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Abstract. In this paper we show the potential of contextual itemset
mining in the context of Linked Open Data. Contextual itemset min-
ing extracts frequent associations among items considering background
information. In the case of Linked Open Data, the background informa-
tion is represented by an Ontology defined over the data. Each resulting
itemset is specific to a particular context and contexts can be related
each others following the ontological structure.
We use contextual mining on DBpedia data and show how the use of
contextual information can refine the itemsets obtained by the knowledge
discovery process.

1 Introduction

We place ourselves in a knowledge discovery setting where we are interested in
mining frequent itemsets from a RDF knowledge base. Our approach takes into
account contextual data about the itemsets that can impact on what itemsets
are found frequent depending on their context [16]. This paper presents a proof
of concept and shows the potential advantage of contextual itemset mining in
the Linked Open Data (LOD) setting, with respect to other approaches in the
literature that do not consider contextual information when mining LOD data.
We make the work hypothesis that the context we consider in this paper is the
class type (hypothesis justified by practical interests of such consideration such
as data integration, alignment, key discovery, etc.). This work hypothesis can
be lifted and explored according to other contexts such as predicates, pairs of
subjects and objects, etc. [1] as further discussed in Section 5.

Here we are not interested in the use of how the mined itemsets can be
relevant for ontological rule discovery [15], knowledge base compression [12] etc.
We acknowledge these approaches and plan to investigate how, depending on
the way contexts are considered, we can mine different kind of frequent itemsets
that could be further used for reasoning. Therefore, against the state of the art
our contribution is:

– Taking into account contextual information when mining frequent itemsets
on the Linked Open Data cloud. This allows us to refine the kind of infor-
mation the mining process can provide.

– Introducing the notion of frequent contextual pattern and show how it can
be exploited for algorithmic considerations.



We evaluate our approach on the DBpedia [13] dataset. In Section 2 we give a
short example of the intuition of our approach. Section 3 explains the theoretical
foundations of our work. In Section 4 we briefly present the DBpedia dataset
and explain the obtained results. Section 5 concludes the paper.

2 Paper in a Nutshell

A semantic knowledge base is typically composed of two parts. The first part is
the ontological, general knowledge about the world. Depending on the subset of
first order logic used to express it this part is also called TBox (in Description
Logics [4]), support (in Conceptual Graphs [8]) or rules (in Conceptual Graphs
and rule based languages such as Datalog and Datalog+- [6]).

The second part is the factual knowledge about the data defining how the
instances are in relation with each other. In Description Logics the factual knowl-
edge is called ABox. Usually in the Linked Open Data, the factual knowledge is
stored using RDF (usually in a RDF Triple Store) as triples “Subject Predicate
Object”. Recently, within the Ontology Based Data Access [7] the data (factual
information) can also be stored in a relational databases.

A study of the trade-off of using different storage systems (with equivalent
expressivity) was recently done in [5]. DBpedia organises the data in three parts:

– The first part is the ontology (representing the TBox). The rules do not
introduce existential variables in the conclusion (unlike existential rules as
in Datalog+-) and they represent the Class Type hierarchy and the Predicate
Type hierarchy. The ontology is guaranteed to be acyclic in the version of
DBpedia we used. In the Directed Acyclic Graph (DAG) representing the
ontology there are around 500 nodes, with around 400 being leaves. The
maximal height is inferior to 10. The ontology we consider in the example
in this section is depicted in Figure 1(b). We consider a six class ontology
represented by a binary tree with height three. The algorithmic implications
of the structure of the ontology are discussed in Section 5. Additionally, we
consider the binary predicates “playsWith”, “eats” and “hates” of signature
“(Animal, Animal)”.

– The second part is the mapping based types containing the instance type
definition. In the example in this section, using the ontology defined in Fig-
ure 1(b), we consider the following mapping types (using a RDF triple no-
tation): “Bill hasType Dog”, “Boule hasType Human”, “Tom hasType Cat”,
“Garfield hasType Cat” and “Tweety hasType Bird”.

