishes using a

preference learning algorithm.

We also explored in Section V another extended represen-

tation in which we use any complex function on variables and

their domain values. This allows us to express wishes like

“I would like to have a text size higher or equal to 14pt”

or “I would like to have a contrast between text and direct

background higher or equal to 50%”. In this last example, the

contrast is a binary function. It represents a distance between

the colors of the two objects: the text T and the body B.

We define two variables, cT that represents the text object

color and cB that represents the text body color. We define

a contrast function contrast(x, y) that returns the contrast

between x and y. The result of this function is compared to a

user specified domain value, giving a complex wish, which is

an evaluable expression: contrast(cT , cB) ≥ l where l is the

required level.

We evaluated the size of the input data of our approach on a

few sample websites. Depending on the Web page, the number

of variables representing HTML elements associated with a

basic feature can vary from around 10 to hundreds for the

biggest websites. For example, among most visited websites,

the “Facebook” registration page will be represented in our

system by about 40 variables to implement the preference:

“contrast between text and direct background higher or equal

to x”. For this preference we have to extract all text elements

and their direct backgrounds, making contrast variables. For

the Google search page (not the result page) we obtain around

17 variables, while for “BBC News” home page we obtain

around 200 variables. These values are rounded because large

parts of websites are dynamic and have different elements each

time a page is loaded (these computations have been made on

november, 14, 2013).

Domains of variables may have several dimensions. For

example, the text size variable domain generally has about

10 or 20 values. By contrast, the color variable domain can

reach 224 values in a true context. The number of variables

depends on the type and the complexity of the given user’s

preferences.

In the next section, we introduce preference theory as a the-

oretical framework for solving our problem. This theory also

provides a comparative basis for another solving algorithm.

IV. PREFERENCE THEORY

The first approach that we considered to solve the adaptation

problem is the preference theory approach [12]. In this section,

we explain how user’s preference theory can solve Web

page adaptation problems and we outline the main resolution

process. We also explain why a direct implementation of this

approach does not scale in our context.

Many representations [13], [14], [15] allow formal descrip-

tion of user’s wishes for solving different problems. Most

of the approaches rely on basic and conditional preferences

as defined in previous Section III. In our context, general

preferences like "something preferred to something else" may

have to be duplicated. For instance, for a text size variable

V and its domain {6, 8, .., 14}, if the value 14 is preferred

to the others we have to create the following preferences:

V = 14 > V = 6, V = 14 > V = 8, V = 14 > V = 10,

V = 14 > V = 12. The approach works on two data sets. The

first set groups all variables, while the second set gathers the

user’s preferences. Two ways of solving and finding solutions

exist: an explicit resolution or an implicit resolution.

In explicit resolution, the first step consists of creating all

possible adaptation solutions. In our context, this consists

of creating all combinations of valued Web page properties.

A solution is a set of valued variables, where each defined

variable has a value. For example, if we only have the two

variables cT for text color and cB for background color, a

solution may be {cT = blue, cB = white}. The next step

consists of producing for each preference, a pair of sets where

the first set contains solutions satisfying the preference and

the second contains solutions that satisfy the complementary

preference. Solutions that do not satisfy the preference or

its complementary are not included in the sets. For pages

with over 10 elements of 10 or more values in domain, it

is impossible to process this first generation step in a short

time. By short time we mean an additional time to the page

loading time that can be accepted by the user. If the user has

to wait too long for each page to load, the application based

on this approach will rarely be adopted. We implemented this

solution to evaluate its feasibility.

The implicit resolution is slightly different. All combina-

tions of variable sets and values don’t need to be generated.

