
HAL Id: lirmm-01076138
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01076138

Submitted on 22 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subgraph Matching for Single Large Multigraphs
Subgraph Matching for Single Large Multigraphs

Anonyme Anonyme

To cite this version:
Anonyme Anonyme. Subgraph Matching for Single Large Multigraphs Subgraph Matching for Single
Large Multigraphs. [Research Report] RR-2014030, LIRMM. 2014. �lirmm-01076138�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01076138
https://hal.archives-ouvertes.fr

[Research Report]

RR-2014030, LIRMM. 2014.

<lirmm-01076138>

Subgraph Matching for Single Large Multigraphs

Vijay Ingalalli, LIRMM - Montpellier, France {vijay@lirmm.fr}

Dino Ienco, IRSTEA - Montpellier, France {dino.ienco@irstea.fr}

Pascal Poncelet, LIRMM - Montpellier, France {pascal.poncelet@lirmm.fr}

Subgraph Matching for Single Large Multigraphs

Vijay Ingalalli
LIRMM, Montpellier, France

vijay@lirmm.fr

Dino Ienco
IRSTEA, Montpellier, France

dino.ienco@irstea.fr

Pascal Poncelet
LIRMM, Montpellier, France

pascal.poncelet@lirmm.fr

Abstract—Nowadays, many real world data can be represented
by a network with a set of nodes interconnected with each other
by multiple relations (multiple edges). Such a rich graph, called
multigraph, is very appropriate to represent real world scenarios
with complex interactions. However, performing sub-multigraph
query on enriched graph is still an open issue since, unfortunately,
all the existing algorithms for subgraph query matching fail to
consider multiple edges between nodes and, nevertheless, they
cannot be directly applied to handle multigraphs. Motivated by
the lack of approaches for sub-multigraph query and stimulated
by the increasing number of datasets that can be modelled as
multigraphs, in this paper we propose SUMGRA, a novel algo-
rithm to extract all the embeddings of a query sub-multigraph
from a single large multigraph. SUMGRA is composed of two
main phases: Firstly, it implements a novel indexing schema for
multiple edges, which will help to efficiently retrieve the vertices
of the multigraph that match the query vertices. Then, it performs
an efficient recursive subgraph search to output the entire set of
embeddings for the given query. Extensive experiments conducted
on both real and synthetic datasets prove the time efficiency as
well as the scalability of SUMGRA.

I. INTRODUCTION

Nowadays, real-world data exhibits relational structure and
most of the available information can be represented as a
graph where nodes are entities and interactions between nodes
are represented by edges. Examples of such graph data are
chemical molecules, protein interaction networks, software
repositories and social networks. All these real world appli-
cations motivate researchers to focus on efficient approaches
to manage graph data.

One of the most important tasks in graph data management
is subgraph query, where the challenge is to enumerate all the
embeddings of a graph query q in a data graph g. The subgraph
query matching problem involves the decision problem of
subgraph isomorphism. While in theory it belongs to NP-
complete class, practically we can find embeddings in real
graph data by exploiting better matching order and intelligent
pruning rules. All the previously proposed approaches to deal
with subgraph query problem consider simple graphs [5],
[10] or graphs with some additional information associated
with vertices (attributes) [22]. Besides vertex attributes, there
exists additional information in the form of multiple edges
between nodes. Unfortunately, until now, no effort has been
done to solve subgraph query problem on graphs containing
multiple edges between nodes. Such kind of network structure
are defined as multigraphs, and they allow different types of
edges in order to represent different types of relations between
vertices [1], [17], [2], [8].

Many real world scenarios can be modelled as multi-
graphs. For instance, by considering different social networks

spanning over the same set of people, but with different
life aspects (e.g. social relationships such as Facebook or
Twitter, professional interaction such as LinkedIn, leisure time
such as Last.FM, etc.), we can get as many edge types as
the different aspects. Another example is supplied by social
media that allows users to categorize their own connections in
different social circles (e.g., ‘lists’ on Facebook or ‘circles’
on Google+) [14], such that the social network in itself
contains the edges that explicitly represent different interac-
tion types. In biology, protein-protein interaction multigraphs
can be created considering pairs of proteins that have direct
interaction, physical association or they are co-localised [23].
More examples can be quoted from a gene network where
genes are connected by considering the different pathway
interactions and recommendation networks [11]. In addition
to these examples, Resource Description Framework (RDF)
graphs can be naturally represented as multigraphs where the
same subject/object node pair is linked by different predicates
(properties) that describe different types of relationships [12].

Performing sub-multigraph query can be fruitful for all
these domains as it allows data experts to express much
richer queries, where they can specify the kind of interactions
between nodes they are looking for. As an example, a biologist
would find all the protein structures that physically interact
with each other and are partially located on a particular area.
Another expert that are working with RDF data graph would
retrieve subgraph where a part of nodes are related by a certain
predicate and another part of nodes connected by a different
property.

Due to the availability of such kind of data and the impor-
tance of performing sub-multigraph query on multigraph data,
in this paper, we introduce a new method called SUMGRA,
that addresses the challenge of finding the embeddings of a
query multigraph q in a multigraph g. SUMGRA involves
two main phases: (1) an off-line phase in which indexing
is performed on the data vertices of multigraph by consider-
ing the neighbourhood information of each data vertex; (2)
an on-line phase, which leverages the indexing schema to
retrieve data vertices, and then performs the sub-multigraph
search considering powerful pruning rules to enumerate all
the available embeddings of the query in the multigraph. The
indexing schema exploits the rich structure supplied by the
multigraph and it utilizes the information associated with the
edge dimensions, in order to facilitate the retrieval of data
nodes.

Since many domains supply data that can be modelled
as a single large multigraph, SUMGRA is especially tailored
to perform sub-multigraph query over single large graph.
However, it can also be easily extended to handle multigraph

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

2

transactional database where the database is composed of many
small multigraphs.

The main contributions of this paper are the following:

• We formalize the subgraph query problem for multi-
graphs.

• We propose an efficient indexing approach that ex-
ploits vertex neighbourhood information to speed-
up the retrieval of possible candidate vertices in the
multigraph.

• We propose a novel subgraph search algorithm that
recursively enumerates the embeddings.

• We evaluate our approach on both real-world and
synthetic data. We show that our method is compu-
tationally efficient and the designed indexing schema
remarkably reduces the time required to query a
multigraph.

The rest of the paper is organized as follows. We discuss
about the related works in Section II. Background and problem
definition are provided in Section III. An overview of the
proposed approach is presented in Section IV, while Section V
and Section VI describe the indexing schema and the query
subgraph search algorithm, respectively. Experimental results
are discussed in Section VII. We discuss our experimental
findings and further works in Section VIII. Conclusions are
drawn in Section IX.

II. RELATED WORKS

As our work addresses the exact subgraph query process-
ing, we will explore the related works that appear in the same
hue and we present them under the theme that is paramount
in defining them.

