Bastien Cazaux
email: cazaux@lirmm.fr

Thierry Lecroq
email: thierry.lecroq@univ-rouen.fr

Eric Rivals
email: rivals@lirmm.fr

From Indexing Data Structures to de Bruijn Graphs *

New technologies have tremendously increased sequencing throughput compared to traditional techniques, thereby complicating DNA assembly. Hence, assembly programs resort to de Bruijn graphs (dBG) of k-mers of short reads to compute a set of long contigs, each being a putative segment of the sequenced molecule. Other types of DNA sequence analysis, as well as preprocessing of the reads for assembly, use classical data structures to index all substrings of the reads. It is thus interesting to exhibit algorithms that directly build a dBG of order k from a pre-existing index, and especially a contracted version of the dBG, where non branching paths are condensed into single nodes. Here, we formalise the relationship between suffix trees/arrays and dBGs, and exhibit linear time algorithms for constructing the full or contracted dBGs. Finally, we provide hints explaining why this bridge between indexes and dBGs enables to dynamically update the order k of the graph.

Introduction

The de Bruijn graph (dBG) of order k on an alphabet Σ with σ symbols has σ k vertices corresponding to all the possible distinct strings of length k on the alphabet Σ and there is a directed edge from vertex u to vertex v if the suffix of u of length k -1 equals the prefix of v of length k -1. De Bruijn graphs have various properties and xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the i-th letter of x, and x[i .. j] denotes the substring or factor x [i]x[i + 1] . . . x [j]. Let k be a positive integer. If |x| ≥ k, f irst k (x) is the prefix of length k of x and last k (x) is the suffix of length k of x. A substring of length k of x is called a k-mer of x. For i such that 1 ≤ i ≤ |x|k + 1, (x) k,i is the k-mer of x starting in position i, i.e. (x) k,i = x[i .. i + k -1]. Thus we have f irst k (x) = (x) k,1 and last k (x) = (x) k,|x|-k+1 . We denote by ♯(Λ) the cardinality of any finite set Λ.

Let S = {s 1 , . . . , s n } be a finite set of words. Let us denote the sum of the lengths of the input strings by S := ∑ s i ∈S |s i |. We denote by F S the set of factors of words of S. For a word w of F S ,

• Support S (w) is the set of pairs (i, j), where w is the substring (s i) |w|, j . Support S (w) is called the support of w in S.

• RC S (w) (resp. LC S (w)) is the set of right context (resp. left context) of the word w in S, i.e. the set of words w ′ such that ww ′ ∈ F S (resp. w ′ w ∈ F S).

• ⌈w⌉ S is the word ww ′ where w ′ is the longest word of RC S (w) such that Support S (w) = Support S (ww ′). In other words, such that w and ww ′ have exactly the same support in S.

• ⌊w⌋ S is the word w ′ where w ′ is the longest prefix of w such that Support S (w ′) = Support S (w).

• d S (w) := |⌈w⌉ S | -|w|.
In other words, ⌈w⌉ S is the longest extension of w having the same support than w in S, while ⌊w⌋ S is the shortest reduction of w with a support different from that of w in S. These definitions are illustrated in a running example, with S := {bacbab, cbabcaa, bcaacb, cbaac, bbacbaa}, presented in Fig. 1.

We give the definition of a de Bruijn graph for assembly (dBG for short), which differs from the original definition of a complete graph over all possible words of length k stated by de Bruijn [START_REF] De Bruijn | On bases for the set of integers[END_REF]. (V + , E +), whose vertices are the k-mers of words of S and where an arc links u to v if and only if u and v are two successive k-mers of a word of S, i.e.:

V + := F S ∩ Σ k and E + := {(u, v) ∈ V + 2 | last k-1 (u) = f irst k-1 (v) and v[k] ∈ RC S (u)}.
Examples of arcs are displayed on Fig. 2.

Let us introduce now the notions of extensibility for a substring of S and that of a Contracted dBG (CdBG for short).

if ♯(LC S (w) ∩ Σ) = 1.
As S is clear from the context, we simply omit the "in S". Let w be a word of Σ ⋆ . The word w is said to be a unique k ′ -mer of S if and only if k ′ ≥ k and for all i ∈ [1..k ′k + 1], (w) k,i ∈ F S and for all j ∈ [1..k ′k], (w) k, j is right extensible and (w) k, j+1 is left extensible.