– The third part consists of the mapping based properties that correspond to
the factual information. In the example here we consider the following facts:
“Bill eats Tweety”, “Tweety hates Bill”, “Bill playsWith Boule”, “Tom eats
Tweety”, “Tom hates Bill”, “Garfield hates Bill”, “Garfield eats Tweety”,
“Garfield hates Boule”. These facts are summarized in Figure 1(a).

In this paper we make the choice of working with the data from the perspec-
tive of the Class of the Subject. As mentioned in the introduction we motivate



Subject Predicate Object

Bill eats Tweety
Tweety hates Bill
Bill playsWith Boule
Tom eats Tweety
Tom hates Bill
Garfield hates Bill
Garfield eats Tweety
Garfield hates Boule

(a) A fact base F .

Animal

NiceAnimal NastyAnimal

Dog Cat Bird

(b) An ontology H.

Fig. 1: A knowledge base KB = (F ,H).

tid IAnimal

Bill {(eats, Tweety), (playsWith,Boule)}
Tweety {(hates,Bill)}
Tom {(eats, Tweety), (hates,Bill)}
Garfield {(hates,Bill), (eats, Tweety), (hates,Boule)}

Fig. 2: The transactional database TKB,Animal for the context Animal in the
knowledge base KB depicted in Figure 1.

this initial choice from the perspective of various data integration tools on the
Linked Open Data. One of the main challenges encountered by these tools is the
mapping between various class instances. It is then not uncommon to consider
the RDF database from a class type at a time.

If we consider this point of view then we model the couple “(Predicate,Object)”
as an item, and the set of items associated with a given subject an itemset. The
itemset corresponding to each distinct subject from F are depicted in Figure 2.

One may notice that 50% of the itemsets depicted in Figure 2 include the
subset {(hates,Bill), (eats, Tweety)}, while 75% include {(hates,Bill)}.

But this is simply due to the fact that our knowledge base contains a lot
of cats (that hate Bill). Actually, if we look closer, we notice that all cats hate
Bill and all birds hate Bill but no dogs hate Bill. By considering this contextual
information we could be more fine-tuned with respect to frequent itemsets.

3 Theoretical Foundations

The contextual frequent pattern (CFP) mining problem aims at discovering pat-
terns whose property of being frequent is context-dependent.

This section explains the main concepts behind this notion for Linked Open
Data.



We consider as input a knowledge base KB = (F ,H) composed of an ontol-
ogy H (viewed as a directed acyclic graph) and a set of facts F .

The set of facts F is defined as the set of RDF triples of the form

(subject, predicate, object)

.
Each element of the triple is defined according to the ontology1. The ontol-

ogy, also denoted the context hierarchy H, is a directed acyclic graph (DAG),
denoted by H = (VH, EH), such that VH is a set of vertices also called contexts
and EH ⊆ VH × VH is a set of directed edges among contexts.

H is naturally associated with a partial order <H on its vertices, defined as
follows: given c1, c2 ∈ VH, c1 <H c2 if there exists a directed path from c2 to c1
in H. This partial order describes a specialization relationship: c1 is said to be
more specific than c2 if c1 <H c2, and more general than c2 if c2 <H c1. In this
case, c2 is also called a subcontext of c1.

A minimal context from H is a context such that no more specific context
exists in H, i.e., c ∈ VH is minimal if and only if there is no context c′ ∈ VH

such that c′ <H c. The set of minimal contexts in H is denoted as V −
H .

Based on this knowledge base, we will build a transactional database such
that each transaction corresponds to the set of predicates and objects of subjects
of a given class. More precisely, givenKB = (F ,H) and c ∈ VH, the transactional
database for c w.r.t. KB, denoted as TKB,c, is the set of transactions of the form
T = (tid, Ic) where Ic = {(pred, obj)|(s, pred, obj) ∈ F and c is the class of s}.

We define IH as the set {Ic|c ∈ VH}. In this paper, we are interested in
itemset mining, thus a pattern p is defined as a subset of IH.

Definition 1 (Pattern Frequency). Let KB be a knowledge base, p be a pat-
tern and c be a context, the frequency of p in TKB,c is defined as Freq(p, TKB,c) =
|{(tid,I)∈TKB,c|p⊆I}|

|TKB,c|
.