Feature based indexing approaches follow the filtering and
verification framework. During filtering, some graph patterns
are chosen as indexing features to minimize the number of
candidate graphs. Then the verification step checks for the
subgraph isomorphism using the selected candidates. Graph-
Grep [16] considers the length of the path within a threshold,
as the indexing feature. Owing to the weak pruning power of
GraphGrep, the concept of ‘discriminative ratio’ to select the
set of features was introduced in gIndex [21]. Tree+∆ [25]
uses discriminative subtrees as indexing features as they are
more efficient than indexing frequent subgraphs. In another
approach called FG-Index [3], both frequent subgraphs and
edges are used as indexing features. An alternative approach
of swift-index [15] has been proposed that uses tree features
that maintains a prefix-tree structure. Since all these methods
are developed for transactional graphs, we cannot exploit them
in our single multigraph scenario.

Backtracking algorithms find embeddings by growing the
partial solutions only if they fit to be the solutions. In the
beginning, they obtain a potential set of candidate vertices
for every vertex in the query graph. Then a recursive sub-
routine called SUBGRAPHSEARCH is invoked to find all the
possible embeddings of the query graph in the data graph.
The subroutine SUBGRAPHSEARCH is executed in various
steps that helps in finding the embeddings of the subgraph

query. Ullmann [20] proposed the first algorithm under this
framework. During SUBGRAPHSEARCH, Ullmann adopts a
very simple pruning rule (condition on the degree of the vertex)
and follows the input order of the query vertices to choose
the next vertex. On the other hand, VF2 [4] chooses the next
vertex that is connected to the already matched data vertex.
It also employs very efficient pruning rules that reduces the
search space to find the embeddings. QuickSI [15] builds
a minimum spanning tree to find the next query vertex, by
assigning weights to the edges of the query graph, depending
on the frequency of occurrence of query vertex in the data
graph. GraphQL [6] and sPath [24] follow neighbourhood
signature based pruning (in a much similar way) to choose the
initial set of candidates (the aforementioned approaches simply
choose vertices with matching labels), even before calling
the SUBGRAPHSEARCH. GraphQL additionally employs the
pruning technique called pseudo subgraph isomorphism that
recursively checks if adjacent subtree of a query vertex is
subgraph isomorphic to the corresponding feasible data vertex.

Although index based approaches focus on transactional
database graphs, many backtracking algorithms address the
large single graphs. Also, in [10] we see that all the back-
tracking algorithms have been employed to test their perfor-
mance for both database and single graphs. A much recent
work TurboISO [5], not quite falling into any of the above
themes, has been proposed that outperforms all the existing
backtracking algorithms for both the kinds of graphs. They
propose a novel concept of candidate region exploration to
address matching order problem during subgraph isomorphism
search, and a novel query processing strategy called combine
and permute that avoids useless enumerations between query
and data vertices. A very recent work exploits neighbourhood
tree based approach to index the large graphs [13]. This work
introduces the concept of Neighbourhood Trees (NTree), that
records the neighbourhood relationships of each vertex in the
large graph to filter the non-potential vertices.

Subgraph query algorithms on more rich graph structures
data are presented in [22] and [9]. In [22], the authors propose
a method to deal with graphs with multiple vertex attributes.
To deal with multiple attributes, they transform the subgraph
query problem into a high dimensional spatial query problem,
and employ R-tree to perform indexing on vertex attributes.
[9] promises faster subgraph matching in large graphs by
proposing an edge based framework, that considers edges with
single label.

III. BACKGROUND

A. Preliminaries and Problem Definition

In this section, we provide the basic definitions that are
necessary to present our work in the rest of the paper.

Given a set of dimensions D = {D1, . . . , D|D|}, an
unweighted multigraph G is defined as a tuple (V, {Ei}|D|

i=1, D)
where, V is the set of vertices, Ei ⊆ V × V is the set of
undirected edges over dimension Di ∈ D.

However, this standard definition introduces a set of edges
Ei for each of the dimension over which the multigraph G is
defined. A different but equivalent definition can be formulated
by considering each of the dimensions as a label, and assign

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

3

E
1

E
2

E
3

u
1

u
2

u
3

u
4

(a) Query multigraph q

v
1

v
4

v
7

v
3

v
5

v
6

v
2

(b) Data multigraph g

Fig. 1: A sample query and data multigraph

the set of dimensions (labels) to each corresponding edge, as
depicted in Figure 2.

Formally, we can now redefine a multigraph as G =
(V,E,LE , D) where V and D are defined as before and, in
this case, E ⊆ V × V is the set of undirected edges (without
any dependency on the dimensions) and LE : V × V → 2D

is a labelling function that assigns the subset of dimensions to
each edge it belongs to. In the rest of the paper we introduce
our framework considering the latter definition of multigraph.

Definition 1: Subgraph isomorphism for a multigraph
(SIM). Given a subgraph S = (V s, Es, LsE , D

s) and a multi-
graph G = (V,E, LE , D), the subgraph isomorphism from S
to G is an injective function ψ : V s → V such that:

1) ∀u ∈ V s, Ls(u) ⊆ L(ψ(u))
2) ∀(um, un) ∈ Es, ∃ (ψ(um), ψ(un)) ∈ E

and LsE(um, un) ⊆ LE(ψ(um), ψ(un)).

B. Complexity of SIM

The decision problem of subgraph isomorphism is well
known to be NP-complete [13]. This standard subgraph iso-
morphism problem can be seen as a particular case of SIM
where both the labelling functions LsE and LE always return
the same subset of dimensions for all the edges in both S
and G. As the standard subgraph isomorphism problem is a
particular case of the subgraph isomorphism problem for a
multigraph, SIM is at least as difficult as the standard subgraph
isomorphism problem and hence, we can deduce that the
decision problem behind SIM is at least NP-complete.

Problem Definition. Given a query multigraph q and a data
multigraph g, the subgraph query problem is to enumerate the
distinct embeddings of q in g.

In the following work, we enumerate (for unique identi-
fication) query vertices by u and the data vertices by v, as
shown in Figure 1. In Figure 1a, we observe that {E1, E2, E3}
are the set of edge dimensions. With the latter definition
of multigraph, we can represent the nodes of a graph by
a multiset of edge dimensions. For example, in Figure 2,
u2 := {{E1, E2}, {E1}} and u3 := {{E1}{E2}{E1, E3}}.
The valid embeddings for the query graph q are marked by the
thick lines in the data graph g, as depicted in Figure 1b. For
the sake of understanding, we enumerate the complete set of
embeddings R as: R1 := {[u1, v4], [u2, v5], [u3, v3], [u4, v1]}
and R2 := {[u1, v4], [u2, v3], [u3, v5], [u4, v6]} where, each
query vertex ui is matched to a unique data vertex vj , written
as [ui, vj].

E
1

E
2

E
1
, E

3

u
4

u
4

u
3

u
1 u

2

(a) Query multigraph q

E
1
, E

3

v
1

v
4

v
7

v
3

v
5

v
6

v
2

E
1
, E

2
, E

3

E
1

E
1
, E

3

E
1
, E

3

E
1
, E

2
E

1
, E

2

E
1

(b) Data multigraph g

Fig. 2: An equivalent representation of multigraphs

IV. AN OVERVIEW OF SUMGRA

In this section, we sketch the main idea of SUMGRA
to address the subgraph query problem for multigraphs. The
entire procedure can be divided into two parts: (i) an indexing
schema for the data graph g that exploits edge dimensions
(Section V) (ii) a subgraph search algorithm that employs
different procedures to enumerate the embeddings of the query
graph (Section VI).