Preferences are given in intent (using a description in a

formula in propositional logic) and the resolution uses these

intents as input parameters. Ultimately, we obtain a partially

ordered set of expressions which describe the solutions. An

example of such expression, for representing “a blue text

and a minimal contrast of x% between text and background

color” is cT = blue ∧ contrast(cT , cB) ≥ x. The initial

resolution process is faster than the previous one. However,

the difficulty has just been delayed. Now, a partially ordered

set of expressions is produced, and we have to find in the

whole set of solutions if a solution exists and if this is the

case, which solutions correspond to these expressions. If top

solutions contain a computed part like contrast(cT , cB) ≥ x,

then we have to calculate the contrast for each solution to

determine if it has the required level.

The preference theory approach gives the best solutions in

adapting Web pages but we show in the following section

that, with a direct implementation of the approach, the running

time exceeds what a user may find acceptable. Nevertheless,

preference theory provides a theoretical framework and an

initial way to achieve adaptation solutions. In the next section

we present a second approach that allows us to deal with

practical cases.

V. AN EVOLUTIONARY ALGORITHM BASED APPROACH

In order to face the scalability issues, we considered defining

our problem as an optimization problem and to adopt a meta-

heuristic approach. An evolutionary algorithm has been chosen

to cross the whole solution set in order to find a “good”

solution, using a set of basic modifications on a solution.

These basic modifications must allow us to potentially reach

any solution of the whole solution set, but only part of the

solutions will be explored in order to reduce the computational

complexity. Basic modifications are implemented by operators

including selection, crossover or mutation. The chosen algo-

rithm processes a local search trying to reach a best local

solution.

Among evolutionary algorithms, we chose the Non dom-

inated Sorting Genetic Algorithm II (NSGA-II [16]) which

is a multi-objective genetic algorithm (MOGA). This feature

allows us to separate basic objective functions into differ-

ent main objectives and to obtain multiple Pareto-optimal

solutions. NSGA-II is the evolution of NSGA [17], and it

mainly reduces the complexity of the previous version. It has

a computational complexity of MN2 instead of MN3 where

M is number of objectives and N is the population size. A

population is a set of solutions evolving through operators

along algorithm execution.

NSGA-II is an iterative process. At the first iteration we

create and randomly initialize a population P0 that contains

N solutions. Duplicated solutions may exist. Each individual

is rated by objectives functions. We sort the population based

on non-domination to obtain several solution groups called

fronts. Rank one is assigned to the first front (solutions not

dominated by any other solution), rank two to the second

front (solutions dominated only by solutions of the first

front) and so on. To each solution is assigned a distance

value called crowding distance [18], which maintains diversity

between the solutions. This distance is used by the selection

operator to select solutions that may evolve thanks to crossover

operator and mutation operator. The new population obtained

after application of the operators is called offspring O. We

compute the objective functions on each individual of O. The

union operator combines the previous population P0 and the

offspring O to get a doubled size intermediate population.

This intermediate population is reduced by keeping the N

best solutions in terms of non-domination to give the next

population P1. This is repeated until the termination criteria

is achieved.

In our context, we represent a solution as a list of valued

variables. For example {V1 = x, V2 = y, V3 = z . . . } where

V1, V2 and V3 are three variables. x, y and z are respectively

in the domains of V1, V2 and V3. The crossover operator

builds a new solution by composing two parent solutions. The

new solution is composed of odd variables of the first parent

solution and even variables of the second parent solution. For

example, if the first parent is {Vi1 , Vi2 , Vi3 , Vi4 , Vi5 . . . } and

the second parent {Vj1 , Vj2 , Vj3 , Vj4 , Vj5 . . . } the crossover

operator builds {Vj1 , Vi2 , Vj3 , Vi4 , Vj5 . . . }. The mutation op-

erator randomly chooses which variables of a solution will

be mutated and assigns to these variables a value chosen

randomly in their respective domains. The selection operator

is based on crowding distance to select the solutions leading

to the next population.

As said previously, such an algorithm does not compute the

whole solution set. Rather, selection, crossover and mutation

operators enable us to compute solutions in the neighborhood

of the current considered solutions, trying to reach solutions

that improve the objectives. In this approach the complexity

induced by the huge number of adaptation solutions can be

highly reduced. We implemented this NSGA II version in C++

in order to evaluate its scalability on our problem. Table I

shows and compares on several datasets (A, B and Facebook)

the running time of our implementations of the algorithm of

preference solving and of the evolutionary algorithm NSGA-II.