For the sake of readability, in the rest of the paper, Freq(p, TKB,c) is denoted
by Freq(p, c).

Definition 2 (Contextual Frequent Pattern). Let KB be a knowledge base,
p be a pattern, c be a context and σ a mininum frequency threshold. The couple
(p, c) is a contextual frequent pattern (CFP) in KB if:

– p is frequent in c, i.e., Freq(p, c) ≥ σ,
– p is frequent in every subcontext of c, i.e., for every context c′ such that

c′ <H c, Freq(p, c′) ≥ σ,

1 Given the ontology we considered in DBPedia, the ontology is solely composed of a
class hierarchy.



Additionally, (p, c) is context-maximal if there does not exist a context C
more general than c such that (p, C) is a contextual frequent pattern.

Definition 3. Given a user-specified mininum frequency threshold σ and a knowl-
edge base KB = (F ,H), the contextual frequent pattern mining problem consists
in enumerating all the context-maximal contextual frequent patterns in KB.

Th CFP mining problem is intrinsically different from the one addressed
in [17, 14]. The CFP exploits a context hierarchy that define relationships
over the contexts associated to each transaction while in [17, 14] the taxonomic
information is employed to generalize the objects over which a transaction is
defined.

3.1 Algorithm for computing CFPs

The above definitions provide us with a theoretical framework for CFP mining.
In the rest of this section, we design the algorithm that extracts CFPs from
DBpedia. This algorithm is inspired from the one that was proposed in [16] for
mining contextual frequent sequential patterns (i.e., a variation of the frequent
itemset mining problem where itemsets are ordered within a sequence [2]). We
however handle itemsets in the current study and therefore have to propose
an adapted algorithm. To this end, we propose to mine CFPs through post-
processing the output of a regular frequent itemset miner.

Indeed, by considering the definition of a context-maximal CFP (cf. Defi-
nition 2), one could imagine how to extract them via the following easy steps:
(1) extracting frequent patterns in every context of H by exploiting an existing
frequent itemset miner, (2) for each context and each frequent itemset found in
this context, check whether it satisfies the requirements of a CFP (i.e., check-
ing whether it was also found frequent in the subcontexts, and whether it is
context-maximal. This approach, while convenient for its straightforwardness, is
inefficient in practice. Mining every context of the hierarchy can quickly become
impractical because of the number of such elements. In addition, mining all the
contexts of the hierarchy is redundant, as more general contexts contain the
same elements as their subcontexts.

In order to tackle these problems, we propose to remove this redundancy
by mining frequent patterns in minimal contexts of H only and building CFPs
from the patterns found frequent in those only. In consequence, we define the
decomposition notions, by exploiting the fact that a context can be described by
its minimal subcontexts in H. To this end, we consider the decomposition of a
context c in H as the set of minimal contexts in H being more specific than c,
i.e., decomp(c,H) = {c′ ∈ V −

H |(c′ <H c)∨ (c′ = c)}. Please notice that given this
definition, the decomposition of a minimal context c is the singleton {c}.

Proposition 1. Let KB be a knowledge base, p be a pattern and c be a context.
(p, c) is a contextual frequent pattern in KB if and only if p is frequent in every
element of decomp(c).



This proposition (whose proof can be found in [16] and adapted to the current
framework) is essential by allowing the reformulation of the CFP definition w.r.t.
minimal contexts only: a couple (p, c) is a CFP if and only if the set of minimal
contexts where p is frequent includes the decomposition of c.

Extending this property to context-maximal CFPs is straightforward. The
algorithm we use to extract context-maximal CFPs in DBpedia data can be
decomposed into the following consecutive steps:

1. Mining. Frequent patterns are extracted from each minimal context. At this
step, by relying on Proposition 1, we do not mine non-minimal contexts. The
frequent itemset miner employed to perform this step is an implementation
of the APriori algorithm [3] provided in [10].

2. Reading. Output files from the previous step are read. The patterns p are
indexed by the set of minimal contexts where they are frequent, denoted by
lp. Then, we initialize a hash table K as follows. The hash table keys are the
sets of minimal contexts and the hash table values are the sets of patterns
such that K[l] contains the patterns p such that lp = l. The hash table K,
at the end of this step, thus stores all the patterns found frequent in at least
one minimal context during the previous step. The patterns are indexed by
the set of minimal contexts where they are frequent.