The overall idea of SUMGRA is depicted in Algorithm 1.
Initially, for all the query vertices of q, the possible candidate
set C(u) is obtained by calling the SELECTCANDIDATES
procedure (Line 3). To achieve this, each of the query vertex
ui ∈ q is matched with the data vertex vi ∈ g, by exploiting
the index built for g (Section V). Then, FINDMST is called,
that returns a minimum spanning tree 1 qmst (Line 4). Later,
in Section VI, we shall see how this can be helpful. Then, the
recursive subroutine SUBGRAPHSEARCH is called to find all
the possible embeddings (Line 10). SUBGRAPHSEARCH be-
gins to find the embeddings starting with the possible matches
for the initial query vertex uinit (Lines 6-10). Since uinit
has C(uinit) possible matches, SUBGRAPHSEARCH iterates
through |C(uinit)| solution trees. Further, SUBGRAPHSEARCH
is recursively called to find the matchings that correspond to all
the query vertices in the spanning tree qmst (Algorithm 4, Line
10). The partial embedding is stored in M = [Mq,Mg] - a pair
that contains the already matched query vertices Mq and the
already matched data vertices Mg . Once the partial embedding
grows to become a complete embedding, it is updated in R.

Algorithm 1: SUMGRA

1 INPUT: query graph q, data graph g, index I on g
2 OUTPUT: R: all the embeddings of q in g
3 C(u) = SELECTCANDIDATES(q,I)
4 qmst = FINDMST(q, C(u))
5 uinit = ui ∈ qmst | |C(ui)|= argmin{|C(u1)|, . . . , |C(u|q|)|}
6 R = ∅ /* Embeddings of query q in g */
7 for each v ∈ C(uinit) do
8 Mq = uinit /* Matched query vertices */
9 Mg = v /* Matched data vertices */

10 M = [Mq,Mg] /* Partial matching of q in g */
11 UPDATE: R := SUBGRAPHSSEARCH(R,M,C(u), q, g, qmst)

12 return R

V. INDEXING

This section describes the indexing structure that we have
developed to efficiently store and query a multigraph. The idea

1a minimum spanning tree connects the entire graph with the least possible
weights on its edges.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

4

behind the indexing is to store the data graph in an efficient
way, to perform faster subgraph querying.

Indexing includes (i) an extraction phase to obtain useful
features from the data graph to optimize vertex indexing (ii) a
query processing phase to select the set of candidate vertices
from the data graph. The latter phase is implemented by the
SELECTCANDIDATES procedure. For a lucid understanding of
our indexing schema, we introduce a few definitions.

vi σ(v)
v1 {{E1, E3}}
v2 {{E2, E3, E1}, {E1}}
v3 {{E2, E3, E1}, {E1, E3}, {E1, E2}, {E1}}
v4 {{E1, E2}, {E1, E2}}
v5 {{E1, E3}, {E1, E3}, {E1, E2}, {E1}}
v6 {{E1, E3}, {E1}}
v7 {{E1, E3}}

TABLE I: Vertex signatures for the data graph in Figure 2b

Definition 2: Vertex neighborhood signature. For a vertex
v, the vertex neighbourhood signature σ(v) is a multiset of
edge dimensions, that contain the set of edges for all the
dimensions that are incident on v. More formally, σ(v) =
∪vj∈N(v)LE(v, vj) where N(v) is the set of neighbourhood
vertices of v and ∪ is the union operator for the multiset that
allows repetition of the elements.

For instance, in Figure 2, σ(v6) = {{E1, E3}, {E1}}.
The vertex signature is an intermediary representation that is
exploited by our indexing schema. All the vertex neighborhood
signatures of the vertices of the data graph in Figure 2 are
written in Table I.

Definition 3: Candidate set. For a query vertex u, the can-
didate set C(u) is defined as C(u) = {v ∈ g|σ(u) ⊆ σ(v)}.

For instance, in Table III, the candidate set for vertex
u1 is given by C(u1) = {v3, v4}. In the following sections,
we discover the intermediate steps involved in obtaining this
candidate set.

A. Offline Index Construction

We build two types of indexes offline: (i) Given the vertex
signature of all the vertices of g, we construct the index for
the multiset of edge dimensions by exploring some features
of the signature σ (ii) We build a trie index for each of the
signature for the entire data graph g.

1) Edge Dimension Index I: The edge dimension index
is built to organize the structural information supplied by the
vertex neighbourhood signature of the data graph. Considering
the multiset supplied by the neighbourhood signature, we
can observe some interesting features that we can exploit.
For example, in Table I, the neighbourhood signature of v6,
σ(v6) = {{E1, E3}, {E1}} has two sets of dimensions in
it and hence we only need to match it with query vertices
that have at most two sets of items in their neighbourhood
signature. Also, σ(v2) = {{E2, E3, E1}, {E1}} has a dimen-
sion set of maximum size 3 and hence a query vertex must
have the maximum size of at most 3. More such features
(e.g., the number of unique dimensions, the total number of
occurrences of dimensions, etc.) can be proposed to filter out
irrelevant candidate vertices. In particular, for each vertex v,

Data vertex Synopses
v F1 F2 F3 F4 F5 F6

v1 1 2 2 1 3 2
v2 2 3 4 1 3 3
v3 4 3 8 1 3 3
v4 2 2 4 1 2 2
v5 4 3 7 1 3 2
v6 2 2 3 1 3 2
v7 1 2 2 1 3 2

TABLE II: Synopses for all the data vertices in Figure1b

we propose to extract a set of characteristics summarizing use-
ful features of the neighbourhood of a vertex. Those features
constitute a synopses representation (surrogate) of the original
neighbourhood signature. For the synopses we propose the
following six (|f |= 6) different useful features that we illus-
trate with the help of the vertex neighbourhood signature of
v3 (σ(v3) = {{E2, E3, E1}, {E1, E3}, {E1, E2}, {E1}}):

F1 Cardinality of the neighbourhood signature, e.g.,
F1(v3) = 4.

F2 The number of unique dimensions in the neighbour-
hood signature, e.g., F2(v3) = 3.

F3 The number of all occurrences of the dimensions
(includes repeated dimensions), e.g., F3(v3) = 8.

F4 Minimum index value of the dimensional alphabet
(based on the position of the sequenced alphabet), e.g.,
F4(v3) = 1.

F5 Maximum index value of the dimensional alphabet
(based on the position of the sequenced alphabet), e.g.,
F5(v3) = 3.

F6 Maximum cardinality of the neighbourhood signature,
e.g., F6(v3) = 3.

Table II lists the synopses for all the vertices from data
graph g shown in Figure 2.

By exploiting the aforementioned features, we build the
synopses to represent the vertices in an efficient manner that
will help us to select the eligible candidates during query
processing. To this end, we should be able to represent the
synopses with an efficient data structure. Since each vertex is
represented by a synopses of several fields, a data structure
that helps in efficiently performing range search for multiple
dimensions would be an ideal choice. For this reason, we
build a d-dimensional R-tree, whose nodes are the synopses
with f fields, where a synopses is nothing but the surrogate
representation of the vertices of the multigraph.