For the NSGA-II implementation running time, these results

are the average of 400 executions. The results of Table I have

been obtained on a common laptop with quad core (2.6Ghz)

microprocessor assisted by 8GB of DDR3 RAM.

Table I
RUNNING TIME OF PREFERENCE THEORY ALGORITHMS AND NSGA-II

❳
❳
❳
❳
❳

❳
❳❳

Data
Algos

Pref. algos NSGA-II

A 6 mn < 1 ms
B > 24h 500ms

Facebook > 24h < 500ms

The two first datasets A and B have been automatically

generated in order to represent data that may be found in very

simple Web pages. A dataset is composed of only 6 variables

with 6 values in each domain. Some simple preferences

were given between two values of the same or of different

variables. In this case, preference theory algorithms (explicit

approach) have to generate the 66 solutions, which gives a

running time of 6 minutes. Meanwhile, NSGA-II algorithm

can find a “good” solution in less than one millisecond.

Each objective function returns for a solution a quality value

corresponding to one criterion. A good solution is a solution

that satisfies all the user’s wishes but is not especially the best

one regarding objectives. Best solutions have the optimal value

for all criteria. The second dataset (B) is also an automatically

generated dataset with 8 color type variables and 32768 values

in their domains. Here, with the first approach (preference

theory), there is a combinatorial explosion (327688 solutions

to be parsed) and we cannot obtain the results in less than

one day, while only about 500ms are necessary for NSGA-II

algorithm to get a good solution.

The last dataset is derived from the real Facebook home

page which is accessed when a user is not authenticated

(registry page). We consider the wishes “contrast between

text and direct background is higher or equal to x%” with

x = 40%. The variables correspond to the text elements

and their direct background. We obtain 36 variables and 24

binary relations representing wishes, and we consider 215

domain values. The running time tends to be lower than

the B case. The strong dependencies here, between variables

(many texts have the same background element then the

same associated background color variable) may explain the

short execution time. Population evolution through the chosen

operators appears to work better in this case.

The results obtained using a direct implementation of the

preference theory approach (explicit resolution) are disappoint-

ing, and we expect that implementing the implicit resolution

would produce similar results, because the implicit resolution

just moved the difficulty (generating all solutions) to the end

of the resolution process. As the best solutions are described

by an expression, we have to search these concrete solutions

(if any exists) in the whole solution set, leading to a huge

computational time. Fortunately, the results with NSGA-II are

very encouraging. They show the feasibility of the approach on

simulated data and on specific user preferences, corresponding

to a common case of visual disability.

VI. CONCLUSION

Existing assistive technologies help visually impaired peo-

ple in accessing information. However, they do not provide

fully relevant solutions for all kinds of visual disabilities and

they can radically change the website appearance. To address

the problem of adapting Web pages to specific needs, we

investigated the use of the theoretical framework of prefer-

ence theory. Nevertheless, while implementing the explicit

resolution approach, we faced a scalability issue. It is worth

noting that future research on preference theory may solve

this problem. Then we explored the use of the evolutionary

algorithm NSGA-II as an alternative approach. Even if they

still require confirming on more datasets, the initial results are

encouraging.

As future work we plan to investigate other resolution

approaches. We plan to model our user’s wishes as a Constraint

Satisfaction Problem (CSP modelling) and to evaluate the

performance of the existing constraint solvers in our context.

Since our target is helping people with visual deficiency,

we will test the approach on many frequently accessed Web

pages and we will study how to facilitate the expression of

preferences by the end users. An experimentation with visually

impaired persons will be organized.

Acknowledgments The authors would like to thank Berger-

Levrault which supported this work with a grant and Martine

Hornby for her assistance in english revision.