3. CFP Generation. During this step, each key l of K is passed to a rou-
tine called maxContexts which performs a bottom-up traversal of the ver-
tices of H in order to return the set of maximal contexts among {c ∈
VH | decomp(c) ⊆ l}. Such contexts satisfy the Proposition 1. Then, for each
pattern p such that l = lp and each context returned by the maxContexts

routine, one context-maximal CFP is generated and stored. Two patterns p
and p′ frequent in the same minimal contexts (i.e., lp = lp′) are general in
the same contexts. They will generate the same result via the maxContexts

routine. By using a hash table K to store the patterns that are frequent in
the same minimal contexts, the number of calls to maxContexts is greatly
reduced to the number of keys in K rather than the number of distinct
patterns discovered during the mining step.

4 Experimental Results

In this section, we describe the results obtained through discovering contextual
frequent patterns in the DBpedia dataset. All experiments have been conducted
on an Intel i7-3520M 2.90GHz CPU with 16 GB memory. The rest of the sec-
tion is organized as follows. First, we comment the quantitative aspects of the
evaluation. Second, we show and explain some examples of contextual frequent
patterns found in the data.

Quantitative evaluation. In order to apply the mining algorithm to the DBpedia
data, we pre-process them by removing all the contexts associated to less than 10



elements. The obtained contextual hierarchy contains 331 contexts, out of whic
278 are minimal. The intuition behind this pre-processing step is that extracting
frequent patterns from contexts that contain a very small amount of elements is
statistically insignificant and can lead to noisy results.

After the above-mentioned pre-processing, the data has the following fea-
tures. The whole database contains a total of 2, 501, 023 transactions. The num-
ber of elements per minimal context (i.e., the partition of the subjects over the
classes) is naturally unbalanced in the DBpedia data. Indeed, a minimal con-
text contains in average 8996 ± 40383 elements, with a minimum of 12 and a
maximum of 577196. Figure 3(a) depicts how subjects are distributed over the
minimal contexts and shows that the majority of minimal contexts contains less
than 2000 transactions.

Similarly, the repartition of triples regarding their associated subjects is un-
balanced. A subject in the DBpedia data we considered is associated in average
with 7.43 ± 6.54 triples, with a maximum amount of 821 triples per subject.
Please notice that this is equivalent to the average count of items per itemset
in our contextual database. Figure 3(b) shows the repartition of the subjects in
the data according to the number of triples they are asociated with.
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Fig. 3: Elements of data repartition in DBpedia.

Figure 4(a) shows the runtime required to discover contextual frequent pat-
terns in the whole database according to the minimum frequency threshold. The
proposed approach is shown to be scalable regarding the DBpedia data. The run-
times are indeed lower than 100 seconds for minimum frequency thresholds lower
than 0.1. Unsurprisingly, the required time becomes much higher with low mini-
mum frequency thresholds (around 5%). As shown in Figure 4(b), decreasing the
minimum frequency threshold also provokes a higher number of discovered CFPs
(more than 1, 000, 000 for a minimum frequency threshold of 5%). This global
behavior regarding the user-specified minimum frequency threshold is typical of
frequent pattern miners.
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CFP examples and interpretation. CFPs have the ability to describe how (pred-
icate,object) couples can be correlated to a class. Some examples can be found
in minimal contexts of the hierarchy H. For instance, the CFP ({(location,
UnitedStates)},WineRegion) with a frequency of 72% in the minimal context
WineRegion means that “72% of wine regions described in DBpedia are located
in the United States”. Similarly, the CFP ({(BirthP lace, England)}, DartsP layer)
with a frequency of 33% in the minimal context DartsP layer shows that “33%
of the darts players in DBpedia were born in England”. Hence, mining CFPs has
the ability to describe frequent patterns in every minimal context of H. Such
CFPs, because they are associated to minimal contexts, bring other information.
All extracted CFPs are context-maximal (cf. Definition 3). As a consequence,
they also bring an additional piece of information to help an expert interpre-
tating the results. For instance, ({(BirthP lace, England)}, DartsP layer) being
context-maximal also indicates that ({(BirthP lace, England)}, Athlete) is not
a CFP. In other terms, the fact that the itemset {(BirthP lace, England)} is
frequent in the context DartsP layer does not hold in all the other subcontexts
of Athlete (such subcontexts include TennisP layer, Wrestler, Cyclist, etc.).