The general idea of using an R-tree structure is as follows:
A synopses of a data vertex spans an axes-parallel rectangle
in an f -dimensional space, where the maximum co-ordinates
of the rectangle being the values in the synopses itself, and
the minimum co-ordinates being the origin of the rectangle
(zero values). For example, a two dimensional synopses of a
data vertex Sv = (2, 3) spans a rectangle in a 2-dimensional
space in the interval range ([0, 2], [0, 3]). Now, if we consider
synopses of two query vertices, S1

u = (1, 3) and S2
u = (1, 4),

it is not difficult to observe that the rectangle spanned by S1
u is

wholly contained in the rectangle spanned by Sv but S2
u is not

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

5

E
1

{V
3

1, V
3
2, V

3
3, V

3
4}

Root

E
2

E
3

E
3

{V
3
2}

{V
3

1}

{V
3

1, V
3

3}

Fig. 3: Trie structure for the signature of data vertex v3

wholly contained in Sv . More formally, the possible candidate
for vertex u can be written as P(u) = {v|∀i∈[1,...,f]Su(i) ≤
Sv(i)}, where the constraints are met for all the f -dimensions.
Since we apply the same inequality constraint to all the fields,
we need to pre-process few synopses fields; e.g., the field F4

contains the minimum value of the index, and hence we negate
F4 so that the rectangular containment problem still holds
good. Thus, we keep on inserting the synopses representations
of each data vertex v into the R-tree and build the index I,
where each synopses is treated as an f -dimensional leaf of the
R-tree.

2) Trie Index T : Since the previous indexing schema
enables us to select the valid candidate set C(u) in an approx-
imate manner, we build a separate Trie index for every data
vertex v ∈ g, in order to obtain the exact valid candidate set
C(u). Here we represent the vertex neighbourhood signature
σ(v) by a tree data structure, where the nodes of the tree
are represented by the edge dimensions. In order to achieve
this, we take inspiration from [19] to propose our approach
- Ordered Trie with Inverted List (OTIL). In our context, we
treat each sub-signature vi (e.g., {E2, E3}) as a word that can
be inserted into the trie structure. In addition, each vi in itself
has ordered edge dimensions in it. For example in Table I,
the sub-signature of v13 is {E2, E3, E1}, and is ordered as
{E1, E2, E3}. This ordering is universally maintained for the
sub-signatures of both σ(u) and σ(v). Further, we construct a
vocabulary (a set of distinct edge dimensions) for each σ(v),
and build an inverted list for each edge dimension Ei that
contains the identifiers of the sub-signatures vi. For example,
for vertex v3, as shown in Figure 3, the edge E2 will contain
the list {v13 , v33}, since E2 is present in the sub-signatures v13
and v33 .

To construct the trie as shown in Figure 3, we insert all the
ordered sub-signatures of the data vertex v at the root of the
trie. The trie-nodes are nothing but the edge dimension them-
selves. As and when a new sub-signature is added to the trie,
the nodes in the trie maintain a list of sub-signature identifiers.
It is to be noted that the leaves with identical edge dimension
(e.g., E3) are internally connected and thus form a linked list of
sub-signature identifiers, which offers a compact representation
and faster querying. For instance, consider the trie structure
for node v3, as shown in Figure 3, and the query vertex u3
with its signature σ(u3) := {{E1, E3}, {E2}, {E1}}, where
u13 = {E1, E3}, u23 = {E2} and u33 = {E1}. Although
querying u23 and u33 is straightforward, querying u1 requires
the linkage between the trie-nodes that represent E3, in order
to correctly output the superset of sub-signatures {v13 , v23}. In
this way, we build an ordered trie with inverted list (OTIL) for

u P(u) C(u)
u1 {v2, v3, v4, v5, v6} {v3, v4}
u2 {v2, v3, v4, v5, v6} {v3, v5}
u3 {v3, v5} {v3, v5}
u4 {v1, v2, v3, v5, v6, v7} {v1, v3, v6}

TABLE III: Candidate set of vertexes during indexing

each data vertex and call it as a trie index T .

It is to be noted that both the edge dimension index I and
trie index T are constructed offline and hence we can afford
to invest time on it. Once constructed, both these indexes can
be used for subgraph query processing for any type of query
graph.

B. Query Processing for Candidate Selection

For each query vertex, the query processing procedure ex-
ploits the index I to retrieve the set of candidates data vertices.
Query processing for the selection of candidates is achieved in
two stages. Initially, we perform an approximate selection of
candidates using the edge index I, thereby partially discarding
invalid candidates. Then, we exploit the trie index T to perform
the exact selection of the valid candidate vertices, by pruning
all the invalid candidate vertices.

1. Approximate selection: During this step, we retrieve at
least all the valid candidate vertices from the data graph by
exploiting the edge dimension index I. Thus, we might have
the candidate vertices that can be pruned further.

Lemma 1: Querying the edge index I constructed on syn-
opses, guarantees to output at least the entire set of valid
candidate vertices.

Proof: Consider the field F1 in the synopses that repre-
sents the cardinality of the neighbourhood signature. Let σ(u)
be the signature of the query vertex u and {σ(v1), . . . , σ(vn)}
be the set of signatures on the data vertices. By using F1

we need to show that C(u) has at least all the valid candi-
dates. Since we are looking for a superset of query vertex,
and we are checking the condition F1(u) ≤ F1(vi), where
vi ∈ {v1, . . . , vn}, vi is pruned if it does not match the
inequality criterion since, it can never be an eligible candidate.
We can extend this analogy to all the synopses fields, since
they all can be applied disjunctively.

To find candidate vertices for u1, we build the synopses for u1
and find the matchable vertices in g using the index I. As we
can recall, every synopses representation of the data vertices
span a rectangle in the d-dimensional space. Thus, it remains
to check, if the rectangle spanned by u1 is contained in any
of rectangles spanned by the synopses of the data vertices,
with the help of R-tree built on data vertices. This results in
the candidate set P(u1) = {v2, v3, v4, v5, v6}, as shown in
Table III. It should be noted that our goal is to find only the
valid candidate matches for the query vertex u. We underline
that P(u) contains the entire set of candidate vertices that
matches u but, it may still contain false positive matches. Thus
we need to prune all the invalid candidate vertices that do not
match with u in order to obtain the exact candidate set C(u).

2. Exact selection: In this step, we obtain the exact validate
candidate set C(u) for the query vertex u, by pruning all the

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

6

invalid candidates. To perform exact candidate selection, we
use the partial candidate set P .

As we recall from Table I, each data vertex is associated
with the vertex neighbourhood signature. To exploit this infor-
mation, we propose an approach to efficiently find the possible
candidate set C(u) = {v ∈ g|σ(u) ⊆ σ(v)}. Since we are
looking for a superset of a multi-set, the setting can get quite
tricky.

Let us consider a query vertex u represented by the vertex
neighbourhood signature σ(u) = {u1, u2, . . . , um} and a
possible candidate data vertex v represented by the signature
σ(v) = {v1, v2, . . . , vn}, where ui and vi are the sub-
signatures of σ(u) and σ(v) respectively. To check if the
data vertex v is a valid candidate of query vertex u, we have
to verify if σ(u) ⊆ σ(v). In order to find the superset of
the multiset (vertex neighbourhood signature) in an efficient
manner, we now exploit the trie index T .