Definition 2.3 A contracted de Bruijn graph of order k, denoted by CDBG

+ k = (V + c , E + c), is a directed graph where: V + c = {w ∈ Σ ⋆ | w is a k ′ -

mer unique maximal by substring and k ′ ≥ k} and E

+ c = {(u, v) ∈ V + c 2 | last k-1 (u) = f irst k-1 (v) and v[k] ∈ RC S (last k (u))}.
Note that in the previous definition, an element w in V + c does not necessarily belong to F S , since w may only exist as the substring of the agglomeration of two words of S. Thus, let w be a k ′ -mer unique maximal by substring with

k ′ ≥ k: last k (w) is not right extensible or RC S (last k (w)) ∩ Σ = {a} and last k-1 (w) • a is not left extensible, f irst k (w) is not left extensible or LC S (f irst k (w)) ∩ Σ = {a} and a • f irst k-1 (w) is not right extensible.
With this argument, we have both following propositions.

Proposition 1 Let (u, v) ∈ E + c ; (last k (u), f irst k (v)) ∈ E + and there exists w ∈ V + such that (w, f irst k (v)) ∈ E + \{(last k (u), f irst k (v))} or (last k (u), w) ∈ E + \{(last k (u), f irst k (v))}. Proposition 2 Let (u, v) ∈ E + . If u is right extensible and v is left extensible, then there exists w ∈ V + c such that uv[k] is a substring of w. Otherwise, there exists (u ′ , v ′) ∈ E + c such that u = last k (u ′) and v = f irst k (v ′).
According to Prop. 1 and 2, CDBG + k is the graph DBG + k where the arcs (u, v) are contracted if and only if u is right extensible and v is left extensible.

Definition of de Bruijn Graphs with words

Let k be a positive integer. We define the following three subsets of F S .

• InitExact S,k = {w ∈ F S | |w| = k and d S (w) = 0} • Init S,k = {w ∈ F S | |w| ≥ k and d S (f irst k (w)) = |w| -k} • SubInit S,k = InitExact S,k-1
A word of InitExact S,k is either only the suffix of some s i or has at least two right extensions, while the first k-mer of a word in Init S,k \ InitExact S,k has only one right extension.

Proposition 3 InitExact S,k = Init S,k ∩ {w ∈ F S | |w| = k}.
For w an element of Init S,k , f irst k (w) is a k-mer of S. Given two words w 1 et w 2 of Init S,k , f irst k (w 1) and f irst k (w 2) are distinct k-mers of S. Furthermore for each k-mer w ′ of S, there exists a word w of Init S,k such that f irst k (w) = w ′ . From this, we get the following proposition.

Proposition 4 There exists a bijection between Init S,k and the set of the k-mers of S.

According to Def. 2.1 and Prop. 4, each vertex of DBG + k can be assimilated to a unique element of Init S,k . To define the arcs between the words of Init S,k , which correspond to arcs of DBG + k , we need the following proposition, which states that each single letter that is a right extension of w gives rise to a single arc.

Proposition 5 For w ∈ InitExact S,k and a ∈ Σ ∩ RC S (w), there exists a unique w ′ ∈ Init S,k such that last k-1 (w)a is a prefix of w ′ .

The set Init S,k represents the nodes of DBG + k . Let us now build the set of arcs that is isomorphic to E + . Let w be a word of Init S,k and Succ(w) denote the set of successors of f irst k (w):

Succ(w) := {x ∈ Init S,k | (f irst k (w), f irst k (x)) ∈ E + }.
We know that for each letter a in RC S (w), there exists an arc from f irst k (w) to f irst k (last |w|-1 (w)a) in DBG + k . We consider two cases depending on the length of w:

Case 1 |w| = k. According to Prop. 3, w ∈ InitExact S,k and hence last k-1 (w) ∈ SubInit S,k .
Therefore, the outgoing arcs of w in DBG + k are the arcs from w to w ′ satisfying the condition of Prop. 5. Then,

Succ(w) = ∪ a∈Σ∩RC S (w) ⌈last k-1 (w)a⌉ S . Case 2 |w| > k. As w is longer than k, it contains the next k-mer; hence f irst k (last |w|-1 (w)a) = f irst k (last |w|-1 (w)),
(w)) ∩ Σ, then last k-1 (f irst k (w))a is left extensible if and only if ♯(Support S (f irst k (w))) = ♯(Support S (last k-1 (f irst k (w))a) \ {(i, 1) | 1 ≤ i ≤ n}).
We present a generic algorithm to build incrementally CDBG + k . In the following sections, we exhibit algorithms to compute DBG + k and CDBG + k for two important indexing structures.