Previous examples describe facts associated to minimal contexts only. How-
ever, the contextual frequent pattern mining problem also aims at describ-
ing how such facts can be lifted to more general contexts. A simple example
can be found in the context MusicGroup, which has two subcontexts Band

and MusicalArtist. With a minimum frequency threshold of 10%, the context-
maximal CFP ({hometown,UnitedStates},MusicGroup) is discovered. This
pattern brings several pieces of information:

– more than 10% of MusicGroup from DBpedia, i.e., bands or musical artists,
have their hometown in the United States. More precisely, the algorithm also
provides us with the exact frequency of this pattern in MusicGroup, i.e.,
15.3%;

– this fact also holds for subcontexts of MusicGroup: more than 10% of bands
and more than 10% of musical artists have their hometown in the United
States;



– no context in H more general than MusicGroup can be associated with the
itemset {hometown,UnitedStates} to form a CFP.

CFPs hence have the ability to describe the facts contained in DBpedia re-
garding their frequency, but also how the property of being frequent can be
generalized or not in the whole context hierarchy.

5 Discussion

RDF data constitutes a rich source of information and, recently, data mining
community starts to adapt its methods to extract knowledge from such kind
of data [18]. In particular, preliminary works in this direction employ pattern
mining techniques in order to extract frequent correlation and meta information
from RDF dataset. In [9] the authors propose to use association rule mining (not
using any contextual information) in order to enrich RDF schema with property
axioms. The properties axioms are automatically induced by means of a pattern
mining step. These axioms can be directly used as meta-data to index the RDF
dataset.

[12] exploits pattern mining in order to compress RDF data. In this work
the authors apply well known association rule mining algorithms to induce rules
that cover the information in the RDF dataset. Once the rules are extracted, the
RDF dataset is compressed considering the set of rules plus the not covered RDF
triples. Both previous approaches did not employ any additional background
knowledge (such as taxonomy). This information can be useful in order to exploit
existing relationships among the data.

A first attempt in this direction is presented in [11]. In this work an RDF
triple is an item and taxonomical information is directly employed to generalise
subjects or objects at item level. Differently from this strategy, our approach
allows to characterise (by means of the extracted itemsets) a node of the tax-
onomy supplying cues about how the extracted knowledge can be organised for
its analysis. Since the taxonomy nodes we exploit (the contexts) are classes we
could have presented our contribution directly from an RDF class view point.
This choice would have meant that the conceptual link with the notion of con-
text in the data mining setting was lost. Thus we preferred to keep the context
terminology. Let us mention here that the shape of the ontology changes the effi-
ciency of the algorithm. Due to the nature of our algorithm and pruning method
we have better results if the DAG is not large but has a big height. We plan to
apply our method to more specialised ontologies where such property is satisfied.

As explained above the mined itemsets could be used for inference rules. For
instance, if in the context Cat the itemset {hates,Bill} is frequent we can view
this as a rule ∀xCat(x) → hates(x,Bill) that hold in the knowledge base at a
given time with a given confidence. We are currently working towards providing
such itemsets with logical semantics and see what the frequency means in this
case.

Another issue when considering the itemsets as rules is how to deal with
their number, and how to order them in order to be validated by an expert.



One possible avenue we can explore is to generalise instances to concepts and
try to extract less rules but more meaningful. For example we can generalise Bill
to Dog and mine the rule ∀xCat(x) → ∃yDog(y) ∧ hates(x, y). The question is
where to put the tradeoff between expressivity and number.

Finally let us mention that changing the context (not considering the class as
a context but the couple (subject, object)) we could mine interesting rules about
predicates. For instance we could get that ∀x∀yCat(x) ∧Dog(y) → hates(x, y).
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