Whenever a query vertex u is to be evaluated for its
candidate vertex v, for each of the query sub-signature, we
perform prefix search on the index T that we have built. After
this evaluation, we have the knowledge about the existence of
a sub-signature superset in v for all the sub-signatures in u.
If there is at least one query sub-signature, that has not found
a superset, then the possible candidate vertex v can safely be
pruned. However, even in the case when all the query sub-
signatures have found a superset, we cannot yet claim that v
is a candidate vertex, and hence we offer a further treatment
to find the valid candidates.

In order to have a lucid understanding of a valid candidate,
let us consider a scenario where a data vertex v is being verified
to be a valid candidate for u, as shown in Figure 4. It is
not hard to observe that more than one query sub-signatures
can compete for a unique data sub-signature. For example,
in Figure 4a, query sub-signature u1 and u3 are the subsets
of a unique data sub-signature v2. Thus, in order to obtain
a valid matching, we propose to build a bipartite graph that
has an edge (ui, vj) if and only if ui ⊆ vj . For the ease
of understanding, we introduce the notion a valid maximum
matching.

Definition 4: Valid Maximum Matching. For a bipartite
graph with m and n nodes, we define the valid maximum
matching as a maximum matching where all the m nodes have
been matched.

Now, for the considered bipartite graph, the sub-signatures
of both u and v represent the vertices of the bipartite graph,
with m nodes and n nodes respectively. Once all the possible
edges have been added to the bipartite graph, we run the
maximum matching algorithm to check if for every query sub-
signature ui there exists a unique superset data sub-signature
vj that it matches to. It is worthy to observe that Figure 4a has
a valid matching (marked in solid lines) since, there exists a
maximum matching that includes all the query vertices. Where
as the maximum matching in Figure 4b is not a valid matching
since the maximum matching can not include all the query
vertices (in this case either u1 or u3 is excluded). To solve
the maximum matching problem on the bipartite graph, we
employ the Hopcroft-Karp [7] algorithm. This algorithm has
a worst case time complexity of O(|E|

√
|V |), where E and

V are the edges and nodes of the bipartite graph.

V1

V2

V3

V4

U
1

U
2

U
3

u1

v4

v3

v2

u3

u2

v1

v2

v3

v4

(a) A valid matching

V1

V2

V3

V4

U
1

U
2

U
3

u1

v4

v3

v2

u3

u2

v1

v2

v3

v4

(b) An invalid matching

Fig. 4: A scenario of maximum bipartite matching with u =
{u1, u2, u3} and v = {v1, v2, v3, v4}

At this stage, the candidate set C(u) is available for
all the vertices of the query graph, and C(u) contains the
exact possible candidate vertices that are returned by the
SELECTCANDIDATES procedure in Algorithm 1.

VI. SUBGRAPH QUERY PROCESSING

Now that all the valid candidates for each of the query
vertex have been found, we proceed further with subgraph
query processing. In order to find the embeddings of a query
graph, we not only need to find the valid candidates, but
also find the structure of the query graph to be matched. In
this section, we discuss in detail about the various procedures
involved in Algorithm 1.

A. Choosing the Initial Vertex

It is argued that an effective way of choosing the initial
query vertex improves the efficiency of subgraph querying
[10]. Once we have the selected candidates C(u) for all the
query vertices, we choose the initial vertex uinit that has the
least number of possible candidates. Following the strategy
proposed in [15], we build a spanning tree for the query
subgraph. For every edge in q we assign a weight, which is the
minimum value of the size of the candidate set that corresponds
to the pair of the vertices it belongs to (Algorithm 2). Thus
we transform the unweighted query graph to a weighted query
graph, and use MST algorithm (Prim’s algorithm) to output
the minimum spanning tree qmst.

Algorithm 2: FINDMST(q, C(u))
1 W = ∅
2 for (ui, uj) ∈ E(q) do
3 w(ui, uj) = min(|C(ui)|, |C(uj)|)
4 W [(ui, uj)] = w(ui, uj)

5 qmst = MST(W, q) /* Apply Prim’s algorithm
*/

6 return qmst

The minimum spanning tree qmst of the query graph q
plays a vital role in maintaining the structure of the matchable
data pattern that recursively grows during the subgraph search
procedure. Also, the minimum spanning tree helps in reducing
the search space for the solution tree while running the
recursive subgraph search procedure.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

7

Algorithm 3: SUBGRAPHSEARCH(R,M ,C(u),q,g,qmst)

1 INPUT: M = [Mq,Mg]: partial matching of q in g, q:
query graph, g: data graph, C: candidate set for q,
qmst: spanning tree of q

2 un = NEXTQUERYVERTEX(Mq, C(u), qmst)
3 MC = FINDJOINABLE(C(un),Mq,Md, q, d, un)

/* Matchable candidate vertices */
4 if MC 6= ∅ then
5 for vn ∈MC do
6 Mq = Mq ∪ un; Mg = Mg ∪ vn
7 M = [Mq,Mg] /* Partial matching

grows */
8 SUBGRAPHSEARCH(R,M,C(u), q, g, qmst)
9 if (|M | == |qmst|) then

10 R = R ∪M /* Embedding found */

11 return R

B. Subgraph Searching

The process of SUBGRAPHSEARCH is described in Algo-
rithm 3. Once an initial query vertex uinit is chosen and its
corresponding matchable data vertex is chosen from the set of
select candidates C(uinit), we have the partial solution pair
of the pattern we want to grow. To proceed further with the
pattern matching, we have to choose the next query vertex for
which we run the NEXTQUERYVERTEX procedure as depicted
in Algorithm 4. We choose the next query vertex dynam-
ically, as and when the query pattern grows. During every
iteration of the SUBGRAPHSEARCH procedure, we collect all
the Frontier query vertices from the minimum spanning tree
qmst, that have not been considered so far (Line 1), which are
the possible next query vertices to be chosen. Now, among
the possible Frontier query vertices, we choose the one with
minimal number of select candidates, as a next query vertex to
be matched. With this approach we can guarantee the structural
properties of the query graph to be matched.

Algorithm 4: NEXTQUERYVERTEX(Mq, C(u), qmst)

1 Frontier := {ui ∈ (V (qmst) \Mq)|∃uj
(ui, uj) ∈ E(qmst) ∧ uj ∈Mq}

2 un := argminui∈Frontier|C(ui)|
3 return un

The crucial step in the subgraph search algorithm is the
FINDJOINABLE procedure (Line 3). For the chosen next query
vertex un to be matched, we have a set of possible candidate
matches C(un). Since C(un) has all the candidates that can be
matched with un, we have to guarantee that any v ∈ C(un),
which is the partial solution, maintains the structure of the
query graph. To find the solutions with the valid structure,
we call the FINDJOINABLE procedure, as described by Algo-
rithm 5. The FINDJOINABLE procedure is meant to perform
two vital operations: (i) it maintains the structural properties of
the solution, (ii) it verifies the correctness of edge dimensions.