4 Transition from the suffix tree to de Bruijn graphs A generalised ST (GST) can index the substrings of a set of words. Generally for this sake, all words are concatenated and separated by a special symbol not occurring elsewhere. However, this trick is not compulsory, and an alternative is to keep the indication of a terminating node within each node.

The Suffix Tree and its properties

The Generalised Suffix Tree (GST) of a set of words S is the suffix tree of S, where each word of S does not finish necessarily by a letter of unique occurrence. Hence, for each node v of the GST of S, we keep in memory the set, denoted by Suff S (v), of pairs (i, j) such that the word represented by v is the suffix of s i starting at position j. Let us denote by T the GST of S (from now on, we simply say the tree) and by V T its set of nodes. For v ∈ V T , Children(v) denotes its set of children and f (v) its parent. Some nodes of T may have just one child. The size of the union of Suff S (v) for all node v of T equals the number of leaves in the GST when the words end with a terminating symbol. Hence, the space to store T and the sets Suff S (.) is linear in S . By simplicity, for a node v of T , the word represented by v is confused with v. For each node v of T , v ∈ F S . As all elements of F S are not necessarily represented by a node of T , we give the following proposition. We consider the same two cases as for the construction of E + on p. 5, but in the case of a tree. Let v ∈ Init S,k .

Proposition 8 The set of nodes of T is exactly the set of words w of F

Case 1 |v| = k (Fig. 4a). As v ∈ InitExact S,k , sl(v) ∈ SubInit S,k . Therefore, each child u of sl(v) is an element of Init S,k . Thus, the outgoing arcs of v in DBG + k are the arcs from v to the child u of sl(v) where the first letter of the label between sl(v) and u is an element of the right context of v. As the set of the first letters of the label between v and children of v is exactly RC S (v) ∩ Σ, the number of outgoing arcs of v in DBG + k is the number of children of v. To build the outgoing arcs of v in DBG + k , for each child u ′ of v, we associate v with the node of Init S,k between the root and sl(u ′), i.e. ⌈ f irst k (sl(u ′))⌉ S .

Case 2 |v| > k (Fig. 4b and4c). We have that sl

(v) is a node of V T . As |v| > k, |sl(v)| ≥ k.
Thus, there exists an element of Init S,k between the root and sl(v).

We associate v with this node, i.e. ⌈ f irst k (sl(v))⌉ S .

We illustrate these two cases in Fig. 3. For Case 1: v is 6 2 6 5 , sl(v) is 7 2 7 5 , the unique child u ′ of v is 3 4 , and sl(u In both cases, building the arcs of E + requires to follow the SL of some node. The node, say u, pointed at by a SL may not be initial. Hence, the initial node representing the associated first k-mer of u is the only ancestral initial node of u. We equip each such node u with a pointer p(u) that points to the only initial node on its path from the root. In other words, for any u / ∈ Init S,k such that |u| > k, one has p(u) := ⌈ f irst k (u)⌉ S . The algorithm to build the DBG + k is as follows. A first depth first traversal of T allows to collect the nodes of Init S,k and for each such node to set the pointer p(.) of all its descendants in the tree. Finally to build E + , one scans through Init S,k and for each node v one adds Succ(v) to E + using the formula given above. Altogether this algorithm takes a time linear in the size of T . Moreover, the number of arcs in E + is linear in the total number of children of initial nodes. This gives us the following result.

′) is 4 4 , which is in Init S,k . For Case 2: v is 1 5 , sl(v) is 2 5 , and ⌈ f irst k (sl(v))⌉ S is . (a) (b) (c)

Construction of CDBG + k

In Section 3, we have seen an algorithm that allows to compute directly CDBG + k provided that one can determine if a node v is right extensible and if next(v) is left extensible, where next(v) denotes the only successor of v. Let us see how to compute the extensibility in the case of a Suffix Tree.

By applying Prop. 6 in the case of tree, for an element v of Init S,k , f irst k (v) is right extensible if and only if |v| > k or ♯(Children(v)) = 1. Thus checking the right extensibility of a node takes constant time.