REFERENCES

[1] “Visual impairment and blindness, fact sheet n°282,” World Health Org.,
http://www.who.int/mediacentre/factsheets/fs282/en, oct., 2013.

[2] G. Montagné, “Visually impaired and blind persons insertion in to-
day’s world (l’inclusion des personnes aveugles et malvoyantes dans
le monde d’aujourd’hui), in french,” Rapport pour le Ministère du

travail, des relations sociales et de la solidarité, 2007, http://lesrapports.
ladocumentationfrancaise.fr/BRP/084000321/0000.pdf.

[3] Web Content Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/WCAG20/.

[4] User Agent Accessibility Guidelines, World Wide Web Consortium, http:
//www.w3.org/TR/UAAG20/.

[5] Authoring tools Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/ATAG20/.

[6] Web Accessibility Initiative - Accessible Rich Internet Applications,
World Wide Web Consortium, http://www.w3.org/WAI/intro/aria.

[7] M. Y. Ivory, J. Mankoff, and A. Le, “Using Automated Tools to
Improve Web Site Usage by Users with Diverse Abilities,” Information

Technology and Society, vol. 3, no. 1, pp. 195–236, 2003.
[8] J. T. Richards and V. L. Hanson, “Web Accessibility: A Broader View,”

in In WWW ’04: Proceedings of the 13th international conference on

World Wide Web. ACM Press, 2004, pp. 72–79.
[9] K. Cullen, L. Kubitschke, T. Boussios, C. Dolphion, and I. Meyer,

“Web accessibility in european countries: level of compliance with
latest international accessibility specifications, notably wcag 2.0, and
approaches or plans to implement those specifications (2009),” 2009.

[10] C. Domshlak, R. I. Brafman, and S. E. Shimony, “Preference-based
Configuration of Web Page Content,” in Proc. of Int. Joint Conf. on

Artificial Intelligence, 2001, pp. 1451–1456.
[11] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization

based on Web usage mining,” Com. ACM, vol. 43, no. 8, pp. 142–151,
2000.

[12] S. Kaci, Working with Preferences: Less Is More, ser. Cognitive Tech-
nologies. Springer, 2011, iSBN:978-3-642-17279-3.

[13] C. Boutilier, F. Bacchus, and R. I. Brafman, “UCP-Networks: A Di-
rected Graphical Representation of Conditional Utilities,” CoRR, vol.
abs/1301.2259, 2013.

[14] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole, “Reasoning with
conditional ceteris paribus preference statements,” in Proc. of the Fif.

conf. on Uncertainty in artificial intelligence, ser. UAI’99, 1999, pp.
71–80. [Online]. Available: http://dl.acm.org/citation.cfm?id=2073796.
2073805

[15] P. Haddawy and S. Hanks, “Representations for decision-theoretic
planning: Utility functions for deadline goals.” in KR 1992.
Morgan Kaufmann, 1992, pp. 71–82. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/kr/kr92.html#HaddawyH92

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multi-Objective Genetic Algorithm: NSGA-II,” 2000.

[17] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary computation, vol. 2,
no. 3, pp. 221–248, 1994.

[18] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, pp. 263–282, 2002.

http://www.who.int/mediacentre/factsheets/fs282/en
http://lesrapports.ladocumentationfrancaise.fr/BRP/084000321/0000.pdf
http://lesrapports.ladocumentationfrancaise.fr/BRP/084000321/0000.pdf
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/UAAG20/
http://www.w3.org/TR/ATAG20/
http://www.w3.org/WAI/intro/aria
http://dl.acm.org/citation.cfm?id=2073796.2073805
http://dl.acm.org/citation.cfm?id=2073796.2073805
http://dblp.uni-trier.de/db/conf/kr/kr92.html#HaddawyH92
http://dblp.uni-trier.de/db/conf/kr/kr92.html#HaddawyH92

	Introduction
	Existing work and problem statement
	Our approach
	Preference theory
	An evolutionary algorithm based approach
	Conclusion
	References