To maintain the structural property of the solution, we find
the set Aq that contains all the matched query vertices which

are adjacent to the next vertex un to obtain the corresponding
set Ad that contains the matched data vertices that correspond
to Aq (Line 1-2). Now for each vn ∈ C(un) and v ∈ Ad,
we check if there exists an edge in the data graph (Line 5).
This ensures us that the possible data vertex vn is a valid
match, since there exists an edge that maintains the structural
connectivity with the previously matched data vertices. It is
to be observed that, since we are growing the pattern from a
single vertex, we only need to check the structural connectivity
with only the matched vertices that are adjacent to the next
matchable vertex. Now, in order to verify the correctness of
the edge dimensions, we check if the edge label of the data
edge L(v, vn) is a superset of the edge label of the query edge
L(u, un) (Line 6). If such is the case, then the candidate vertex
vn is added to the set of matchable candidate vertices MC .

Algorithm 5: FINDJOINABLE(C(un),Mq,Md, q, d, un)

1 Aq := Mq ∩ adj(un)
2 Ad ⊆Md | [Aq, Ad] ⊆ [Mq,Md]
3 for vn ∈ C(un) do
4 for v ∈ Ad do
5 if ∃(v, vn) ∈ E(d) then
6 if L(v, vn) ⊇ L(u, un), where u ∈ [u, v]

then
7 add vn to MC

8 return MC

FINDJOINABLE returns all the possible data vertices that
can contribute towards the partial solution. As the partial
solution is updated for each vn ∈ MC (Line 7), the SUB-
GRAPHSEARCH procedure is called recursively (Line 8), to
further grow the partial solution. Once the entire embedding
has been found, it is updated to the set of resultant solutions
R (Line 9-10).

Lemma 2: The procedure FINDJOINABLE guarantees to
retain the structure of the embeddings.

Proof: Consider a query q of size |U |. For n = 1,
let the first matching M1

d corresponding to the initial query
vertex M1

q . Now, Aq and Ad contain all the adjacent vertices
of the previously matched vertices M1

q and M1
d respectively,

thus maintaining the connectivity with the partially matched
solution M . Hence for n > 1, by induction, the structure
of entire embedding (that corresponds to the query graph) is
retained.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of SUMGRA
for real and synthetic multigraphs. Since this work is suppos-
edly the first work that addresses multigraphs, comparison with
any other approaches is hardly possible. Hence, we deploy
various benchmarks to portray the efficiency and suitability
of our algorithm. All the experiments were run on a 64-
bit Intel Core i7-4900MQ @ 2.80GHz, with 32GB memory,
running Linux OS - ubuntu 14.04 LTS. Our methods have been
implemented using C++.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

8

(a) Number of vertices Vs size of vertex neighbourhood (b) Number of edges Vs size of edge dimensions

Fig. 5: Statistics on distribution of real data sets

A. Description of Datasets

To validate the correctness, efficiency and versatility of
SUMGRA, we consider four real world datasets that span
over biological and social network data. Further, to test the
scalability of our approach, we consider a synthetic data set.
All the multigraphs considered in this work are undirected and
they do not contain any attribute on the vertex. Table IV offers
a quick description of all the characteristics of the data sets.

1) Real Datasets: For our experimental analysis, we con-
sider four real world data sets: DBLP 2 data set is built by
following the procedure adopted in [1]. In this graph the
vertices correspond to different authors and the dimensions
represent the 50 conferences in Computer Science having the
most number publications. Two authors are connected over a
dimension if they co-authored more than one paper together
in that conference. BIOGRID 3 dataset [2] is a protein-protein
interactions network, where nodes represent proteins and the
edges represent interactions between the proteins. The data
set has 7 unique edge dimensions which correspond to the 7
different types of interactions between a pair of proteins.
FLICKR 4 dataset has been crawled from Flickr, which is
an image and video hosting website, web services suite,
and an online community. In this data set, the users are
represented by nodes, and the blogger’s friends are represented
using edges (since edge network is the friendship network
among the bloggers). In addition, the data set represents the
friendship network based on the group memberships (195
in number), which we represent as edge dimensions. Thus
multiple edges exist between two users if they have common
multiple memberships. YOUTUBE dataset [18] treats users as
the nodes and the various connections among them as milti-
edges. The edge information includes the contacts, mutual-
contact, co-subscription network, co-subscribed network: two
users are connected if they are both subscribed by the same
user and favorite network (two users are connected if they
share favourite videos).

To analyse the results, for all the real graphs, we provide
the vertex neighbourhood distribution as well as the edge

2http://www.dblp.org/db/
3http://thebiogrid.org/
4http://socialcomputing.asu.edu/pages/datasets

Dataset Nodes Edges Dim Density Adeg Adim

DBLP 83,901 141,471 50 4.0e-5 1.7 1.126
BIOGRID 38,936 310,664 7 4.1e-4 8.0 1.103
FLICKR 80,513 5,899,882 195 1.8e-3 73.3 1.046
YOUTUBE 15,088 19,923,067 5 1.8e-1 1320 1.321
SYNTH 500,000 25,000,000 20 2.0e-4 50 1.15

TABLE IV: Statistics of datasets; Dim = number of dimen-
sions; Adeg=Average vertex degree; Adim = Average no. of
dimensions/ edge

dimension distribution as seen in Figure 5. The logarithmic
distribution of the number of vertices with the increasing size
of vertex neighbourhood is plotted in Figure 5a, while the
logarithmic distribution of the number of edges with increasing
size of edge dimensions is plotted in Figure 5b.

Referring to Figure 5a and Table IV, we can make few
observations on the data sets. The YOUTUBE data set has a
flat spectrum of vertex distribution due to its high density of
1.8e-1, and is mostly concentrated in the region of larger neigh-
bourhood size, given its high average degree Adeg = 1320.
FLICKR, BIOGRID and DBLP datasets are less dense and
hence exhibit a more common power law distribution. Also, as
the Adeg values reduce from FLICKR to BIOGRID to DBLP,
the distribution shifts towards the smaller neighbourhood size.

Referring to Figure 5b (where the number of edges are on a
logarithmic scale), we observe that most of the edges, of all the
dataset, lie only over one dimension (d = 1). YOUTUBE has
a fairly good distribution of the edges over all the five edge
dimensions, and hence has a fairly large average dimension
Adim = 1.321. DBLP data set has the maximum size of edge
dimensions (some of the edges have eleven dimensions).

2) Synthetic Dataset: We generate the synthetic graph
using Erdos Renyi (ER) model, which is a classical random
graph generator model. We generate 20 random graphs each
with 500 000 nodes. For each node, we set the average degree
to 50. Each random graph represent a different edge dimension.
The resulting synthetic multigraph has 25 million multi-edges.
We name this multigraph as SYNTH.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

9

B. Description of Query Graphs

To test the behavior of our approach, we generate path,
subgraph and clique queries, as already done for standard
subgraph querying [6], [15]. For real data sets, although we
could generate path and subgraph queries of size 3,5,7,9 and
11, we could only find clique queries of size 3,5,7 and 9. Since
it is hard to inject cliques into the synthetic graphs [13], we
generate only path and subgraph queries. All the generated
queries contain an edge with at least two dimensions.