For the left extensibility of the single successor of a node, one only needs the size of support of some nodes (Prop. 7). Let us see first how to compute ♯(Support S (.)) on the tree, and then how to apply Prop. 7.

Proposition 11 Let v be a word of F S and V T (⌈v⌉ S) denotes the set of nodes of the subtree rooted in ⌈v⌉ S . Support S (v) = ∪ v ′ ∈V T (⌈v⌉ S) Suff S (v ′).

Along a traversal of the tree, we compute and store ♯(Support S (v)) and

♯(Support S (v) ∩ {(i, 1) | 1 ≤ i ≤ n}) for each node v in linear time in |T |.
Let v be a word of Init S,k such that

f irst k (v) is right extensible. Case 1 If |v| = k then f irst k (v) = v and ♯(Children(v)) = 1. Let u be the only child of v. Thus, |u| > k, ♯(RC S (v) ∩ Σ) = {u[k + 1]}, and last k-1 (v)u[k + 1] = f irst k (sl(u)). Hence, ♯(Support S (v)) = ♯(Support S (f irst k (sl(u))) \ {(i, 1) | 1 ≤ i ≤ n}) and by Prop. 7, f irst k (sl(u)) is left extensible. Case 2 If |v| > k then ♯(RC S (f irst k (v)) ∩ Σ) = {v[k + 1]} and last k-1 (f irst k (v)) • v[k + 1] = last k (f irst k+1 (v)) = f irst k (sl(v)). By Prop. 7, f irst k (sl(v)) is left exten- sible if and only if ♯(Support S (f irst k (v))) = ♯(Support S (f irst k (sl(v))) \ {(i, 1) | 1 ≤ i ≤ n}) As ♯(Support S (f irst k (v))) = ♯(Support S (⌈ f irst k (v)⌉ S)) and ♯(Support S (v)\{(i, 1) | 1 ≤ i ≤ n}) = ♯(Support S (v)) -♯(Support S (v) ∩ {(i, 1) | 1 ≤ i ≤ n}), determining if next(v)
is left extensible takes constant time. To conclude, as for any initial node v, we can compute in O(1) its set of successors Succ(v), its right extensibility, and the left extensibility of its single successor, we obtain a complexity that is linear in the size of DBG + k , since each successor is accessed only once. This yields Theorem 12.

Theorem 12 For a set of words S, building the Contracted de Bruijn Graph of order k, CDBG + k takes linear time and space in |T | or in S .

dBG and CdBG from Suffix Array

For lack of space the reader is referred to [START_REF] Cazaux | From Indexing Data Structures to de Bruijn Graphs[END_REF] for the full details.

Theorem 13

The dBG of order k, CDBG + k , for a set of words S can be built in a time and space that are linear in S using the generalised suffix array of S.

6 Dynamically updating the order of DBG + . Genome assembly from short reads requires to test multiple values of k for the dBG. Indeed, the presence of genomic repeats, makes some order k appropriate to assemble non repetitive regions, and larger orders necessary to disentangle (at least some) repeated regions. Combining assemblies obtained from DBG + k for successive values of k is the key of IDBA assembler, but the dBG is rebuilt for each value [START_REF] Peng | IDBA A Practical Iterative de Bruijn Graph De Novo Assembler[END_REF]. Other tools also exploit this idea [START_REF] Bankevich | SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[END_REF]. It is thus interesting to dynamically change the order of the dBG. Here, we argue that starting the construction from an index instead of the raw sequences ease the update. On page 7, we mention which information are needed in general to build DBG + k . Assume the words are indexed in a suffix tree T (as in Section 4.2). Consider changing k to k -1. First, only the nodes of Init S,k whose parent represents a word of length k -1 are substituted by their parent in DBG + k-1 , all other nodes remain unchanged. Thus, any arc of order k either stays as such or has some of its endpoints shifted toward the parent node in T . In any case, updating an arc depends only on the nature of its nodes in DBG + k-1 (whether they belong to Init S,k-1 or InitExact S,k-1), and can be computed in constant time.