For our experiments, we generate 1 000 samples for each of
the aforementioned queries. Following the methodology pre-
viously proposed for subgraph query matching algorithms [5],
[13], we report the average time values over the first 1 000
embeddings for each query. It should be noted that the queries
returning no answers were not counted in the statistics (the
same statistical strategy has been used by [24], [6], [13]). In
order to have a clear picture of the different component of our
approach, we output both the time required to obtain the select
candidate set C(u) as well as the time required to perform
SUBGRAPHSEARCH procedure.

C. Baseline Approaches

To perform a valid comparison with SUMGRA, we derive
the following base line approaches.

No Synopses: To test the performance of edge indexing,
we conduct experiments without constructing the edge index.
In this approach (NoSyn), approximate candidate set P(u) is
not computed, and hence no data vertex is pruned. Thus, all
the data vertices are eligible to be the possible candidates, and
thence used for exact matching.

Bit vector approach: In order to perform exact matching,
we need to perform a superset query on the vertex signature
σ(v), so that we can obtain only the valid candidate vertices
C(u). To compete against the OTIL approach, we propose a
naive but efficiently implementable bit vector (BIT) approach,
to perform superset query on the multiset.

In BIT, we represent the set of edge dimensions in the
vertex neighbourhood signature σ by a bit vector. To do this,
we predefine the size of the bit vector and set the positional
values to 1, if the edge dimension exists. For example, in Ta-
ble I, we can set the size of the bit vector to 4 and hence for v3,
σb(v3) = {{1, 0, 1, 0}, {1, 1, 1, 0}, {1, 0, 0, 0}, {1, 1, 0, 0}}.

Let us now consider a query vertex u represented by
bitset signature σb(u) = {u1, u2, . . . , um} and a possible data
candidate vertex v represented by bitset signature σb(v) =
{v1, v2, . . . , vn}, where ui and vi are the bitset representations
of edge dimensions whose elements are set to 1 if the edge
dimension exists, else set to 0, as described before.

For each pair of u and v we maintain a subset bi-
partite graph (SBG), whose nodes are u1, u2, . . . , um and
v1, v2, . . . , vn respectively. We perform maximum matching
on this SBG, as already explained in Section V-B, to obtain
the valid candidate set C(u).

At this point we propose three baseline approaches to com-
pare with SUMGRA, in order to demonstrate the performance
of our proposed method. In particular we coupled synopses
based (Syn) and no synopses based (NoSyn) strategies with

the two different ways of performing the exact matching
procedure (OTIL and BIT):

A. Syn+OTIL : SUMGRA (using edge indexing for ap-
proximate matching and OTIL for exact matching)

B. Syn+BIT: Using edge indexing for approximate
matching and bit vector for exact matching

C. NoSyn+OTIL: Only exact matching with OTIL is used

D. NoSyn+BIT: Only exact matching with bit vector is
used

D. Time performance of SUMGRA

In Section V, we gave emphasis on constructing the indexes
for edge dimensions in order to extract the approximate candi-
date set, and then introduced the OTIL approach to extract the
exact candidate set C(u). We recall that SUMGRA constructs
both I and T offline. These indexes are explored during the
query processing in order to retrieve the valid candidate set
C(u). In Table V we report the indexing construction time of
SUMGRA for each of the employed dataset. We can observe
that for sparse graphs as DBLP and BIOGRID the most costly
operation is the construction of the I index while for the other
datasets (FLICKR and YOUTUBE) the most costly offline step
is the construction of the T index. This behavior is reasonable
owing to the high density in both edges and dimensions that
has a bigger impact on the OTIL construction. To conclude, we
can highlight that the offline step is not so time consuming as
in the worst case, for the SYNTH multigraph, we need less than
2 minutes to index the 500 000 nodes and 25 million edges.

Data set Edge Dimension Index I Trie Index T
Time (seconds) Time (seconds)

DBLP 4.67 0.3076
BIOGRID 1.86 0.5433
FLICKR 8.93 10.7068
YOUTUBE 12.15 41.176
SYNTH 43.78 49.2236

TABLE V: Time taken to construct the offline index

1) Query Processing Time: Figure 6 summarises the time
performance of SUMGRA. Every bar in the histogram rep-
resents two values: the time taken to select valid candidates
and the time taken to perform sub-multigraph search, which
together constitute the time required to output the embeddings.

It is interesting to observe from Figure 6 that, for DBLP and
BIOGRID, the time required to output the candidate set C(u)
is the least when we adopt indexing, irrespective of BIT Vector
or OTIL. Also, owing to the relatively smaller size and lesser
density of the graph, the subgraph matching time requires more
time when compared to the select candidate time, except for
the ‘NoIndex+OTIL’ setting. Also, for these two data sets,
the baseline approach of BIT Vector performs reasonably well
compared to the OTIL approach that we introduce to manage
the exact match procedure.

On the other hand, FLICKR and YOUTUBE data sets
behave quite differently, when compared to the other two
datasets. For these two datasets, the time required to obtain
C(u) is larger than the time required to find the embeddings.
Since these datasets are large and comparatively denser than

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

10

the previous multigraphs, the time required to obtain C(u) is
quite noticeable. But the subgraph matching time is relatively
lesser when compared to the time required to obtain C(u).
We can observe that, for these kinds of data, SUMGRA
(Syn + OTIL) clearly outperforms all the other baseline
approaches. This is particularly evident on the YOUTUBE
dataset where we obtain the maximum gain in terms of time
performance.

As a general conclusion, we can state that SUMGRA ob-
tains remarkable improvements w.r.t. the base line approaches
for huge and very dense multigraphs (considering both edges
and dimensions) while it achieves comparable time perfor-
mance with the baseline approaches on DBLP and BIOGRID.

E. Performance of SUMGRA with varying dimensions

In this section we analyse the time performance of
SUMGRA by varying the number of edge dimensions in the
query graph. In particular, we perform experiments for query
multigraphs with two different edge dimensions: d = 2 and
d = 4. That is, a query with d = 2 has at least one edge that
exists in at least 2 dimensions. The same analogy applies to
the queries with d = 4.

Due to the difficulty in finding multigraph queries with
d = 4 we can only use BIOGRID and YOUTUBE datasets as
we are able to obtain 1 000 queries for each kind of query
(path, subgraph and clique) with one or more edges that lie
over four edge dimensions (d = 4). In spite of the limited
number of queries for DBLP and FLICKR, we witness the
similar behavior for all the datasets. Hence, we report the
results only for BIOGRID and YOUTUBE datasets as shown
in Figure 7. From almost all the plots, we observe that queries
with more dimensions (d = 4) are, generally, faster to process
since they are richer with information and, because of that,
they can get quickly selective.

F. Scalability of SUMGRA

To verify the scalability of SUMGRA, we conduct exper-
iments on the synthetic graph previously introduced. SYNTH
has 500 000 nodes, 25 000 000 edges span over 20 dimensions.
In Figure 8, we report the time required to output the first 1 000
embeddings for path and subgraph queries with d=2 and d=4.
We can observe that, also on this huge graph, SUMGRA is
able to answer to such queries in a reasonable amount of time
and this fact underlines the scalability and the robustness of
the proposed approach.