The same situation arises when changing k to k +1. First, only nodes of InitExact S,k change in DBG + k+1 : they are substituted by their children. Updating an arc also depends on the nature of its nodes: it can create a fork towards the children of the destination node if the latter changes, or it can be multiplied and join each children of the source to one children of the destination if both nodes change. Then, the label of the children in T indicate which children to connect to. It can be seen that updating from DBG + k to DBG + k+1 in either direction takes linear time in the size of T . Moreover, as updating the support of nodes in T is straightforward, we can readily apply the contraction algorithm to obtain CDBG + k+1 (see Section 4.3).

s 1 Figure 1 :

 11 Figure 1: Support S (ba) = {(1, 1), (1, 4), (2, 2), (4, 2), (5, 2), (5, 5)}, RC S (ba) = {ε, c, cb, cba, cbab, b, bc, bca, bcaa, a, ac, cbaa}, LC S (ba) = {ε, c, ac, bac, b, bbac} and d S (ba) = 0. One has RC S (ba) ∩ Σ = {a, b, c}. Thus, the word ba is not right extensible in S (see Def. 2.2).

Definition 2 . 1 s 1 Figure 2 :

 2112 Figure 2: Examples of arcs from DBG + k . (a) letters in the right context of ba, and (b) the successors of node ba in DBG + 2 ; one for each letter in RC S (w) ∩ Σ. (c) letters in the left context of ba, and (d) the predecessors of node ba in DBG + 2 .

Definition 2 . 2 (

 22 Extensibility) Let w be a word of F S , w is right extensible in S if and only if ♯(RC S (w) ∩ Σ) = 1 and w is left extensible in S if and only

Proposition 9

 9 S such that d S (w) = 0. We recall the notion of a suffix link (SL) for any node v of T (leaves included). Let sl(v) denote the node targeted by the suffix link of v, i.e. sl(v) = v[2 .. |v|]. By definition of a suffix tree, for all w ∈ F S , there exists a node v of T such that w is a prefix of v. Let v ′ the node of minimal length of T such that w is a prefix of v, then |v ′ | = |w| + d S (w), and therefore ⌈w⌉ S = v ′ . Let w ∈ F S . Then |⌈w⌉ S | ≥ |w| > | f (⌈w⌉ S)|, where f (⌈w⌉ S) is the parent of ⌈w⌉ S in T .

7 2 7 5 6 5 bacbaaFigure 3 :

 553 Figure3: The GST for our running example and the constructed dBG for k := 2. Square nodes represent words that occur as a suffix of some s i , circle nodes are the other nodes of T . Grey nodes represent the vertices of the dBG. Each square node contains i j when it represents the suffix of s j starting at position i. The curved arrows are the edges of the dBG; those in dotted lines correspond to Case 1 and those in doubled lines to Case 2 (see p. 7).

4. 2

 2 Construction of DBG + k Let [x 1 ..x m] be the set of k-mers of S. According to the definition of Init S,k and to Prop. 4, Init S,k = [⌈x 1 ⌉ S ..⌈x m ⌉ S]. Thus, by Prop. 9, Init S,k = {v ∈ V T | | f (v)| < k and |v| ≥ k}. Similarly, InitExact S,k = {v ∈ V T | |v| = k}. Now, it appears clearly that InitExact S,k is a subset of Init S,k , since for all v ∈ V T , | f (v)| < |v|.

Figure 4 :

 4 Figure 4: Figures (a), (b) and (c) show Case 1 and Case 2 for the arcs of DBG + k . The grey node is v. The dashed arcs correspond to suffix links. The arcs of the dBG are in bold (a) for the Case 1 and in dotted lines (b) (c) for the Case 2.

Theorem 10

 10 For a set of words S, building the de Bruijn Graph of order k, DBG + k takes linear time and space in |T | or in S .

 Now, we can build integrally DBG +k or more exactly an isomorphic graph of DBG + k . Thus for simplicity, from now on we confound the graph we build with DBG + k . To do the same with CDBG + k , we need to characterise the concepts of right and left extensibility in terms of word properties. By the construction of DBG + k , we have the following results. Let w be a word of Init S,k . f irst k (w) is right extensible if and only if |w| > k or ♯(RC S (w) ∩ Σ) = 1. Let w be a word of Init S,k such that f irst k (w) is right extensible. Let the letter a be the unique element of RC S (f irst k

	Proposition 6 Proposition 7

and there exists a unique outgoing arc of w: that from w to ⌈w[2 .. k]⌉ S . Indeed, by definition of Init S,k , ⌈w[2 .. k]⌉ S ∈ Init S,k , and thus Succ(w) = {⌈w[2 .. k]⌉ S }.

* This work is supported by ANR Colib'read (ANR-12-BS02-0008) and Défi MASTODONS SePhHaDe from CNRS.