VIII. DISCUSSION AND POSSIBLE EXTENSIONS

We now briefly summarize the experimental findings and
highlight the possible extension of our work.

A. Synopsis vs No Synopsis

With the help of the experiments conducted, we observe
that the synopsis based representation, introduced in Section V,
is capable of improving the performance of the multigraph
query procedure. This is observed for all the real datasets
we employed. This evaluation underlines the effectiveness of
our proposed vertex feature representation to speed up the
discovery of the valid candidate set.

B. OTIL vs BIT vector

The SELECTCANDIDATES procedure, for some multi-
graphs, takes most of the total amount of processing time. This
phenomena is particularly true for FLICKR and YOUTUBE
data. One crucial point of this operation being the exact
selection step. In our experiments, we evaluated two different
strategies (OTIL and BIT vector) and we observe that no single
strategy is always superior to the other. What we can note is
that this step is influenced by the multigraph characteristics.
However, we can observe that for multigraphs with higher
average degree (Adeg) and higher average edge dimensions
(Adim) the OTIL approach clearly outperforms the BIT vector
method. For more sparse data sets, in terms of both graph
topology and edge dimensions, we can note that both OTIL and
BIT vector have almost equal performance and the difference
is less pronounced.

C. Attributed vs Non-Attributed Multigraphs

Attributed Multigraphs are multigraphs where one or more
attributes (or items) are associated with each node. In this
work we concentrate our effort on Non-Attributed multigraphs
as we focused our work to the problem of how to manage
different kinds of edges (dimensions) between nodes that, from
the best of our knowledge, was not previously addressed by
any of work in literature. For the simple graphs, previous
works already deal with node attributes [22] and it will
be straightforward to re-use those ideas directly in order to
manage the attributed multigraphs with our framework. In
particular, the previous techniques can be incorporated at
the level of select candidates procedure in order to reduce
the possible select candidate set. Thus, the data vertices that
meet the requirements of both the vertex attributes and edge
dimensions will only be eligible as possible select candidate
set. The additional information in the form of vertex attributes
might be helpful in reducing the search space for the subgraph
matching procedure. Addressing attributed multigraphs can be
a possible extension of our work.

IX. CONCLUSION

We proposed an efficient algorithm SUMGRA that can
perform subgraph matching on multigraphs. The main con-
tributions included the construction of indexing for the edge
dimensions to prune the possible candidates, followed by
building an ordered tree with inverted lists to retain only
the valid candidates. Then we proposed an efficient subgraph
search procedure that can very well work on the multigraphs.
Various experiments were conducted to demonstrate the effi-
ciency, versatility, and scalability of our approach.

REFERENCES

[1] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining coherent
subgraphs in multi-layer graphs with edge labels. In KDD, pages 1258–
1266, 2012.

[2] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen. Distance oracles in
edge-labeled graphs. In EDBT, pages 547–558, 2014.

[3] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free
query processing on graph databases. In SIGMOD, pages 857–872.
ACM, 2007.

[4] L. P Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE TPAMI,
26(10):1367–1372, 2004.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

11

(a) DBLP: Subgraph Query (b) DBLP: Path Query (c) DBLP: Clique Query

(d) BIOGRID: Subgraph Query (e) BIOGRID: Path Query (f) BIOGRID: Clique Query

(g) FLICKR: Subgraph Query (h) FLICKR: Path Query (i) FLICKR: Clique Query

(j) YOUTUBE: Subgraph Query (k) YOUTUBE: Path Query (l) YOUTUBE: Clique Query

Fig. 6: Time performance of the proposed method compared to the base lines approaches: A = Syn+OTIL (SUMGRA), B =
Syn+BIT , C = NoSyn+OTIL, D = NoSyn+BIT

[5] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. In SIGMOD,
pages 337–348. ACM, 2013.

[6] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In SIGMOD, pages 405–418. ACM, 2008.

[7] J. E. Hopcroft and R. M. Karp. An nˆ5/2 algorithm for maximum

matchings in bipartite graphs. SIAM Journal on computing, 2(4):225–
231, 1973.

[8] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Computing label-
constraint reachability in graph databases. In SIGMOD, pages 123–134,
2010.

[9] S. Kim, I. Song, and Y. J. Lee. An edge-based framework for fast

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

12

(a) BIOGRID: Subgraph Query (b) BIOGRID: Path Query (c) BIOGRID: Clique Query

(d) YOUTUBE: Subgraph Query (e) YOUTUBE: Path Query (f) YOUTUBE: Clique Query

Fig. 7: Performance of SUMGRA with increasing dimensions: d = 2 and d = 4

(a) SYNTH:Subgraph Query (b) SYNTH:Path Query

Fig. 8: Performance of SUMGRA for SYNTH data set with
d = 2 and d = 4

subgraph matching in a large graph. In Database Systems for Advanced
Applications, pages 404–417. Springer, 2011.

[10] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth
comparison of subgraph isomorphism algorithms in graph databases.
In PVLDB, pages 133–144. VLDB Endowment, 2012.

[11] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in a
recommendation network. In PAKDD, 2006.

[12] L. Libkin, J. Reutter, and D. Vrgoč. Trial for rdf: adapting graph query
languages for rdf data. In PODS, pages 201–212. ACM, 2013.

[13] Z. Lin and Y. Bei. Graph indexing for large networks: A neighborhood
tree-based approach. Knowledge-Based Systems, 2014.

[14] J. J. McAuley and J. Leskovec. Learning to discover social circles in
ego networks. In NIPS, pages 548–556, 2012.

[15] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism. PVLDB,
1(1):364–375, 2008.

[16] D. Shasha, J. TL Wang, and R. Giugno. Algorithmics and applications
of tree and graph searching. In PODS, pages 39–52. ACM, 2002.

[17] L. Tang, X. Wang, and H. Liu. Community detection via heterogeneous
interaction analysis. Data Min. Knowl. Discov., 25:1–33, 2012.

[18] L. Tang, X. Wang, and H. Liu. Community detection via heterogeneous
interaction analysis. Data Min. Knowl. Discov., 25(1):1–33, 2012.

[19] M. Terrovitis, S. Passas, P. Vassiliadis, and T. Sellis. A combination of

trie-trees and inverted files for the indexing of set-valued attributes. In
CIKM, pages 728–737. ACM, 2006.

[20] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal
of the ACM, 23(1):31–42, 1976.

[21] X. Yan, P. S Yu, and J. Han. Graph indexing: a frequent structure-based
approach. In SIGMOD, pages 335–346. ACM, 2004.

[22] J. Yang, S. Zhang, and W. Jin. Delta: indexing and querying multi-
labeled graphs. In CIKM, pages 1765–1774. ACM, 2011.

[23] A. Zhang. Protein interaction networks: Computational analysis, 2009.
[24] P. Zhao and J. Han. On graph query optimization in large networks.

PVLDB, 3(1-2):340–351, 2010.
[25] P. Zhao, J. X. Yu, and Philip S Yu. Graph indexing: tree+ delta¡= graph.

In PVLDB, pages 938–949. VLDB Endowment, 2007.

[Research Report] RR-2014030, LIRMM. 2014. <lirmm-01076138>

